高中数学求轨迹方程的六种常用技法汇总
高中数学求轨迹方程的六种常用技法汇总
![高中数学求轨迹方程的六种常用技法汇总](https://img.taocdn.com/s3/m/a36b8950195f312b3169a5fb.png)
------------------------------------------------------------精品文档--------------------------------------------------------求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。
x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习:Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程是。
22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。
的点,求点3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
高中数学轨迹方程求解常用方法总结
![高中数学轨迹方程求解常用方法总结](https://img.taocdn.com/s3/m/2341927459fafab069dc5022aaea998fcc224028.png)
高中数学轨迹方程求解常用方法总结导语:轨迹方程就是与几何轨迹对应的代数描绘。
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:假设能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y 与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高中数学解题方法-----求轨迹方程的常用方法
![高中数学解题方法-----求轨迹方程的常用方法](https://img.taocdn.com/s3/m/42684c28f524ccbff12184fb.png)
练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
求轨迹方程的常用方法(经典)
![求轨迹方程的常用方法(经典)](https://img.taocdn.com/s3/m/64a36d0af12d2af90242e667.png)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
求轨迹方程的常用技巧
![求轨迹方程的常用技巧](https://img.taocdn.com/s3/m/c48a641bcfc789eb172dc8b9.png)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
二:用直译法求轨迹方程此类问题重在寻找数量关系。
例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
求轨迹方程的常用方法
![求轨迹方程的常用方法](https://img.taocdn.com/s3/m/654ff4dd76eeaeaad1f330c5.png)
轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。
高中数学解析几何|求轨迹方程方法最全总结
![高中数学解析几何|求轨迹方程方法最全总结](https://img.taocdn.com/s3/m/37ebf77b0a1c59eef8c75fbfc77da26925c5968f.png)
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
求点的轨迹方程的六种常见方法
![求点的轨迹方程的六种常见方法](https://img.taocdn.com/s3/m/27f293d7daef5ef7ba0d3c43.png)
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,
几种常见求轨迹方程的方法
![几种常见求轨迹方程的方法](https://img.taocdn.com/s3/m/ffffea9cb9d528ea81c779c9.png)
几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。
数学轨迹方程的求法
![数学轨迹方程的求法](https://img.taocdn.com/s3/m/1b976562e418964bcf84b9d528ea81c758f52ef5.png)
数学轨迹方程的求法在数学中,轨迹可以看做是一个物体在运动过程中留下的路径。
而轨迹方程则是描述这个路径的方程。
求解轨迹方程是数学中常见的问题之一,本文将介绍一些常用的求解轨迹方程的方法。
一、直接解轨迹方程如果轨迹已知,那么可以直接解轨迹方程。
比如,一个运动物体在平面直角坐标系中的轨迹为一个圆形。
我们可以通过圆的标准方程x²+y²=r²求得轨迹方程。
二、利用参数方程求解轨迹方程如果轨迹无法用一般函数形式表示,那么我们可以用参数方程来描述它的轨迹。
参数方程表示成x=f(t),y=g(t),t为参数。
例如,一个点沿着单位圆按逆时针方向绕圈运动,可用参数方程 x=cos(t),y=sin(t),(0≤t≤2π)来描述它运动的轨迹,则轨迹方程为 x²+y²=1。
三、使用极坐标系求解轨迹方程在一些问题中,极坐标系比直角坐标系更加有用。
例如,极坐标系对于表示圆形更加简单。
若有圆心在原点处,半径为 R 的圆,圆上点的极坐标为(R,θ),则其方程为 r=R。
四、使用微积分求解轨迹方程微积分是解决轨迹方程问题的重要工具。
通过微积分的方法,我们可以求出运动物体的速度、加速度和位移,从而得出轨迹方程。
例如,若已知一个点做匀加速直线运动的位移和速度随时间的关系为s=at²/2+vt+s₀,则通过微积分可求出物体的轨迹方程s=a*t²/2+v*t+s₀。
总之,轨迹方程的求解方法多种多样,要根据不同的问题选择合适的方法。
熟练掌握这些方法,能够让我们更好地应对解决实际问题。
专题――常用求轨迹方程的技法(高三)
![专题――常用求轨迹方程的技法(高三)](https://img.taocdn.com/s3/m/200dc8faad51f01dc281f18a.png)
专题――常用求轨迹方程的技法 一、直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
(一)代入题设中的已知等式若动点的规律由题设中的已知等式明显给出,则采用直接将数量关系代数化的方法求其轨迹.1.动点P(x,y)到两定点A(-3,0)和B(3,0)的距离的比等于2(即),求动点P的轨迹方程?(二)列出符合题设条件的等式有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程.2.动点P到一高为h的等边△ABC两顶点A、B的距离的平方和等于它到顶点C的距离平方,求点P的轨迹?(三)运用有关公式有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程.3.△ABC的两顶点是B(-3,0),(3,0),两底角B、C之和恒为135°,求第三顶点A的轨迹方程.(四)借助平几中的有关定理和性质有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.4.一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB 中点P的轨迹方程?5.已知动点M到定点A(1,0)与到定直线L:x=3的距离之和等于4,求动点M的轨迹方程.6.在直角△ABC中,斜边是定长,求直角顶点C的轨迹方程。
二、定义法圆锥曲线是解析几何中研究曲线和方程的典型问题,当动点符合圆锥曲线定义时,可直接写出其轨迹方程。
7.已知动点满足则P点轨迹为( )A. 抛物线B. 直线C. 双曲线D. 椭圆8.已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。
9.已知椭圆的焦点是,P为椭圆上一点,且||是||和||的等差中项,求椭圆的方程。
10.已知△ABC中,,,三边长AC、AB、BC的长成等差数列,求顶点C的轨迹方程。
求轨迹方程的常用方法
![求轨迹方程的常用方法](https://img.taocdn.com/s3/m/43352960905f804d2b160b4e767f5acfa0c78311.png)
求轨迹方程的常用方法轨迹方程是描述物体运动轨迹的数学表达式。
常用的方法包括几何法、解析法和向量法。
一、几何法通过几何分析,可以利用直观的图形来确定轨迹方程。
1.1圆轨迹对于物体在平面上以一些固定点为中心做等速圆周运动的情况,其轨迹是一个圆。
圆轨迹可以通过半径和圆心坐标来表示。
1.2椭圆轨迹对于物体在空间中以一些固定点为焦点的椭圆轨迹,可以利用焦点坐标和半径长度来确定椭圆方程。
1.3抛物线轨迹物体在重力作用下自由落体的运动可以近似为一个抛物线运动。
其轨迹方程可以通过焦点坐标和准线方程来确定。
1.4双曲线轨迹一些情况下,物体运动的轨迹是一个双曲线。
双曲线轨迹可以通过焦点坐标和半轴长度来描述。
二、解析法解析法是通过分析物体在坐标系下的运动方程来确定轨迹方程。
2.1直角坐标系下的解析法在直角坐标系下,物体的运动可以由水平方向和垂直方向上的运动方程确定。
利用运动方程,可以消除时间因素,得到轨迹方程。
2.2极坐标系下的解析法在极坐标系下,物体的运动可以由径向运动方程和角度方程确定。
通过解析极坐标下的方程,可以得到轨迹方程。
2.3参数方程下的解析法在参数方程下,物体的运动可以由参数方程表示。
通过参数方程分别给出$x$和$y$坐标与参数$t$之间的关系,可以得到轨迹方程。
三、向量法向量法是通过运用向量的概念和运算来分析物体的运动轨迹。
3.1数量积表示轨迹方程通过设定一个合适的道路向量,可以用向量内积的形式表示运动方程,从而得到轨迹方程。
3.2向量积表示轨迹方程通过设定一个合适的平面向量,可以用向量叉积的形式表示运动方程,进而得到轨迹方程。
综上所述,求轨迹方程的常用方法包括几何法、解析法和向量法。
在实际应用中,根据具体问题的特点和要求选择合适的方法来求解轨迹方程。
求轨迹方程的常用方法
![求轨迹方程的常用方法](https://img.taocdn.com/s3/m/d1a90b725b8102d276a20029bd64783e08127d40.png)
求轨迹方程的常用方法
确定轨迹方程的常用方法有以下几种:
1.直接法:通过直接描绘或测量物体相应位置的坐标来确定轨迹方程。
这种方法适用于已知运动物体的运动轨迹形状简单且容易测量的情况。
常
用的直接法包括使用工具如尺子或量角器来绘制直线或角度,或者使用工
具如摄像机或激光测距仪来测量物体的位置。
2.参数方程法:将物体的位置用参数表示,通过参数方程来描述物体
的轨迹。
参数方程法常用于描述复杂的曲线或曲面轨迹,如圆、椭圆、抛
物线和螺旋线等。
以平面曲线为例,设参数为t,物体在x轴和y轴上的
坐标分别为x(t)和y(t),则轨迹方程可以表示为:x=x(t),y=y(t)。
3.方程法:通过列出满足物体位置的方程来确定轨迹方程。
方程法常
用于描述几何形状特定的轨迹,如圆、椭圆、抛物线和双曲线等。
以平面
曲线为例,设物体在x轴和y轴上的坐标分别为x和y,则轨迹方程可以
表示为一个关于x和y的方程:F(x,y)=0。
4.微分方程法:通过物理或几何相关的微分方程来确定轨迹方程。
微
分方程法常用于描述物体的运动过程,根据物体的运动方程可以推导出其
轨迹方程。
以平面运动为例,设物体在x轴和y轴上的位置分别为x(t)
和y(t),则可以通过物体的运动方程来求解位置关于时间的微分方程,
然后进一步解得轨迹方程。
以上是确定轨迹方程的常用方法,不同方法适用于不同的情况。
在实
际应用中,可以根据问题的具体要求和已知条件选择合适的方法来确定轨
迹方程。
求轨迹方程方法总结
![求轨迹方程方法总结](https://img.taocdn.com/s3/m/20ed7508e55c3b3567ec102de2bd960590c6d994.png)
求轨迹方程方法总结轨迹方程是描述物体运动路径的数学表达式。
当我们了解物体的运动规律时,可以使用轨迹方程来描述其运动轨迹,从而帮助我们更好地理解和预测物体的运动。
下面将总结几种常用的推导轨迹方程的方法。
一、基础几何方法:1. 直线运动:对于直线运动,轨迹方程可以通过位移与时间的关系来推导。
如果物体的初始位置为(x0, y0),速度为v,则物体在时间t后的位置(x,y)可以表示为 x = x0 + vt,y = y0。
从而得到轨迹方程 y = y0 + vt。
2.曲线运动:对于曲线运动,可以通过几何关系来推导轨迹方程。
例如,对于抛体运动,可以通过重力加速度和初速度的关系,推导出位置关于时间的二次方程,从而得到轨迹方程。
二、解微分方程方法:1.一阶微分方程:对于一阶微分方程,可以通过求解微分方程得到轨迹方程。
例如,对于匀加速直线运动,可以得到速度关于时间的一阶微分方程,通过求解得到速度与时间的表达式,再通过积分得到位移与时间的表达式,从而得到轨迹方程。
2.二阶微分方程:对于二阶微分方程,可以通过推导得到物体的运动规律,并进一步得到轨迹方程。
例如,对于单摆运动,可以通过考虑受力平衡和受力大小的关系,推导出物体的运动方程,从而得到轨迹方程。
三、向量方法:1.位矢法:对于具有速度和加速度的运动,可以通过位矢法推导轨迹方程。
位矢是一个描述位置和方向的向量,通过将速度积分得到位矢,再通过对位矢微分得到速度,通过对速度微分得到加速度,从而得到物体的位矢关于时间的表达式。
2.矢量投影法:对于运动方向发生变化的运动,可以利用矢量投影法推导轨迹方程。
将位矢投影到坐标轴上,得到物体在各个坐标轴上的分量,从而得到轨迹方程。
四、参数方程方法:1.参数方程是一种用参数表示物体运动轨迹的方法。
可以将物体的运动分解为水平方向与竖直方向上的分量,再通过参数来表示时间的变化。
将水平和竖直方向的分量分别定义为x(t)和y(t),则轨迹方程可以表示为(x(t),y(t))。
重点高中数学求轨迹方程的六种常用技法
![重点高中数学求轨迹方程的六种常用技法](https://img.taocdn.com/s3/m/26c18453ce2f0066f433224b.png)
重点高中数学求轨迹方程的六种常用技法————————————————————————————————作者:————————————————————————————————日期:2求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM y k x x =≠-+,直线BM 的斜率(3)3AM y k x x =≠- 由已知有4(3)339y y x x x •=≠±+-化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=u u u r u u u r的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学求轨迹方程的六种常用技法汇总.直接法例1.已知线段6AB,直线BMAM,相交于M,且它们的斜率之积是4,求点MAB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则(3,0),(3,0)AB,M的坐标为(,)xy,则直线AM的斜率(3)AMykxx,直线BM的斜(3)AMykxx4(3)39yyxxxM的轨迹方程为221(3)4xyx.平面内动点P到点(10,0)F的距离与到直线4x的距离之比为2,则点P的轨迹方。
.设动直线l垂直于x轴,且与椭圆2224xy交于A、B两点,P 是l上满足PAPBP的轨迹方程。
到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线().直线 B.椭圆 C.抛物线 D.双曲线.定义法2.若(8,0),(8,0)BC为ABC的两顶点,AC和AB两边上的中线长之和是30,ABC的重心轨迹方程是_______________。
ABC的重心为(,)Gxy,则由AC和AB两边上的中线长之和是30可得20BGCG,而点(8,0),(8,0)BC为定点,所以点G的轨迹为以,BC220,8ac可得2210,6abacABC的重心轨迹方程是221(0)36xyy.方程222(1)(1)|2|xyxy表示的曲线是().椭圆 B.双曲线 C.线段 D.抛物线.点差法锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点122(,),(,)AxyBxy的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12xx,2yy,12xx,12yy等关系式,由于弦AB的中点(,)Pxy的坐标满足122xxx,22yyy且直线AB的斜率为211yyxx,由此可求得弦AB中点的轨迹方程。
3.椭圆2212xy中,过(1,1)P的弦恰被P点平分,则该弦所在直线方程为。
(1,1)P的直线交椭圆于1(,)Axy、22(,)Bxy,则有212xy ① 2222142xy ②②可得12121212()()()()02xxxxyyyy(1,1)P为线段AB的中点,故有2122,2xxyy1212122()2()210422xxyyyyxx,即12ABk11(1)yx化简可得230xy.已知以(2,2)P为圆心的圆与椭圆222xym交于A、B两点,求弦AB的中点M.已知双曲线221yx,过点(1,1)P能否作一条直线l与双曲线交于,AB两点,使P AB的中点?.转移法P在已知方程的曲线上移动;M随P的变化而变化;P和M满足一定的规律。
4.已知P是以2,FF为焦点的双曲线2219xy上的动点,求12FFP的重心G 的:设重心(,)Gxy,点0(,)Pxy,因为12(4,0),(4,0)FF0003044yyxx,故yyxx3030代入19201620yx2291(0)xyy5.抛物线24xy的焦点为F,过点(0,1)作直线l交抛物线A、B两点,再以AF、AFBR,试求动点R的轨迹方程。
(转移法)设(,)Rxy,∵(0,1)F,∴平行四边形AFBR的中心为1(,) 2xyP,1ykx,代入抛物线方程,得2440xkx,122(,),(,)AxyBxy,则21221216160||14444kkxxkx xkxxxx ①22221212122()2424xxxxxxyyk,P为AB的中点.∴22122222121kyyykxxx3442kykx,消去k得3)xy||4x,故动点R的轨迹方程为24(3)(||4)xyx。
(点差法)设(,)Rxy,∵(0,1)F,∴平行四边形AFBR的中心为1(,)2xyP,122(,),(,)AxyBxy,则有14xy ① 2224xy ②②得2121212()()4()4lxxxxyyxxk ③P为AB的中点且直线l过点(0,1),所以211322,lyxyxxxkxx代34yx,化简可得22124124xxyy④1(,)2xyP在抛物线口内,可得221()48(1)22xyxy⑤222128(1)16||4xxxxR的轨迹方程为24(3)(||4)xyx。
.已知(1,0),(1,4)AB,在平面上动点Q满足4QAQB,点P是点Q 关于直线4)yxP的轨迹方程。
.参数法6.过点(2,0)M作直线l交双曲线221xy于A、B两点,已知OPOAOB。
1)求点P的轨迹方程,并说明轨迹是什么曲线;2)是否存在这样的直线l,使OAPB矩形?若存在,求出l的方程;若不存在,l的斜率存在时,设l的方程为(2)(0)ykxk,代入方程221xy,得222)4410kxkxkl与双曲线有两个交点,所以210k,设122(,),(,)AxyBxy,则22122441,1kkxxxxkk ①21212244(2)(2)()441kkkyykxkxkxxkkkk(,)Pxy,由OPOAOB 得2212244(,)(,)(,)1kkxyxxyykk22414kxkkyk 所以xky,代入241kyk可得241()xyyxy,化简得20xyx22(2)4xy ②直线l的斜率不存在时,易求得(4,0)P满足方程②,故所求轨迹方程为22)4(0)xyy(也可考虑用点差法求解曲线方程)2)平行四边OPAB为矩形的充要条件是0OAOB即2120xxyy ③k不存在时,A、B坐标分别为(2,3)、(2,3),不满足③式k存在时,22221212121212(2)(2)(1)2()4xxyyxxkxkxkxxkxxk2222(1)(14)24401kkkkkkk化简得22101kk,l使OPAB为矩形。
.设椭圆方程为122yx,过点(0,1)M的直线l交椭圆于点A、B,O是坐标原点,P满足)(1OBOAOP,点N的坐标为)21,21(,当l绕点M旋转时,求:动点P的轨迹方程; (2)||NP的最小值与最大值。
.设点A和B为抛物线24(0)ypxp上原点O以外的两个动点,且OAOB,过OMAB于M,求点M的轨迹方程。
.交轨法7.已知MN是椭圆222yax中垂直于长轴的动弦,A、B是椭圆长轴的两个端MA和NB的交点P的轨迹方程。
1:(利用点的坐标作参数)令1(,)Mxy,则11(,)Nxy(,0),(,0)AaBa.设AM与NB的交点为(,)Pxy,,AMP共线,所以xyaxy1 因为,,NBP共线,所以axyaxy1121222axyaxy①,而1221221byax即2)212(221axaby代入① 2222baxx,即交点P的轨迹方程为 12222byax2: (利用角作参数)(cos,sin)Mab,则(cos,sin)Nababaxycossin , aabaxycossin 两式相乘消去P点的轨迹方程为 1222yax。
.两条直线01yax和)1(01aayx的交点的轨迹方程是___ ______。
.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲,即轨迹若x的取值范围,或同时注明,xy的取值范围。
.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,.22(2)148xy.解:设P点的坐标为(,)xy,则由方程2224xy,得24xyl与椭圆交于两点A、B,故22xA、B两点的坐标分别为2244(,),(,)2xxAxBx2244(0,),(0,)2xxPAyPBy1PAPB即2244(0,)(0,)12xxyy2241xy即2226xy所以点P的轨迹方程为221(22)63xyx.D 【解析】在长方体111ABCDABCD中建立如图所示的AD与1DC是异面垂直的两AD与1DC平行的平面是面ABCD,设ABCD内动点(,)Mxy满足到直线AD与1DCMMMP于1M,MNCD于N,1NPDC于P,连结MP,易知MN平面11,CDDCMPDC,则有1MMMP,22|yxa其中a是异面直线AD与1DC间的距离),即有222yxa,因此动点D..A.解设(,)Mxy,122(,),(,)AxyBxy2122,2xxxyyy,由myx21221,myx222222()xx得. M.P B A y2122121122yyxxxxxyyy , 而122AByykxxPMykx, 又因为PMAB所以1ABPMkk22xyyx 化简得点M的轨迹方程240xyxy.先用点差法求出210xy,但此时直线与双曲线并无交点,所以这样的直线不存在。
.解:设(,)Qxy,则(1,),(1,4)QAxyQBxy4(1,)(1,4)4(1)(1)()(4)4QAQBxyxyxxyy222(2)3xyQ的轨迹是以(0,2)C为圆心,以3为半径的圆。
P是点Q关于直线2(4)yx的对称点。
P的轨迹是一个以00(,)Cxy为圆心,半径为3的圆,其中000(,)Cxy是点2)C2(4)yx的对称点,即直线2(4)yx过CC的中点,且与0CC00022102042yxyx即000000240821802yxxyxyP的轨迹方程为22(8)(2)9xy。
.解:(1)解法一:直线l过点(0,1)M,设其斜率为k,则l的方程为1ykx),(1yxA、),,(22yxB由题设可得点A、B的坐标),(11yx、),(22yx是方程组122yxkxy 的解,032)4(22kxxk,所以8,42221221kyykkxx于是4,4()2,2()(21222121kkkyyxxOBOAOP ① ②P的坐标为),,(yx则4,422kykkx消去参数k得0422yyx ③k不存在时, A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方程为20xyy:设点P的坐标为),(yx,因),(1yxA、),(22yxB在椭圆上,所以12121yx ④ .142222yx ⑤0)(122212221yyxx,所以0))((1))((21212121yyyyxxxx1xx时,有.0)(11212121xxyyyyxx ⑥1,2,21212121xxyyxyyyyxxx ⑦ 将⑦代入⑥并整理得.0422yyx ⑧1xx时,点A、B的坐标为(0,2),(0,2),这时点P的坐标为(0,0)P的轨迹方程为221()2114yx解:由点P的轨迹方程知21x,即1144x所以7)61(3441)21()21()21(||222222xxxyxNP1x,||NP取得最小值,最小值为61;41x当时,||NP取得最大值, 最大值为216.解法1 :(常规设参)设(,)Mxy,122(,),(,)AxyBxy,则pyyypyyyxxyyxyxypxypxy4212162111211221124221421 (※),,AMB共线得21(141pyxyypyy 则2121214yyyyxyypy(※)代入上式得pxyxy42化简得M的轨迹方程为2240(0)xypxx)2: (变换方向) 设OA的方程为(0)ykxk,则OB的方程为1yxykxy22 得222(,)ppAkk ,由yxky221 得2(2,2)BpkpkAB的方程为(2)kyxpk①OMAB,所以直线OM的方程为21kyx②M的轨迹方程: 2240(0)xypxx3: (转换观点) 视点M为定点,令0(,)Mxy,由OMAB可得直线AB的程为0()xyyxxy, 与抛物线24ypx联立消去y得22044()0pypyyxyxx,设1122(,),(,)AxyBxy,则22120004()pyyxyx OAOB,所以21pyy2224()16pxypx即2200040xypxM点的轨迹方程为2240(0)xypxx.)0,0(022yxyxyx。