分块矩阵的若干性质及其应用

合集下载

分块矩阵的性质及其应用【开题报告】

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的.根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式.二、研究的基本内容, 拟解决的主要问题:研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用.解决的主要问题:1.了解分块矩阵的基本概念.2.探讨分块对角化的性质.3.研究分块矩阵的应用.三、研究步骤、方法及措施:研究步骤:1.查阅相关资料, 做好笔记;2.仔细阅读研究文献资料;3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4.翻译英文资料;5.撰写毕业论文;6.上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用确定合理的方法来解决问题.四、参考文献:[1] 居余马. 线性代数[M]. 清华大学出版社,1992.[2] 穆大禄, 裴惠生. 高等代数教程[M]. 山东大学出版社, 1990.[3] 北京大学数学系. 高等代数[M]. 高等教育出版社.[4] 叶伯诚. 高等代数[M] . 青岛海洋大学出版社, 1989.[5]张敏. 分块矩阵的应用[J]. 吉林师范大学学报(自然科学版), 2003, 1(1): 120.[6] S.K.Jain. Linear Algebra: An Interactive Approach[M]. 北京: 机械工业出版社, 2003,7.[7] Hamilton J.D, “Time Series Analysis1” Princeton University Press[J].1999, 26 – 291.。

【文献综述】分块矩阵的性质及其应用

【文献综述】分块矩阵的性质及其应用
通过上面对矩阵历史的了解我们发现矩阵是很容易理解和掌握的. 然而, 矩阵在实际应
用中还是会遇到很多问题, 在实际生活中, 我们的很多问题可以用矩阵抽象出来, 但这些矩阵
一般都是高阶矩阵, 行数和列数都是一个相当大的数字, 因此我们在计算和证明这些矩阵时
会遇到很烦琐的任务. 这时我们得有一个新的矩阵处理工具, 来使这些问题得到更好的解决!
在文献[3]中给出了分块矩阵定义: 把一个 m n 矩阵 A , 在行的方向分成 s 块, 在列的方
向分成 t 块, 称为 A 的 s t 分块矩阵, 记作 A Akl st , 其中 Akl , k 1, 2,, s ,
l 1, 2,, t 称为 A 的子块, 它们是各种类型的小矩阵.
A
=
I3 0
A1
A2
并称它是 A 的一个 2 2 分块矩阵, 其中的每一个小矩阵称为 A 的一个子块. 常用的矩阵分块
方法, 除了上例中的 4 块矩阵, 矩阵的分块还有以下几种常用的分法:
(1) 按行分块
a11 a12 ... a1n A1
A
a12Βιβλιοθήκη ...a22 ...
... ...
| M || BC | | CA1B | .
文献[5-12]中还提到了有关分块矩阵的一些用法, 比如用分块矩阵证明有关矩阵乘积的
秩的定理: 矩阵乘积的秩不超过其因子的秩, 即 r( AB) r( A), 且 r( AB) r(B), 或者表示成
r( AB) min{r( A), r(B)}, 其中 r( A) 表示矩阵 A 的秩. 还可以利用分块矩阵求矩阵的行列
AD
式问题, 比如利用分块矩阵求高阶行列式
: 设 A, C 都是 n 阶矩阵, 其中| A | 0 , 并且

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用
分块矩阵是由若干个子矩阵组成的大矩阵,通常将行和列分成若干块,每块均为矩阵,因而得名。

分块矩阵在数学和工程领域有广泛应用。

一些应用包括:
1.矩阵求逆:对于大规模矩阵求逆,可以先将矩阵分成较小的块,在每个块的范围内求逆并重新组合。

2.矩阵乘法:矩阵乘法的时间复杂度与矩阵的大小有关,但矩阵块的大小也会影响乘法的效率。

分块矩阵可以提高矩阵乘法的效率。

3.矩阵分解:对于某些特定类型的矩阵,如对称正定矩阵和稀疏矩阵,分块矩阵分解可以有效地降低计算复杂度。

4.图像处理:分块矩阵可以用于图像处理中的分块压缩和离散余弦变换等算法,以提高图像处理的效率和质量。

5.结构力学:分块矩阵广泛应用于结构力学和有限元方法中,可以描述复杂的结构系统和分析结构系统的动态行为。

高等代数小论文--分块矩阵及其应用

高等代数小论文--分块矩阵及其应用

高等代数期中论文课程高等代数专业班级数学0802 姓名徐锴学号 ******** 指导教师牛敏分块矩阵及其应用主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s t t A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsT ji st Tij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 1 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A则B =MA证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B B A A A E M E s s =A E ME s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000 于是B =0000ssE ME A =s E M s E A =MA性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,|证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 1 设A ,都是n 阶方阵,则有AB =A B ()2.6 证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =AB E =AB又由性质2并应用于列的情况,有E A AB0=E EB A AB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有AB BA =B A B A -+ 证明 根据定性质2并应用于列的情况,有AB BA =A AB B B A ++=B A B B A ++0=B A B A -+ 例1 计算n 2阶行列式D =ab a b a b b a b a ba 000000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 00000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000 b b b 则 D =ABBA=B A B A -+=a b a b b a b a 00000000 ab a b b aba 00000000 ---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DC BA=CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1C A --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D C B A=110A C A B D C A B---- =A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD- 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB =A B ABBA =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即AB BA ), 2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4]证明 令s m C ⨯=n m A ⨯⋅s n B ⨯,A =()12,n aa a ,C =()12,s γγγ 则(s γγγ 21,)=()12,naa a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n s s b b b b b bb b b212222111211 ∴nns s s s nn n n a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()AB ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ 21 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a aa a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nβββ 21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由nβββ 21,()4线性表示 ∴秩()III ≤秩()IV ,即秩()C=秩()AB ≤秩()B即秩()AB ≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nB B B B = 由于0A B =即()120nA B A B A B = 即()01,2,,i A B i n == 说明的各列B 都是0A X =的解.从而秩()12nB B B ≤基础解系=n -秩()A 即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DB C --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011B C . ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B C DB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC 证明 设P 可逆,且1-P =⎥⎦⎤⎢⎣⎡W Z Y X,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k r X AY C E X BY D Z AW C Z BW DE +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y -11)(---A DB C 则X =11)(----A DB C D 1-B . 用右乘(3.4)式可得=()r E W D -1-B =1-B -1W D B - 代入(3.3)式得W =1B A -11)(---A DB C则 可得Z =1-B +1B A -11)(---A DB C D 1-B .所以1-P=⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CA D 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B ≠0,C=0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D BD A A 1X Y D B-=(3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CA D A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------6000004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001.则很容易求得1-A =⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001 且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M =⎥⎦⎤⎢⎣⎡-----1111D O BD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/1000004/1000001002/12/119326/74/54375 3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H =s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算 命题 1 B A 、分别为m 与n 阶方阵. 证明 : (1)当可逆时 ,有BCD A =A D CA B 1-- (3.5) (2)当可逆时 ,有BCD A =C DB A 1--B (3.6) 证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B C D A =⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵. 证明 B C DE m=CD B - ( 3.7) nE CD A =DC A - (3.8) 证明 只需要在命题1的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9)例3 计算下面2n 阶行列式n H 2=bcb c d a da()0a ≠解 令=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a ,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题1中()1得n H 2=AD C B=DCA B A 1-- =nn d ca b a )(1--=n cd ab )(-.例4 计算行列式()1);,,2,1,0(,00100100111121n i a a a a a i n=≠ ()2cb b b b a a a a nn3213211000100010001解 ()1 设=BC DA ,其中 =()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i ,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB 1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1从而由命题1中的结论()4.2得BC D A=1A DB CB -- =⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BC DE n,其中 B =(c ),C =),,,(21nb b b ,D =Tn a a a ),,(21 由于C D =),,,(21nb b b Tn a a a ),,(21 =∑=ni ii ba 1从而由推论1知,=BC DEn=B CD -=c -∑=ni ii ba 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则AC CA=|A+C||A-C| 证明 根据行列式的性质和定理,有AC CA =A A C C C A ++=C A C C A -+0 =A CA C +-. 例1 计算行列式.D =000xyzx zy y z x z y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00x x ,=⎥⎦⎤⎢⎣⎡y z z y 由命题2知D =ACCA=C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H =BC DA (,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,ABCD 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.。

分块矩阵的原理和应用

分块矩阵的原理和应用

分块矩阵的原理和应用1. 原理分块矩阵是一种特殊的矩阵结构,将大型矩阵分割成更小的块状矩阵,以便进行更高效的运算和存储。

分块矩阵的原理主要包括以下几个方面:1.1 分块矩阵的定义分块矩阵由多个块状子矩阵组成,每个子矩阵都是相对较小的矩阵。

这些子矩阵可以是任意维度的矩阵,但通常都是方阵。

分块矩阵的维度取决于它所包含的子矩阵的维度和排列方式。

1.2 分块矩阵的运算分块矩阵可以进行各种矩阵运算,例如加法、减法和乘法等。

在进行这些运算时,可以利用分块矩阵的特殊结构,将运算过程分解为对各个子矩阵的运算,从而提高计算效率。

1.3 分块矩阵的存储分块矩阵的存储方式也与普通矩阵存储方式有所不同。

在分块矩阵中,每个子矩阵都被存储在一个相邻的内存块中,而各个子矩阵之间的存储空间可以是非连续的。

这种存储方式可以提高数据的局部性,进而提高计算效率。

2. 应用分块矩阵在科学计算和工程领域有广泛的应用,以下列举了一些常见的应用领域:2.1 计算机图形学在计算机图形学中,分块矩阵常用于表示和处理三维图形中的几何变换矩阵。

通过分块矩阵的运算,可以实现旋转、缩放和平移等常见的几何变换操作。

2.2 信号处理在信号处理中,分块矩阵常用于表示和处理信号的频谱信息。

通过分块矩阵的乘法运算,可以实现信号的卷积和相关等基本操作,进而实现滤波和频谱分析等应用。

2.3 优化算法在优化算法中,分块矩阵常用于表示优化问题的约束矩阵。

通过分块矩阵的运算,可以将大规模的优化问题分解为小规模的子问题,从而提高求解效率。

2.4 数据压缩在数据压缩领域,分块矩阵常用于表示和处理图像和视频数据。

通过分块矩阵的变换和压缩算法,可以实现图像和视频数据的无损或有损压缩,从而减小存储空间和传输带宽的需求。

3. 总结分块矩阵作为一种特殊的矩阵结构,在科学计算和工程领域有着广泛的应用。

它的原理包括定义、运算和存储等方面,通过合理利用分块矩阵的结构,可以提高计算效率和存储效率。

刘莉06数本2班-分块矩阵的一些性质及其应用

刘莉06数本2班-分块矩阵的一些性质及其应用

大庆师范学院本科生毕业论文分块矩阵的一些性质及其应用系别、专业数学学院、数学与应用数学研究方向基础理论学生姓名刘莉学号200601050973指导教师姓名李颖指导教师职称讲师2010年6月12日分块矩阵的一些性质及其应用刘莉摘要:本文介绍矩阵运算的一种有用的技巧—矩阵的分块.利用矩阵的分块方法简洁巧妙地给出了关于矩阵性质的证明及应用.分块矩阵是矩阵论中的重要内容之一,它在数学中有着非常广泛的应用,有不少数学题一经用分块矩阵来处理或证明,立即就显得非常简捷和明快.然而,在当前一般的高等代数和线性代数中,分块矩阵的内容却简简约约几页就了事,本文就对分块矩阵的基本性质及其一些应用做一些介绍.关键词:准对角矩阵;分块矩阵;可逆矩阵;初等变换;矩阵的秩Abstract:This paper will introduce matrix computation of a useful skill - using matrix of the matrix of the block method. The concise ably gives proof of the nature of matrices and the application of partitioned matrix is matrix theory. One of the important contents in math is very it widely, there are many problems in the partitioned matrix is to prove, or immediately appear very simple and lively. However, in the current general higher algebra and linear algebra, the content of partitioned matrix is simply inviting page, this is the basic properties of partitioned matrix and the application of some details once.Key words:Prospective diagonal matrix;the partitioned matrix;reversible matrix;elementary transformation;matrix rank目录一、分块矩阵的基本概念 (1)(一)分块矩阵的定义 (1)(二)分块矩阵的乘法 (1)(三)分块矩阵的初等变换与初等矩阵 (1)二、分块矩阵的性质 (3)(一)特殊分块矩阵的性质 (3)(二)一般分块矩阵的性质 (4)三、分块矩阵的应用 (7)(一)挖洞法 (8)(二)矩阵的分块求逆 (8)(三)利用分块矩阵的初等变换求矩阵的逆 (8)(四)利用分块矩阵的初等变换求行列式的值 (10)(五)利用分块矩阵的初等变换求矩阵的秩 (11)参考文献 (13)一、分块矩阵的基本概念(一)分块矩阵的定义设A 是属于B 上的m n ⨯矩阵,是B 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12,r m m m ,,个行,又将A 的列分割为s 段,每段包含12,,,s n n n 个列.于是A 可用小块矩阵表示如下:111212122212s sr r rs A A A A A A A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中ij A 为i j m m ⨯矩阵.对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样.于是B 可以表示为111212122212s ts s st B B B B B B B B B B ⎛⎫⎪⎪= ⎪ ⎪⎝⎭…………, 其中ij B 是i j n k ⨯矩阵.这种分割法称为矩阵的分块.(二)分块矩阵的乘法设AB C =,则C 有如下分块形式:111212122212t tr r rt C C C C C C C C C C ⎛⎫⎪⎪= ⎪ ⎪⎝⎭…………, 其中ij C 是i i m k ⨯矩阵,且1sij issji C A B ==∑.(三)分块矩阵的初等变换与初等矩阵定义1 分块矩阵的行(列)初等变换是指: (1)交换两行(列)的位置:(2)第i 行(列)的各个元素分别左乘(右乘)该行(列)的一个)(i h 阶)阶)((i l 左(右)保秩因子H :(3)第i 行(列)的各个元素分别左乘(右乘)一个)(i h 阶)阶)((i l 矩阵K 后加到第j 行.定义2 对应于分块矩阵()ij s t A ⨯的初等分块矩阵是指:(1) 11(())iii llss E E K P i j k E E ⎛⎫ ⎪ ⎪ ⎪⎪+=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭或=ijkP ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ii llii jjE E E E0.(2)=)(H P il ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ssll E HE或=)(H P ik ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ii E HE11其中H 为第i 行(列)的一个左(右)保秩因子:=+))((k j i P i ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛sslliiE E K E E11或=+))((k j i P k ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ll lliiE E K E E11初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得. 9一、 分块矩阵的一些性质(一)特殊分块矩阵的性质定义 称数域K 上的分块形式的n 阶方阵12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭为准对角矩阵,其中(1,2,,)i A i s = 为i n 阶方阵(12s n n n n +++= ),其余位置全是小块零矩阵.n 阶准对角矩阵有如下性质:性质1 (1)对于两个同类型的n 阶准对角矩阵(其中,i i A B 同为i n 阶方阵),12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,12s B B B B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有1122s s A B A B AB A B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭: (2)12()()()()s r A r A r A r A =+++ : (3)A 可逆⇔(1,2,,)i A i s = 可逆,且111121sA A AA ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭. 性质2 如果H 是上三角分块矩阵,即120000s A A H A *⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭其中12,,,s A A A 均为方阵(但阶数不一定相同),则12||||||||.s H A A A =⋅(二)一般分块矩阵的性质性质1 分块矩阵0AC B ⎛⎫⎪⎝⎭的秩大于等于A 与B 的秩的和.证明 记0A C MB ⎛⎫=⎪⎝⎭, 设A 为m n ⨯矩阵,B 为n l ⨯矩阵,A 在初等变换下的标准形为1000rE D ⎛⎫=⎪⎝⎭,()r r A =: B在初等变换下的标准形为2000sE D ⎛⎫=⎪⎝⎭,()s r B =, 则对M 前m 行前n 列做初等变换,对它的后k 行后l 列也做初等变换,这样可以把M 化为11120D C M D ⎛⎫=⎪⎝⎭. 现在利用1D 左上角的“1”经过初等列变换消去它右边1C 位置中的非零元:再用2D 左上角的“1”经过初等行变换消去它上面1C 处的非零元素,于是把1M 再化作2200000000000r s E C M E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 则122()()()()()()r M r M r M r s r C r s r A r B ===+++=+≥.证毕. 容易得出,对于矩阵0A N CB ⎛⎫=⎪⎝⎭,也有同样的性质.对于上述M 和N ,如果(),()r A m r B k==,则()()()r M r A r B =+:如果(),()r A n r B l ==,则()()()r M r A r B =+.性质2 设A 、B 、C 为数域K 上的三个可以连乘的矩阵, 则r +)(ABC r )(B ≥r +)(AB r )(BC .证明 假设A 、B 、C 分别为m n ⨯、n l ⨯和l s ⨯矩阵.令0A BM BB C ⎛⎫=⎪⎝⎭, 考虑000mln s E A E C ABABC EC ABC N E E BBC BBC E B-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 由可逆矩阵乘法的性质(命题 )和命题 可以知道,()()()()()()r ABC r B r N r M r AB r BC +==≥+性质3 分块矩阵进行初等变换后,秩不变.证明 对于(1),相当于对n m ij a A ⨯=)(进行若干次行(列)的交换,故命题成立: 对于(2)根据定义1,显然成立:对于(3),相当于进行若干次把n m ij a A ⨯=)(行(列)乘以 一个倍数后加到另一行(列),故命题成立.性质4 (1)设,A B 的行数均为m ,则矩阵方程A X B =, 当rank ()A =rank (,)A B m =时有唯一解, 当rank ()A =rank (,)A B m <时有无穷多解, 当rank ()A <rank (,)A B 时无解;(2)设,A B 的列数均为n ,则矩阵方程X A B =,当rank ()A =)(T T B A rank ,n =时有唯一解, 当rank ()A = )(T T B A rank ,n <有无穷多解,当()rank A n < 时无解.证明 (1)设rank ()A =rank (,)A B m <,则存在可逆矩阵,,P Q 使000Q I P A r⎥⎦⎤⎢⎣⎡=Q B B P B ⎥⎦⎤⎢⎣⎡=0021其中r I 为r 阶单位矩阵, 1B 为r 阶方阵,设Q B B B B QX ⎥⎦⎤⎢⎣⎡=-432110, 则有: 121034000rB B IAX P QQ Q B B -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦=12340[]00rB B I P Q B B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦1200B B P Q ⎡⎤=⎢⎥⎣⎦=B .所以o X 为A X B =的解,其中34,B B 是任意的.当rank ()A =rank (,)A B m =时, ()12,0,(,),m A P I Q B B B ==显然,A XB =有唯一解 ()1012,X QB B Q -=,当rank ()A < rank (,)A B 时, A X B =无解, 同理可证(2)成立 当rank ()A = rank (,T T A B )n <时,X P= 000r I ⎛⎫⎪⎝⎭1-P . 性质5 设有分块矩阵111212122212n nm m m n A A A A A A A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 证明:111212122212''''''''''m m nnm n A A A A A A A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. 证明 先对S 用数学归纳法证明:()1'''121,s s s A A A A A A -⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭当1S =时当然成立.还可直接验证2S =时也成立.假定对1S -成立,则令1'''111,(,,)s s A B B A A A --⎛⎫ ⎪== ⎪⎪⎝⎭于是1'''1(,)s s s s A B B A A A A -⎛⎫⎪⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪⎝⎭'''11(,,,)s s A A A -= .从而公式(1)成立.于是令'''12(,,,),1,,s i i in A A A A i m == .则由(1)式直接得'1''i i in A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭故()'12''''12,,,mm A A A A A A A ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭'''11211'''12222'''12.m m nnm n A A A AA A A A A ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭三、分块矩阵的应用(一)挖洞法设AB M CD ⎛⎫=⎪⎝⎭,其中A 为m m ⨯矩阵,B 为m n ⨯矩阵,C 为l m ⨯矩阵,D 为l n ⨯矩阵.不妨设A 可 取110ml E M CA E -⎛⎫= ⎪-⎝⎭, 则11100ml E A B A BM M CAE CD D CA B --⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭, 取120ml E A B M E -⎛⎫-=⎪⎝⎭, 则 12100m lAB A E AB M M CD C D CA BE --⎛⎫-⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.. 由于分块矩阵的乘法形式上与普通矩阵相同,所以也可以用左乘(或右乘)一个适当的分块方阵来乘一个分块矩阵做类似的变换.但是要注意:(1)两个小块矩阵相乘时必须遵守左边矩阵的列数等于右边矩阵的行数这一原则:(2)两个小块矩阵相乘不能交换次序,要分清哪个在左,哪个在右.(二)矩阵的分块求逆设方阵AB M CD ⎛⎫=⎪⎝⎭,其中A 可逆.令11100E A B AE A B N CAE CD D CA BE ---⎛⎫-⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭, 记10E U C AE -⎛⎫= ⎪-⎝⎭,10E A B V E -⎛⎫-= ⎪⎝⎭,11D D C A B -=-, 若M 可逆,则N 可逆,于是1D 可逆.1111111110()0A NVUM V V M UD --------⎛⎫=== ⎪⎝⎭,求得111100A MV U D ---⎛⎫=⎪⎝⎭. (三)利用分块矩阵的初等变换求矩阵的逆例 1 已知⎥⎦⎤⎢⎣⎡=C O D BP 其中B 是r r ⨯可逆阵, C 是s s ⨯可逆阵,求证: P 可逆,并求1-P .分析 本题是一个分块阵的求逆问题,一般可用待定子块法,也可利用广义初等变换,还可用左乘分块初等阵的方法.解:因,B C 可逆,故0,0B C ≠≠.根据拉普拉斯展开,有CBC OD B P ·==0≠,故可逆.求C有三种办法:解法一 利用广义初等行变换法.⎪⎪⎭⎫ ⎝⎛E E CD B00111,2B rC r --⨯⨯−−−−−→⎪⎪⎭⎫ ⎝⎛---111000C BE D BE121()BD r r -⨯+−−−−−→ ⎪⎪⎭⎫⎝⎛-----1111000CDCBE BE故 1P-=⎪⎪⎭⎫ ⎝⎛-----11110CDCBB 本题对分块矩阵进行广义初等变换是一般矩阵的初等变换的一种推广,其方法和一般矩阵相同.作初等行(列)变换时,对矩阵P 应左(右)乘相应的分块单位阵.上述分块初等变换的过程也可用分块阵左乘相应的分块初等阵,可表示如下:解法二 可用左乘分块初等阵的方法求1-P⎪⎪⎭⎫ ⎝⎛--1100C B ⎪⎪⎭⎫ ⎝⎛C D B 0=⎪⎪⎭⎫⎝⎛--11C D BE 有⎪⎪⎭⎫ ⎝⎛--E D BE01⎪⎪⎭⎫ ⎝⎛-E D BE 01=⎪⎪⎭⎫⎝⎛E E0 即⎪⎪⎭⎫ ⎝⎛--E D BE 01⎪⎪⎭⎫ ⎝⎛-C B 001⎪⎪⎭⎫ ⎝⎛C D B 0=⎪⎪⎭⎫⎝⎛E E 00=E故有1P-=⎪⎪⎭⎫ ⎝⎛C D B01-=⎪⎪⎭⎫ ⎝⎛--E D BE 01⎪⎪⎭⎫ ⎝⎛--1100C B =⎪⎪⎭⎫⎝⎛-----1111CDCBB 例2 已知A =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--100100000643521100010001,求1A -.分析 本题是一个矩阵的求逆问题,一般可用公式法,矩阵的初等变换法求,可以用分块矩阵初等变换法求1-A . 利用分块矩阵初等变换法先把A 化分成分块矩阵,即A =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--100100000643521100010001=⎪⎪⎭⎫⎝⎛C D B 0其中B =⎪⎪⎪⎭⎫⎝⎛100010001,C =⎪⎪⎭⎫⎝⎛--1001,D =⎪⎪⎪⎭⎫⎝⎛654321从而求得1B-=⎪⎪⎪⎭⎫ ⎝⎛100010001,1C -=⎪⎪⎭⎫ ⎝⎛--1001然后对A 进行广义初等变换,即⎪⎪⎭⎫ ⎝⎛E E CD B001112,B r C r --⨯⨯−−−−−→⎪⎪⎭⎫ ⎝⎛---11100C BE D BE121()BD r r -⨯+−−−−−→1000EBB DCE C----⎛⎫- ⎪⎝⎭所以1A -=⎪⎪⎭⎫ ⎝⎛-----11110C DCB B =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1001000651004201031001 如果用其它方法来求解将会变得很繁琐,用分块矩阵的初等变换发来求解就显的比较简单.(四)利用分块矩阵初等变换求行列式的值例3 设P =⎪⎪⎭⎫⎝⎛D CB A是一个分块方阵,其中A 是r 阶可逆阵,求||P .解 P =D CB A =ADCB A I r 1-=ABCAD B A I r 11---=A BCAD 1--若A 与D 可乘,则1||||;P AD ACA B -=-又若A 与C 可交换(即A C C A =),则||||P AD CB =-.例4 设2n D =dc dc b a ba, 其中0a ≠,求||.A解 2n D =d cdc b a b a=DCB A由于,A C 可交换,所以2nD =CB AD -=⎪⎪⎪⎭⎫⎝⎛⋅⎪⎪⎪⎭⎫⎝⎛bc bc ad ad=|()|ad bc I -=()nad bc -. 例5 设,,A B C 和D 是n 阶方阵,试证明D CB A =A BC D证明DCB A =2(1)n-BAD C =2(1)n-2(1)n-ABC D =ABC D .(五)利用分块矩阵的初等变换求矩阵的秩设A 与B 分别是r s ⨯与p q ⨯矩阵,则rBC A 0≥()()r A r B +.并且当A (或B )是方阵且非异时,或者0C =时上式的等号成立.例6 设A 是m n ⨯阵DCB A 的非异顺序主子阵,则r DCB A 1()()r A r D C A B -=+-证明 ⎥⎦⎤⎢⎣⎡---r m rI CAI 10⋅⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡--B CA D BA 1而A 是非异阵,由以上性质知r ⎥⎦⎤⎢⎣⎡D CB A=⎥⎦⎤⎢⎣⎡--B CA D BA 1≥1()().r A r D C A B -+-例7 设n 阶方阵()ij A Q =为反对称矩阵,证明: ()r A 必为偶数. 证明 对n 用归纳法1,2n =是命题显然成立设阶数小于n 时命题为真则对n 阶及对称矩阵A ,将A 分块成A =DBC A 1,其中1A =01212a a -不妨设120.a ≠⎥⎦⎤⎢⎣⎡--I BA I 110⎥⎦⎤⎢⎣⎡D B C A 1⎥⎦⎤⎢⎣⎡--I C A I 011=⎥⎦⎤⎢⎣⎡--C BA D A 111()r A =r ⎥⎦⎤⎢⎣⎡D B C A 1=r ⎥⎦⎤⎢⎣⎡--C BA D A 11100=r 1()A +r 11()D BA C --2=+11()D BA C --但11D B A C --为阶数比A 低的反对称矩阵,由归纳假设r 11()D BA C --为偶数, 故()r A 为偶数.[参考文献][1]张禾瑞,郝鈵新.高等代数[M].北京:高等教育出版社,1997,177-200.[2]王萼芳.高等代数教程[M].北京:清华大学出版社,1997,218-316.[3]丘维声.高等代数学习指导书[M].北京:清华大学出版社,2009,155-287.[4]北京大学数学系几何与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2007,205-245.[5]蓝以中.高等代数简明教程第二版[M].北京:北京大学出版社,2007,268-318.[6]胡万宝.高等代数[M].北京:中国科学技术大学出版社,2009,168-206.。

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc分块矩阵是由几个矩阵块组成的矩阵,它的出现主要是为了更好地解决某些复杂的数学问题。

在实际应用中,分块矩阵既可以用于表示线性系统,也可以用于表示迭代算法的计算过程。

本文将从性质和应用两个方面对分块矩阵进行浅谈。

1. 分块矩阵的性质分块矩阵的一些性质能够帮助我们更好的理解它的本质。

下面将介绍几个较为常见的性质。

(1) 直和分块矩阵:如果一个分块矩阵的所有矩阵块都是对角矩阵,那么我们称这个分块矩阵为直和分块矩阵。

直和分块矩阵与对角矩阵非常相似,都具有稳定的性质和巨大的计算优势。

(2) 块矩阵的转置:对于一个分块矩阵A,通常有以下转置公式:(A^T)_i,j=A_j,i。

也就是说,分块矩阵的转置相当于交换原矩阵的每一块。

(3) 块矩阵的乘法:设A和B是两个分块矩阵,当且仅当A的列数等于B的行数时,我们才可以进行矩阵乘法AB。

具体方法是将A中的每一块分别与B中的每一列乘起来,然后对结果进行相加。

另外还有两个性质需要注意。

首先,如果A和B都是直和分块矩阵,则它们的乘积也是直和分块矩阵。

其次,如果A和B都是分块对称矩阵,那么它们的乘积也是分块对称矩阵。

(1) 线性系统求解:分块矩阵可以用于求解大规模的线性系统,它的基本思想是将系统分成若干个小规模的子系统,利用线性代数中的基本定理,通过求解小系统的逆矩阵逐步求解全局矩阵的逆矩阵。

具体而言,我们可以将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

然后,我们可以将原始线性系统Ax=b转化为一个新的线性系统(D^-1CB)x=D^-1b。

由于B和D都是对角矩阵,所以它们的逆矩阵很容易求得。

接下来,我们只需要在新的线性系统中解x即可。

(2) 特征值计算:分块矩阵也可以用于特征值问题的求解,尤其是在计算大规模稀疏矩阵的特征值时特别有效。

具体而言,我们可以采用分块对角化的方法,将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

分块矩阵的性质及其应用

分块矩阵的性质及其应用

分块矩阵的性质及其应用依宇天(吉首大学数学与计算机科学学院,湖南 吉首 416000)摘要:矩阵分块是解决矩阵问题的常用方法,矩阵分块适当可为解决问题带来极大方便。

关键词:分块矩阵、矩阵的分块、矩阵的计算、证明、应用Block matrix and its applicationYi Yu Tian(College of mathematics and computer science, jishou university,jishou hunan,416000)Abstract : Block matrix is a matrix to solve problem of the commonly used methods,block matrix suitable for solve the problem bring great convenience.Keywords: Block matrix, block matrix, matrix calculation, proof, application引言:本文详细、全面论述证明了矩阵的分块在《高等代数》中的应用。

包括用分块矩阵证明矩阵乘积的秩的定理问题,用分块矩阵求逆矩阵问题,用分块矩阵求矩阵的行列式问题,用分块矩阵求矩阵的秩的问题,利用分块矩阵证明一个矩阵是零矩阵的问题。

1.分块矩阵1.1分块矩阵的定义令A 为m ⨯n 矩阵,把A 分成如下形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=st s s t t A A A A A A A A A A 212222111211 其中A ij (i=1、2…S ,j=1、2…t )为m i ⨯n j 矩阵,且m 1+m 2+…+m s =m ,n 1+n 2+…+n t =n ,称其中的每一个小矩阵为A 的一个分块。

1.2分块矩阵的计算 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t A A A A A 1111,=B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡st s t B B B B 1111这里A 、B 的行列数相同,且分法一致,那么⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=+st st s s t t B A B A B A B A 11111111B A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t aA aA aA aA aA 1111.分块矩阵乘法运算复杂一些,但只要做到A 的列的分法与B 的行的分发一致,即设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rs r s A A A A A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t B B B B B 1111 那么⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=•rt r t i C C C C B A 111。

分块矩阵在行列式计算中的应用

分块矩阵在行列式计算中的应用

分块矩阵在行列式计算中的应用一、分块矩阵的定义和性质分块矩阵是将一个矩阵按照行和列进行分块的一种表示方式。

假设有一个m×n的矩阵A可以被分成k行l列的分块矩阵,则可表示为:A=[A₁₁A₁₂…A₁lA₂₁…A₂l...Ak₁ Ak₂ … Akl]其中,每个Aij都是一个子矩阵。

分块矩阵有以下重要性质:1.行列式的乘积可以转化为分块矩阵的行列式之积。

例如,设有两个分块矩阵A和B,它们的行列式分别为,A,和,B,则有:AB,=,A,B2.分块矩阵可以简化行列式的计算。

将一个大矩阵按照一定规则分为几个子矩阵后,可以通过计算子矩阵的行列式来获得原矩阵的行列式,从而简化了计算过程。

1.初等行列变换2.求逆矩阵对于分块矩阵,其逆矩阵的计算也可以通过分块的方式进行。

设A为可逆矩阵,其分块矩阵表示为:A=[A₁₁A₁₂A₂₁A₂₂]若A₁₁为可逆矩阵,则其逆矩阵可以表示为:A^(-1)=[A₁₁^(-1)-A₁₁^(-1)A₁₂A₂₂^(-1)A₂₁^(-1)A₁₁^(-1)A₁₂A₂₂^(-1)A₂₂^(-1)]其中A₁₁^(-1)、A₂₂^(-1)和A₁₁^(-2)A₁₂A₂₂^(-1)都是子矩阵的逆矩阵。

3.计算特殊类型的行列式在计算特定类型的行列式时,分块矩阵的应用可以简化计算过程。

例如,计算拟对角行列式时,可以使用分块矩阵的方式将矩阵分解成多个对角块,然后分别计算每个对角块的行列式之积。

4.计算特定型的行列式分块矩阵的应用还可以用于计算特定型的行列式。

例如,计算置换矩阵的行列式时,可以将矩阵按行、列进行分块,然后计算每个子矩阵的行列式,最后通过乘法和加法运算得到最终的行列式。

以上仅是分块矩阵在行列式计算中的一些常见应用,实际上分块矩阵在线性代数的其他领域也有广泛的应用,如特征值和特征向量的计算、线性方程组的求解等。

熟练掌握分块矩阵的定义、性质和应用可以提高行列式计算的效率,并且对于理解线性代数中的其他概念和方法也具有重要意义。

分块矩阵的若干性质及其应用

分块矩阵的若干性质及其应用

分类号密级U D C 编号本科毕业论文(设计)题目分块矩阵的若干性质及其应用学院数学与经济学院专业名称应用统计学年级 2013级学生姓名刘欣2017 年 4 月文献综述一、概述矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。

分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。

分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。

二、正文通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。

而实际上,矩阵这个课题在诞生之前就已经发展的很好了。

但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。

从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。

现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。

但国内一些专家对其研究主要还是在证明和计算方面。

林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。

蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行列式、证明矩阵的秩、解决矩阵的特征值计算和有关矩阵证明等问题中的应用。

分块矩阵的性质及其应用论文__本科毕业设计论文

分块矩阵的性质及其应用论文__本科毕业设计论文
故 可逆。
1.2分块矩阵的应用
分块矩阵是矩阵的一种推广,与普通矩阵不同,分块矩阵的元素可以是数,也可以是小矩阵,它的引入使矩阵这一重要工具的使用更广泛,下面举例说明分块矩阵的应用:
1.2.1矩阵求逆
例若A,B都可逆, = ,
则 = 。
证明设 = 于是
= =
这里 , 分别表示k阶和r阶单位矩阵,则有
因此 =
例把一个5阶矩阵 ①
用水平和垂直的虚线分成4块,如果记:
= = =0 =
就可以把A看作由上面4个小矩阵所组成,写作:
并称它是A的一个 分块矩阵,其中的每一个小矩阵称为A的一个子块。
(2)矩阵的分块方法
常用的矩阵分块方法,除了上例中的4块矩阵,还有以下几种:
1)按行分块
=
其中 =[ … ]i=1,2,…m
证明将 按列向量分块,
由于 ,则 线性无关
将 正交化得 ,再单位化得 ,并有
其中│ │= >0
于是 =
= =
下面我们来证明唯一性:设 有两个分解式为
则 由于 是酉矩阵, 是正线上三角矩阵,则
= 从而 , 即得证。
例求矩阵 的 分解。
解记 的三个列向量依次为 ,用施密特正交化方法得
单位化得
求出 =
=
便有
i= + +…+ +
j= + +…+ + ③
由②式有: = + +……+
可知 的( , )元素应是 , ,… 的第 行分别与 , ,… 的第 列相应元素乘积的和。由③式可知, 的第 行元素位于A中第i行, 的第 列元素位于B中第j列(k=1,2,K,s)再注意到对A,B所作的分块,可得

高等代数第七节分块矩阵

高等代数第七节分块矩阵

0 1 b
,
a 0 0 0
B
1 0
a 0
0 b
0 0
0 0 1 b
求 A B, ABA.
解 将 A, B分块
a 1 0 0
A
0 0
0
a 0 0
0 b 1
0 1 b
A1 0
0 ,
A2
a
A1
0
其中
b
A2
1
1 , a 1 ; b
a
B
1 0
0
0 a 0 0
0 0 b 1
0
0 0
*
(
)
A A* 0
(A )
;
0 B B *
B B* 0
(B )
0 A A*
A B* 0
(C )
0 B A*
B A* 0
(D )
0 A B *
分析:根据伴随矩阵公式CC* C E;C* C C 1,由已知分别求C
与C 1即可
2.应用于矩阵的一些运算
解 :C * C C 1, C A 0
Q1B
B1 B2
,B1是u n矩阵,B2是k
u n矩阵,

R AB R PAQ Q1B
R
Iu O
O O
B1 B2
R
B1 O
R
B1
3.矩阵秩的不等式证明
另一方面,
RB R
Q1B
R
B1 B2
由秩的不等式性质:
R AB R B1 ≥R B R B2
A2
B2
b 1
1 b b 1
0 2b b 2
1 , 2b

第四节 分块矩阵

第四节 分块矩阵
A14 A4 = O O 52 O 54 2 4 , , ⇒ A1 = 4 而 A1 = A2 O 52 O
1 0 24 A2 4 = 24 = 6 4 1 2 0 , 4 2
上页 下页 返回 结束
3 4 4 −3 A= 0 0 0 0
上页 下页 返回 结束
A1n A1 , n 4) 若 A = O O ; 则A = As n As
As −1 A1 , 则 A −1 = N 5) 若 A = N ; A −1 A 1 s
O A B∗
上页 下页 返回 结束
例6 设
0 0 625 0 0 625 0 0 3 A1 O A4 = 4 , A = 2 0 ., 解 令 A= , 其中 A1 = 4 0−3 0 2 162 0 2 O A2 0 0 64 16 A18 O 8 8 8 8 8 8 16 A = , A = A1 A2 = A1 A2 = 10 O A2 8
0 0 0 0 1 2 0 0 1 2 0 0 3 0 0 2 1 0 0 1 35
A
B
A
0 0 0 1 0 0 3 都是分块对角阵. 都是分块对角 分块对角阵 0 0 1 0 2 2 0
B
上页
下页
返回
结束
分块对角矩阵具有下述性质: 分块对角矩阵具有下述性质: 1) A = A1 A2 L As ;
第二章 矩阵及其运算
第四节 分块矩阵
zxs
什么是分块矩阵 分块矩阵的运算 基本应用
上页
下页

分块矩阵求解技巧

分块矩阵求解技巧

分块矩阵求解技巧一、分块矩阵的定义分块矩阵是由多个子矩阵按照一定规则组成的大矩阵。

通常,一个分块矩阵可以按照行分块或者列分块的方式进行划分。

下面是一个具体的示例:```A=[A11A12][A21A22]```其中,A11、A12、A21和A22分别是子矩阵。

二、分块矩阵的性质分块矩阵具有以下一些重要的性质:1.分块矩阵相乘分块矩阵相乘的规则与普通矩阵相乘的规则类似。

例如,对于分块矩阵A和B,有AB=C,其中C的每个元素由A和B的对应子矩阵相乘后得到。

2.分块矩阵的逆与转置分块矩阵的逆与转置可以通过对每个子矩阵进行逆运算或转置操作得到。

3.分块矩阵的行列式分块矩阵的行列式可以通过展开或利用行列式的性质进行计算。

三、分块矩阵的求解方法在实际应用中,我们通常使用分块矩阵的求解方法来加速矩阵运算。

以下是几种常见的分块矩阵求解方法。

1.分块矩阵加法和减法对于分块矩阵A和B,可以通过对每个子矩阵进行加法和减法运算得到结果矩阵C。

这种方法在矩阵计算中可以减少数据通信的开销,提高计算效率。

2.分块矩阵乘法分块矩阵乘法可以通过对每个子矩阵进行乘法运算得到结果矩阵。

这种方法在矩阵乘法中可以减少计算量,提高运算速度。

3.分块矩阵的LU分解对于分块矩阵A,可以通过对每个子矩阵进行LU分解得到结果矩阵。

LU分解将原矩阵分解为两个下三角矩阵L和上三角矩阵U的乘积。

4.分块矩阵的QR分解对于分块矩阵A,可以通过对每个子矩阵进行QR分解得到结果矩阵。

QR分解将原矩阵分解为正交矩阵Q和上三角矩阵R的乘积。

四、分块矩阵的应用1.线性代数在线性方程组的求解中,可以使用分块矩阵的LU分解、QR分解和Cholesky分解等方法,快速求解解向量。

2.矩阵计算在矩阵运算中,特别是矩阵乘法和矩阵求逆运算中,使用分块矩阵技巧可以减少计算量,提高运算速度。

3.图像处理在图像处理中,分块矩阵可以用于对图像进行分割、变换和滤波等操作。

利用分块矩阵求解技巧,可以加速图像的处理过程。

分块矩阵的知识点

分块矩阵的知识点

分块矩阵的知识点分块矩阵是线性代数中的一个重要概念,它在矩阵运算和矩阵分析中扮演着关键角色。

分块矩阵将一个大的矩阵划分为若干个小的子矩阵,从而简化了复杂的矩阵运算和计算过程。

本文将介绍分块矩阵的基本概念、构造方式以及在矩阵运算中的应用。

1.分块矩阵的定义分块矩阵是由若干个小的子矩阵组成的大矩阵。

这些子矩阵可以是任意大小和形状,而且它们可以是实数矩阵或复数矩阵。

分块矩阵可以表示为如下形式:A=[A11A12A21A22]其中A ij表示分块矩阵A的第i行第j列的子矩阵。

2.分块矩阵的构造方式分块矩阵的构造方式有多种,常见的有水平分块和垂直分块两种方式。

–水平分块:将大矩阵按行划分为若干个子矩阵。

例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]–垂直分块:将大矩阵按列划分为若干个子矩阵。

例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]分块矩阵的构造方式可以根据实际问题的需求选择,不同的构造方式对于矩阵运算的简化程度有所差异。

3.分块矩阵的运算分块矩阵的运算可以通过对子矩阵进行逐个操作来完成。

常见的分块矩阵运算包括矩阵的加法、乘法和转置。

–矩阵的加法:对应位置的子矩阵进行相加。

例如,对于两个分块矩阵A和B,其加法运算可以表示为:A+B=[A11+B11A12+B12A21+B21A22+B22]–矩阵的乘法:通过子矩阵的乘法和求和得到结果。

例如,对于两个分块矩阵A和B,其乘法运算可以表示为:AB=[A11B11+A12B21A11B12+A12B22 A21B11+A22B21A21B12+A22B22]–矩阵的转置:将子矩阵沿主对角线进行交换。

例如,对于一个分块矩阵A,其转置运算可以表示为:A T=[A11T A21TA12T A22T]通过分块矩阵的运算,可以简化矩阵运算的复杂度,提高计算效率。

4.分块矩阵的应用分块矩阵在各个领域中都有广泛的应用,特别是在数值计算和矩阵分析中。

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用摘要:本文主要谈及分快矩阵的思想在线性代数的证明。

解线性方程组,矩阵得知逆及矩阵的逆,和初等变换中的应用。

关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换On the nature of block matrix and its applicationAbstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix.Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言:矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。

1.预备知识:1.1分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,一子块为元素的形式上的矩阵成为分块矩阵。

1.2分块矩阵的运算:1.2.1分块矩阵的加法:设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有A=1111n m mn A A A A ⎛⎫ ⎪⎪⎪⎝⎭,1111n m mn B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A BA B ++⎛⎫⎪⎪ ⎪++⎝⎭1.2.2分块矩阵与数的乘法:A=1111n m mn A A A A ⎛⎫ ⎪ ⎪⎪⎝⎭,1111n m mn A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭1.2.3设A 为m l ⨯矩阵,B 为l n ⨯矩阵,分块成11111111t r s st t tr A A B B A B A A B B ⎛⎫⎛⎫⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么1111r s sr C C AB C C ⎛⎫ ⎪=⎪ ⎪⎝⎭,其中1tij ik ik k C A B ==∑(i=1……s ;j=1,……,r)1.2.4设1111t s st A A A A A ⎛⎫⎪=⎪⎪⎝⎭,则1111T T t TT T s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭2. 分块矩阵的性质及应用:2.1 分块矩阵的性质:设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即A=100n A A ⎛⎫ ⎪⎪ ⎪⎝⎭,其中i A (i=1,2……,s )都是方阵,那么称A 为分块对角矩阵,分块矩阵的行列式一般据有下列性质12s A A A A =,由此性质可知,若i A ≠0(1,2i s =)则A 0≠,并有11110s A A A ---⎛⎫ ⎪=⎪ ⎪⎝⎭例:设A=500031021⎛⎫ ⎪⎪ ⎪⎝⎭ 求1A -解:500031021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=1100A A ⎛⎫⎪⎝⎭,其中()11115,5A A -⎛⎫== ⎪⎝⎭,23121A ⎛⎫= ⎪⎝⎭,121123A --⎛⎫= ⎪-⎝⎭,所以11005011023A -⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭ 2.2 将分块矩阵与初等变换结合在矩阵运算及球逆矩阵中具有重要作用:现将某个单位矩阵如下进行分块:00mn EE ⎛⎫⎪⎝⎭对其进行行(列)对换等作用,可得到如下类型一些矩阵:0000,,,,0000n m mmm n n n E P E P E E E E E P E P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭用这些矩阵左乘或右乘任一个分块矩阵A B C D ⎛⎫⎪⎝⎭,只要分块乘法能够进行,其结果就是对它进行相应的变换,如0mn EA B A B PE C D C PA D PB ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭,适当选择P 可使C PA +=0,例如A 可逆时,选1P CA -=-则0C PA +=,于是上式的右端可成为10A B D CA B -⎛⎫⎪-⎝⎭,其在求逆矩阵方面是非常有用的,例1:0A T C D ⎛⎫=⎪⎝⎭,A D 可逆,求1T -解:由10000mn E A A CA E C D D -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭及1110000A A D D ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭易知11100A TD ---⎛⎫= ⎪⎝⎭10m n E CA E -⎛⎫ ⎪-⎝⎭=11110A D CA D ----⎛⎫⎪-⎝⎭例2:1A B T C D ⎛⎫= ⎪⎝⎭,设T 可逆,D 可逆,试证11()A BD C ---存在,并求11T -解:由10mn A B E BD C D E -⎛⎫-⎛⎫ ⎪ ⎪⎝⎭⎝⎭10A BD CCD -⎛⎫-= ⎪⎝⎭,而又端仍可逆故11()A BD C ---存在再由上题例1可知11111111()0()A BD C T D C A BD C D -------⎛⎫-= ⎪--⎝⎭10m n E BD E -⎛⎫- ⎪⎝⎭=111111111111()()()()m m A BD C E A BD C BD D C A BD C E D C A BD C BD D ------------⎛⎫---= ⎪---+⎝⎭2.3分块矩阵在证明关于矩阵乘积的秩的定理中的作用:例:设A 是数域P 上n m ⨯矩阵,B 是数域P m s ⨯上矩阵,于是秩(AB)min ≤秩(A),秩(B),即乘积的秩不超过各因子的秩证明:只需证明秩()AB ≤秩()B ,同时秩()AB ≤秩()A ,分别证明这两个不等式设1112121222123m m n n n a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,111212122212s s m m ms b b b b b b B b b b ⎛⎫⎪ ⎪=⎪ ⎪⎝⎭令12,,,m B B B 表示B的行向量(即对B进行分块)12,,,n C C C 表示AB 的行向量,由计算可知,i C 的第j 个分量和1122i i im m a B a B a B +++的第j 的分量都等于1mik kj k a b =∑,因而()11221,2,,i i i im m C a B a B a B i n =+++=即矩阵AB 的行向量组12,,,n C C C 可经由B 的行向量组线性表示出所以AB 的秩不能超过B 的秩,即秩()AB ≤秩()B同样,令12,,,m A A A 表示A 的列向量,12,,,s D D D 表示AB 的列向量,由计算可知,()11221,2,,i i i mi m D b A b A b A i s =+++=这个式子表明,矩阵AB 的列向量组可由矩阵A 的列向量组线性表示出,因而前者的秩不仅\可能超过后者的秩,这就是说秩()AB ≤秩()A(注:在此证明中用分块矩阵的方法,即12m B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭这就是B 的一种分块,按分块相乘就有111122121122221122m m m m n n nm m a B a B a B a B a B a B AB a B a B a B +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭很容易看出AB 的行向量是B 的行向量的线性组合) 2.4 分块矩阵在线性方程组方面的应用对于线性方程组11112211211222221112n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 记()ij A a =,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,12m b b b b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,11121112n m m mnm a a a b B a a a b ⎛⎫ ⎪=⎪ ⎪⎝⎭,A 为系数矩阵,X 为未知向量,b 为常数项向量,B 为增广矩阵按分块矩阵记法可记为()B A b =或(),B A b =此方程也可记为AX b =,把系数矩阵A 按行分成m 块,则AX b =可记做12m A A A ⎛⎫⎪ ⎪ ⎪⎪⎝⎭X =12m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭把系数矩阵A 按列分成n 块,则与相乘的X 对应按行分成n 块,记作()12,,,n ααα 12n x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭b =,即1122n n x x x b ααα+++=,其都为线性方程组的各种变形形式,在求解过程中变形以更方便快捷例:利用分块矩阵证明克拉默法则:对于n 个变量n 个方程线性方程组11112211211222221112n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果他的系数行列式0D ≠,则它有唯一解,即()()1122111,2,,j j j j n nj x D b A b A b A j n D D==+++=证明把方程组改写成矩阵方程AX b =,这里()ijn nA a ⨯=为n 阶矩阵,因0A D =≠,故1A -存在,令1X A b -=,有1AX AA b -=表明1X A b -=是方程组的解向量,由Ax b = ,有11A AX A b --= ,即1X A b -=,根据逆矩阵的唯一性,知1X A b -=是方程的唯一解向量,由逆矩阵公式11A A A-*=,有11x A b A b D-*==即111211111122112122222112222212112211n n n n n n n n nnn n n n n nn x A A A b b A b A b A x A A A b b A b A b A D D x A A A b b A b A b A +++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪+++ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭即()()1122111,2,,j j j n nj j x b A b A b A D j n D D=+++==结束语:矩阵得分快不算是一个抽象的概念,我们能够清楚的了解知道并掌握它的概念及性质,进而能够灵活的运用,这样对我们今后的学习与研究都会有很大的帮助。

分块矩阵的定义及应用

分块矩阵的定义及应用

分块矩阵的定义及应用分块矩阵,也称为块矩阵或子矩阵,是由多个小矩阵按照一定规则排列所组成的矩阵。

它的特点是矩阵中的各个元素被分成了若干个块,每个块是一个分离的矩阵。

分块矩阵的形式可以写为:A = [A11 A12 (1)A21 A22 (2)... ... ... ...An1 An2 ... Anm]其中,A11、A12、...、A1m是行向量组成的矩阵;A21、A22、...、A2m是行向量组成的矩阵;...;An1、An2、...、Anm是行向量组成的矩阵。

每一个Aij 都表示一个分块矩阵,大小及形状可以不同。

分块矩阵的应用非常广泛,主要体现在以下几个方面:1. 线性方程组求解:分块矩阵可以用于解决大规模线性方程组的求解问题。

通过将系数矩阵分块,可以降低计算复杂度,并且可以通过并行计算来提高求解效率。

2. 矩阵乘法加速:分块矩阵可以用于加速矩阵乘法运算。

将矩阵分块后,可以利用并行计算的优势,同时进行多个小矩阵的乘法运算,从而提高运算效率。

3. 特征值计算:分块矩阵可以用于求解大型矩阵的特征值和特征向量。

通过分块矩阵的分解,可以降低计算复杂度,并且可以采用迭代方法进行求解,从而提高求解效率。

4. 矩阵的逆和广义逆:分块矩阵可以用于求解矩阵的逆和广义逆。

通过分块矩阵的分解,可以减小计算量,并且可以采用迭代方法进行求解,从而提高求解效率。

5. 随机矩阵的分析:分块矩阵可以用于随机矩阵的分析。

通过分块矩阵的分解,可以对矩阵的结构和随机性进行分析,从而研究矩阵的统计特性和性质。

除了上述应用之外,分块矩阵还可以用于矩阵的分解、正交化、正则化等问题的求解。

分块矩阵的应用不仅仅局限于数学领域,也被广泛应用于工程、物理、计算机科学等领域。

总之,分块矩阵是将大型矩阵拆分为多个小矩阵,通过分块的方式来简化复杂的计算问题。

它在线性方程组求解、矩阵乘法加速、特征值计算、矩阵逆和广义逆求解、随机矩阵分析等方面有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类号密级U D C 编号本科毕业论文(设计)题目分块矩阵的若干性质及其应用学院数学与经济学院专业名称应用统计学年级学生姓名2017 年 4 月文献综述一、概述矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。

分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。

分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。

二、正文通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。

而实际上,矩阵这个课题在诞生之前就已经发展的很好了。

但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。

从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。

现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。

但国内一些专家对其研究主要还是在证明和计算方面。

林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。

蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行列式、证明矩阵的秩、解决矩阵的特征值计算和有关矩阵证明等问题中的应用。

利用分块矩阵可以使阶数比较高、比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。

徐天保在《分块矩阵的应用》中,主要证明了分块矩阵在高等代数中的应用,包括用分块矩阵求矩阵的行列式问题,讨论了分块矩阵与秩的关系,用分块矩阵求逆矩阵问题,对分块矩阵的若干性质进行了总结和推广。

胡景明在《分块矩阵在求高阶行列式中的应用》中,介绍了几个利用分块矩阵求解高阶行列式的方法。

此方法的主要手段是将高阶行列式通过矩阵分块的方法来达到降阶的目的,从而简化高阶行列式的运算。

这些都是他们关于分块矩阵的性质和应用这个课题探究的理论成果。

他们每个人都有自己的研究点和研究方向,他们的研究有他们的优点,同时也有他们的欠缺之处。

分块矩阵的若干性质的探究及其矩阵分块不仅是一种解题方法,更是一种技巧,我们必须掌握并应用于现实生活中,但它的应用范围非常广,远远不止于专家们所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。

三、总结通过上面对矩阵的历史以及现状的了解,我们发现矩阵还是很容易理解和掌握的。

然而,矩阵在实际应用中还会遇到很多问题。

在实际生活中,我们的很多问题可以用矩阵抽象的描述出来,但是这些矩阵一般都是高阶矩阵,行数和列数都是一个相当大的数字,因此,我们在计算和证明这些矩阵时,会遇到很多很繁琐的任务。

这时,我们得有一个新的矩阵处理工具,来使这些问题得到更好地解决,而分块矩阵能够形象的揭示了一个复杂或是特殊矩阵的内部本质结构,从而能充分体现出分块矩阵在代数计算与证明方面所具有的优越性。

既然分块矩阵理论的应用如此广泛,因而即使矩阵理论的研究已相当成熟,我们仍有必要深入体会分块矩阵的应用技巧,归纳总结分块矩阵在不同类型题目当中发挥出的巨大应用。

四、参考文献[1]居余马.线性代数[M].清华大学出版社,1992.[2]穆大禄,裴惠生.高等代数教程[M].山东大学出版社,1900.[3]蔡鸣晶.例说分块矩阵的应用[J].南京信息职业技术学院(读与写杂志),2014.4,11(04);52—53.[4]林瑾瑜.分块矩阵的若干性质及其应用[J].广东广播电视大学报,2006,(02):109—112.[5]张禾瑞,郝鈵新.高等代数(第四版)[M].北京:人民教育出版社,1995:199—208.[6]北京大学数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版社.2001.[7]胡景明.分块矩阵在求高阶行列式中应用[J].河北工程技术高等专科学校学报,2004,(4):50—53.[8]徐天保.分块矩阵的应用[J].安庆师范学院学报(自然科学版),2010,(05):106—109.[9]刘红旭.利用分块矩阵求解非齐次线性方程组.辽宁师专学报,2003.6.[10]乔占科.矩阵分块方法的应用[J].高等数学研究,2010,13(1):89—90.[11]秦小二.分块矩阵的几种用法[J].数学教学与研究,2007,41 (2) :68—69.摘要:本文主要探究了高阶矩阵降阶的分块方法、分块矩阵的运算性质、分块矩阵的初等变换以及由分块矩阵的若干性质得出一些推论等,并举例说明了分块矩阵在现实生活中的应用,分析了分块矩阵在求取矩阵的逆、计算行列式,在证明矩阵的秩的性质上的问题以及在求解非齐次线性方程组中的应用。

在数学上,矩阵就是由若干个方程所组成的方程组的系数以及常数所构成的方阵,把矩阵用在解线性方程组的问题上,运用起来既方便又直观。

分块矩阵的若干性质及其应用又是高等代数中的一个重要的内容,是解决行列式计算问题的一个很重要的工具,不仅仅只是针对行列式得运算,更为重要的是,解决各种数学问题都要会用到它,特别是在处理级数比较高的矩阵时候,将高阶的矩阵分块降阶之后,能使各子矩阵块或者使高阶矩阵的内部各元素之间的关系变得更清晰明了。

为解决一些高阶矩阵问题的需要,适当地对高阶矩阵进行分块,从而把一个复杂的矩阵简化成由一些小矩阵块为元素组成,这样就可以使高阶矩阵的结构看得更加清晰,解题的脉络也就更加一目了然,从而使得复杂的高等代数的问题简单化,我们利用矩阵也就更加便捷了。

关键词:分块矩阵初等变换行列式运算性质应用Abstract: this paper mainly explores the reduced order of high-order matrix partition method, the property of the partitioned matrix operation, the elementary transformation of partitioned matrix and the partitioned matrix of some properties to draw some inferences, etc., and illustrates the partitioned matrix in real life, the application of partitioned matrix is analyzed in calculating matrix inverse, calculating the determinant, the proof of matrix rank on the nature of the problem and its application in solving the non-homogeneous linear equations. In mathematics, the equations of the matrix is composed of a number of equations of coefficients and constants of square, the matrix on the problem of solving linear equations, convenient to use and intuitive. Some properties and applications of partitioned matrix is an important content of higher algebra, is a very important to solve the problem of the determinant calculation tool, not only for determinant computing, even more important, various mathematical problems is to use it, especially in dealing with the matrix series is higher, the high-order matrix block after the order reduction, can make each matrix to block or make high order matrix of the relationship between the internal elements become more clear. For the need to solve the problem of some high order matrix, appropriately to block of high order matrix, thus a complex matrix is simplified into a small matrix for elements, so that you can make the high-order matrix structure more clear, the problem solving context is more obvious, so as to make the complex problem of higher algebra simplification, we make use of the matrix is more convenient.Keywords: Partitioned matrix elementary transformation The determinantOperation properties application目录1.分块矩阵的概念及性质 (1)1.1分块矩阵的定义 (1)1.2分块矩阵常见的分块方法 (1)1.3分块矩阵的运算性质 (3)1.3.1分块矩阵的加法 (3)1.3.2分块矩阵的数量乘法 (3)1.3.3分块矩阵的乘法 (6)1.3.4分块矩阵的转置 (3)1.3.5分块矩阵的初等变换 (7)2.分块矩阵的应用 (9)2.1利用分块矩阵求矩阵的逆 (9)2.2利用分块矩阵简化高阶行列式的计算 (11)2.3分块矩阵在证明矩阵的秩的性质上的应用 (13)2.4分块矩阵在矩阵特征值问题中的应用 (15)2.5分块矩阵在求解非齐次线性方程组上的应用 (17)3.全文总结 (19)参考文献 (20)致谢 (21)1、分块矩阵的概念及性质1.1 分块矩阵的定义定义:把一个m n ⨯矩阵A ,在矩阵A 行的方向分成s 块,在矩阵A 列的方向分成t 块,称为矩阵A 的t s ⨯分块矩阵,记作[]k l s t A A ⨯⨯=,其中(1,2,...,;1,2,...,)k l A k s l t ⨯==称为A 的子矩阵块,它们分别是各种类型的小矩阵。

相关文档
最新文档