激光蚀刻钻孔工艺

激光蚀刻钻孔工艺
激光蚀刻钻孔工艺

激光蚀刻钻孔工艺(一)

【来源:SMT专家网】【编辑:】【时间: 2009-12-8 9:10:22】【点击: 8】

在孔径大于0.008寸(200μm)的场合基本上都使用机械式钻孔,而较小孔径则主要应用激光钻孔。激光钻孔的孔径最小为0.001寸(25μm),一般标准孔径为0.004寸(100μm)

至0.006寸(150μm)。

直到1999年年底,激光钻孔还仅在少数几个产品中使用,那时全世界只有400台设备,其中300台在日本,均用于第一代激光钻孔工艺:未覆铜材料的CO2钻孔。预计到2002年激光钻孔的数量将会有很大的增加,因为那时移动电话需求量估计会达到3.5亿部。为生产出足够的印刷线路板,将需要2000台激光钻孔设备,这个数字还没包括小型因特网接入设备、个人电脑和其他设备的需求。

激光蚀刻钻孔工艺包括直接电介体钻孔、共形掩膜钻孔和完孔成形三种。直接电介体钻孔是用CO2激光束照射材料表面,每发出一次激光脉冲就有一部分材料被蚀刻掉,然后在下一步工序中对材料整个表面进行电镀。该工艺的特点是钻孔速度快,但由于CO2激光的分辨率太低,其孔径不能低于0.004寸(100μm);另外未覆铜材料还存在共面和精

确度等问题。

共形掩膜钻孔是用CO2激光在覆铜层已经经过腐蚀的电介材料上钻孔。在光刻工艺中,覆铜层通过化学方法先作完腐蚀,这时它就如同一个掩膜,使CO2激光只作用于电介材料上。目前使用的是无需装备外部激光气的最新式射频激励密封CO2激光,这种激光束具有质量好(TEM00)、重复率高(20kHz以上)及持久耐用等特点。

将这些特点和快速扫描仪(每秒超过1000点)及快速操纵系统如带线性马达(最高2500ipm)的工作台等结合起来,可以使钻孔速度达到每分钟60000孔(1mm间隔)。由于覆铜层已预先腐蚀掉,所以孔的直径与激光波长无关,在25μm至250μm之间。

完孔成形使用两种激光,即UV激光与CO2激光,目前最新的技术是固态UV激光,它利用二极管吸收方式激励激光棒。一个典型的完孔成形系统可产生两种激光:吸收二极管产生的355μm UV激光(脉冲重复率高达100kHz)以及CO2激光。UV激光用来除去铜层,CO2激光用来去除电介质,该工艺已在很多不同的工业中分别得到开发应用,其

中主要是在美国和欧洲的一些国家。

UV激光以一种称为环钻的方式移动,激光束开始照在孔的中心,然后环绕中心作同心圆移动,同心圆直径依次增大直至将整个区域的覆铜层都蚀刻掉。铜层去掉以后再用CO2激光去除电介质,这时剩余的覆铜层就作为CO2激光的掩膜。这种工艺的优点是孔径可以小至0.002寸(50μm)而且很精确,同时每分钟钻孔数量可达5000个以上。该

工艺也可用于多层线路板的钻孔。

传统弧灯只有400~500小时寿命,而二极管的使用寿命一般都超过10000小时,所以二极管吸收式激光有助于提高产量和延长使用寿命。由于激光二极管的寿命可以预测

得到,因此维修更换就可以事先计划好,减少了维修时间和意外停机。另外二极管吸收式激光稳定性很高,波动小,所以孔的一致性很高。

激光蚀刻钻孔工艺(二)

【来源:SMT专家网】【编辑:】【时间: 2009-12-8 9:12:10】【点击: 8】

为了适应生产的需要,多数激光钻孔系统都带有自动化装置。最新式设备配有为两套激光系统供料的自动装卸装置,该装置位于机器中间,装有送料架和堆叠装货的小车,为两台激光钻孔系统送料和卸料,并可在钻孔的同时将线路板翻转过来。每两台激光系统使用一台自动装卸装置可以节省投资和场地。

线路板装到真空吸盘上后,要用对位标记使钻孔光束与线路板相配,可利用通孔或线路板上的图形作为标记。对位标记既可以用机械方法形成,也可以用激光对最上层铜箔蚀刻制成。图形处理系统读取到对位标记后,程序就可对线路板进行自动对位、偏位补偿、旋转、伸长以及缩小等处理。由于供应商不同,有时会使用两个、三个、四个或

更多对位标记。

钻孔工艺的加工时间取决于所用的硬件(如扫描仪、工作台)以及使用的方法。可提高激光系统产量的步进技术能使激光源频率更高、扫描仪每秒扫描区域更大及工作台速度更快;缩短加工时间的方法则包括将激光束分到多个工作台上、使扫描仪和工作台移动同步以便在工作台移动时钻孔以及同时对两个或多个区域进行并行处理等等。

应用实例

用户A:中小规模PCB制造商,所需过孔的孔径为0.006寸(0.15mm)或更大,产量相对较低。该用户合适的选择是机械钻孔系统。

用户B:过孔要求为孔径0.004~0.006寸(0.1~0.15mm),中等产量。加工这种孔不需要用激光,但采用激光钻孔可提高产量,是否采用激光钻孔取决于资金的多少。此例中机械钻孔和激光钻孔都可以满足加工要求。

用户C:过孔要求为孔径0.004寸(0.1mm)或更小。这时即使产量很低也要采用激光钻孔,因为用机械钻孔方法不能满足技术要求。

用户D:该客户加工的孔径范围大,而且产量高。此时可采用多种加工工艺,利用机械钻孔和激光钻孔相结合的办法,使产量达到最高以及单位钻孔费用最低。

结论激光钻孔还是一种新兴技术,对于加工小于0.006寸(150μm)孔径的微孔而言,它是一种最经济的方法,现在总的趋势是朝覆铜材料和双激光加工方向发展。机械钻孔则是一种成熟的技术,同时也有新的发展,如加工0.004寸(100um)或以上过孔时的深度控制。在加工通孔和盲孔时,机械钻孔依然是最经济的钻孔方法。随着平均失效时间(MTBF)以及产能的不断改进,今后将会出现更为经济的激光钻孔系统。

激光钻孔HDI板品质检查要求规范

文件撰写及修订履历

1.0 目的 规激光钻孔HDI板的各流程检验标准和运作流程。保证HDI板各流程的品质。 2.0 围: 适用于崇达多层线路板的激光钻孔板的品质控制和检验。 3.0 职责: 3.1 研发部负责编制并修改该文件。本文为《盲埋孔(HDI)板制作能力及设计规手册》的次级文件, 如存在冲突,则以《盲埋孔(HDI)板制作能力及设计规手册》容为准。 3.2 品质部负责执行并监控该规的使用 3.3 生产部负责按照此规的规定进行作业 3.4 文控负责该文件的编号并进行归档 4.0 作业容: 4.1 CAM资料/菲林检查 4.1.1 检查规定 4.1.2 检查标准 4.1.2.1 层有激光钻孔对位标靶标,与该激光钻孔对位标靶点对应的其他层位置要掏空; 4.1.2.2 标靶必须距离最后一次外围粗锣板边6mm以上; 4.1.2.3 层要做激光盲孔检查矩阵PAD,PAD比激光盲孔直径大0.15mm(不含补偿); 4.1.2.4 激光盲孔底PAD比激光盲孔直径通常大0.25-0.30mm,最小0.15mm(但需评审); 4.1.2.5 底铜H oz板的盲孔开窗,蚀刻盲孔开窗直径比激光盲孔的直径大0.10mm,公差为+/-0.01mm, MI中需要注明; 4.1.2.6 底铜1 oz板的盲孔开窗,蚀刻盲孔开窗直径比激光盲孔的直径大0.15mm,公差为+/-0.02mm, MI中需要注明; 4.1.2.7 除绿油工序以外,、外层所有菲林需要做CCD菲林; 4.1.2.8 有盘中孔的板,原则上要做填孔电镀;客户要求做填平工艺的板,要做填孔电镀;如不明确,则 问客确认是否需填孔电镀填平。

激光钻孔的设备原理【深度解析】

激光钻孔的设备原理【深度剖析】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D 打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。这样要在硬度大的金刚石上打孔,就成了极其困难的事。激光出现后,这一类的操作既快又安全。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。可透过振镜进行程式化编程控制图形输出。 激光打孔指激光经聚焦后作为高强度热源对材料进行加热,使激光作用区内材料融化或气化继而蒸发,而形成孔洞的激光加工过程。激光束在空间和时间上高度集中,利用透镜聚焦,可以将光斑直径缩小10的5次方~10的15次方W/cm2的激光功率密度。如此高的功率密度几乎可对任何材料进行激光打孔。例如,在高熔点的钼板上加工微米量级的孔,在硬质合金(碳化钨)上加工几十微米量级的小孔,在红蓝宝石商人加工几百微米量级的深孔,金刚石拉丝模,化学纤维喷丝头等。 激光打孔是早早达到实用化的激光加工技术,也是激光加工的重要应用领域之一。激光打孔主要用于金属材料钢、铂、钼、钽、镁、锗、硅,轻金属材料铜、锌、铝、不锈钢、耐热合金、镍基质合金、钛金、白金,普通硬质合金磁性材料以及非金属材料中的陶瓷基片、人工宝石、金刚石膜、陶瓷、橡胶、塑料、玻璃等。 如此高的功率密度几乎可以在任何材料实行激光打孔,而且与其它方法如机械钻孔、电火花加工等常规打孔手段相比,具有以下显著的优点: (1)激光打孔速度快,效率高,经济效益好。|

SUS304不锈钢蚀刻工艺说明

銘瑞通SUS304不锈钢蚀刻工艺说明 Designer:张辉亭 DATE:2014/9/17

SUS304不锈钢蚀刻背胶工艺流程 清洗清洗 开料预烤曝光显影检验蚀刻脱模清洗烘干检验 贴胶压合拆废料检验包装出货

开料 1.开料前检验钢片原材料有无擦花、刮伤、折角、并弯折钢片有无弹性,以检验钢片韧性及硬度是否合格. 2.用卡尺测量钢片厚度,看是否与流转单上所要求厚度一致. 3.开料尺寸公差控制在±1mm内,要求在裁切时需一次裁断,裁切后钢片边缘不能有卷边,毛刺等现象. 4.开料时需戴厚棉手套操作,避免被钢片边缘割伤. 5.开料钢片时规定专用剪床开料,每次开料前后对剪床各部件加以擦拭,打油,每2个月对剪床刀口进行一次抛光.

清洗 1.钢片来料如有油渍,污垢等不良,需浸泡浓度10﹪碱性除油剂30min 2.双面磨板,速度2.0m/min 厚度0.1-0.15mm,磨刷压力2.5-2.7A,厚度为0.2-0.25mm磨刷压力2.3-2.5A, 烘干温度85±3℃ 3.清洗时不能过酸性除油,微蚀等一切呈酸性物质

涂布 固化 1.用湿膜丝印,湿膜不可以加开油水,保证湿膜丝印性能,油墨不可过期使用 2.采用双面涂布机涂布,用猪笼架插架避免板面划伤。 3.丝印后静止10min,方可烘烤,烘烤第一面80℃ 20min, 4.注意插架时避免擦花油墨,涂布时不可污染钢片表面,注意台面清洁,不能用洗网水清洁台面,台面不能贴任何胶带和异物导致蚀刻后造成板面凹坑不良。

曝光 1.曝光前先检查菲林版本或型号有无出错,如有异形钢片菲林(单PCS过大或者拼板不规则)通知工程确认 2.对底片时对准菲林四周阴阳盘夹边,烫底片时至少保证烫点离阴阳焊盘至少5mm 3.夹边时夹条需采用与生产钢片相等厚度的FR4或PET夹边.如菲林是生产0.2mm的钢片就用0.2mm的FR4或PET夹边 4.生产时每生产5PNL必须检查一次菲林,查看菲林四周阴阳PAD有无透光偏位,菲林有无擦花 5.曝光擦气时需真空延时5秒后才可擦气,以防止曝光不良,曝光能量设定为8-9格

脉冲宽度对激光打孔的影响分析

脉冲宽度对激光打孔的影响分析 采用不同脉宽的激光打孔,产生的现象和打孔原理有很大的区别,不仅如此,即使采用自由震荡的中等功率脉冲激光打孔,对打孔的尺寸和孔的质量也有非常大的影响。从计算公式中得到的孔深、孔径与激光脉宽无关,只与激光束的脉冲能量及聚焦情况有关,这是由于采用准稳定破坏模型忽略了材料的飞溅物对激光的屏蔽作用,使用这样推到的公式描述孔的形成过程是比较粗糙的。通过试验分析表明,在激光脉冲能量恒定时,激光脉宽的变化不仅带来 采用不同脉宽的激光打孔,产生的现象和打孔原理有很大的区别,不仅如此,即使采用自由震荡的中等功率脉冲激光打孔,对打孔的尺寸和孔的质量也有非常大的影响。从计算公式中得到的孔深、孔径与激光脉宽无关,只与激光束的脉冲能量及聚焦情况有关,这是由于采用准稳定破坏模型忽略了材料的飞溅物对激光的屏蔽作用,使用这样推到的公式描述孔的形成过程是比较粗糙的。通过试验分析表明,在激光脉冲能量恒定时,激光脉宽的变化不仅带来打孔尺寸的变化,而且对孔壁表面的质量也有很大的影响,表1给出在激光能量近似相等时,改变脉宽对打孔尺寸的影响情况: 能量/J 脉宽/ms孔径/mm 孔深/mm 深径比 5.4 0.25 0.42 1.2 2.9 5.1 0.35 0.39 1.3 3.3 5.9 0.55 0.38 1.5 3.9 5.7 0.75 0.36 1.6 4.4 5.4 0.85 0.30 1.8 6.0 5.0 1.15 0.26 1.6 6.1 表1:在激光能量近似相等时,改变脉宽对打孔尺寸的影响 一般采用脉宽在0.2~1.2ms之间的自由震荡运转的激光器打孔。现假定激光的能量不变,当采用长脉宽打孔时,因为时间拉长,光通量密度降低,材料的蒸发减弱,熔化的比例居上,因此材料去除就减少。一旦光照结束,熔化的材料又重新凝固,形成再筑层,使孔径、孔深都减小。而再筑层使孔内壁质量也较差,波纹度增加,而且有积瘤,严重的会赌孔。 如果选用脉宽小于0.1ms打孔,同时光能量密度较小(针对自由震荡激光器而言)就会因为激光作用时间太短,还未进入准稳定蒸发状态,激光照射就已经结束,因而打不出孔来。 由表1可以看出,在激光束的脉冲能量基本稳定的情况下,当脉宽由0.25ms增加到0.85ms时,孔深增加了50%,孔径减小了30%,因而深径比增加了一倍左右。孔深增加是因为保持一定的能量而加大脉宽时,必须减小泵浦速率,这样激光束的高阶横模不容易起振,光束发散角较小,从而减小了材料汽化的比率,液相多而不易被排走,故使孔径减小。 脉宽的选择是由孔的要求而定的:打深而小的孔,宜选用较长的脉冲宽度;打打大而浅的孔,则宜选用较短的脉冲宽度。 在加工高质量孔的时候,宜选用较短的脉冲宽度,因为这样可以避免孔壁堆积熔融物,却会降低打孔的重复稳定性。另外由于短脉冲打孔,材料汽化剧烈,被排出的材料蒸汽较浓,因而加剧了对后面光束的屏蔽及散射作用,同样也会降低高重复稳定性。因此选用0.3~0.6ms脉宽对大多数情况下都是适宜的。 从材料受热变形及产生热应力裂纹的角度考虑:脉宽增大,会使较多的热作用于材料的非破坏性加热,使材料变形大,热应力大,易出现裂纹。因此对于导热性差的材料打孔尽量采用短脉宽。

(工艺技术)蚀刻工艺

一蝕刻技術 利用對金屬表面的侵蝕作用,從金屬表面去除金屬的處理技術。 (1) 電解蝕刻(electrolytic etching) 用母模作導電性陰極,以電解液作媒介,對加工部分,集中實施蝕刻的侵蝕去除法。 (2) 化學蝕刻(chemical etching) 利用耐藥品被膜,把蝕刻侵蝕去除,作用集中於所要部位的方法。 照相蝕刻技術(photo-etching process) 在金屬表面全面均勻形成層狀的感光性耐藥品被膜(photo resist),而透過原圖底片,用紫外線等曝光,後施以顯像處理,來形成所要形狀的耐藥品被膜之被覆層,再以蝕刻浴的酸液或鹼液,對露出部產生化學或電化學侵蝕作用,來溶解金屬的加工技術。

(3) 化學蝕刻技術之特性 a. 不需要電極、母型(master)等工具,故無需此等工具之維護費。 b. 由規劃到生產間所需時間短,可作短期加工。 c. 材料之物理、機械性質不受加工影響。 d. 加工不受形狀、面積、重量之限制。 e. 加工不受硬度、脆性之限制。 f. 能對所有金屬(鐵、不銹鋼、鋁合金、銅合金、鎳合金、鈦、史泰勒合 金)實施加工。 g. 可高精度加工。 h. 可施複雜、不規則、不連續之設計加工。 i. 面積大,加工效率良好,但小面積時,其效率比機機械加工差。 j. 水平向之切削易得高精度,但深度、垂直方向不易得到同機機械加工之

精度。 k. 被加工物之組成組織宜均勻,對不均質材,不易加工順利。二蝕花加工(咬花加工)演進 (1) 第1階段:補助目的掩飾成形品上之缺陷。 (2) 第2階段:裝飾目的提高商品價值。 (3) 第3階段:應用複合花紋邁入更高度的意匠設計時代。 (4) 第4階段:應用立體花紋進入更高品質之時代。 三咬花加工之特性(針對模具) (1) 加工時,幾乎不產生熱量,故不會引起熱變形或熱變質。 (2) 大型模具亦可加工。 (3) 加工時不會產生毛邊、應變、硬化等不良現象。 (4) 曲面、側面之加工容易。

蚀刻天线制作方法与制作流程简介

目前我们了解的天线制作技术主要有三种:绕线式天线、印刷天线和蚀刻天线。此外还有真空镀膜法生产RFID天线的,上述几种生产方法的特点比较如下: 2.1 绕线式天线 绕线和印刷技术在中国大陆得到了较为广泛的应用,大部分的 RFID标签制造商也是采用此技术。 利用线圈绕制法制作RFID标签时,要在一个绕制工具上绕制标签线圈并进行固定,此时要求天线线圈的匝数较多。这种方法用于频率围在125-134KHz的RFID标签,其缺点是成本高、生产速度慢、生产效率较低。 2.2 印刷天线 印刷天线是直接用导电油墨(碳浆、铜浆、银浆等)在绝缘基板(或薄膜)上印刷导电线路,形成天线的电路。主要的印刷方法已从只用丝网印刷扩展到胶印、柔性版印刷、凹印等制作方法,较为成熟的制作工艺为网印与凹印技术。其特点是生产速度快,但由于导电油墨形成的电路的电阻较大,它的应用围受到一定的局限。 2.3 蚀刻天线 印制电路的蚀刻技术主要应用于欧洲地区,而在,目前仅少数软性电路板厂有能力运用此技术制造RFID标签天线。 蚀刻技术生产的天线可以运用于大量制造13.56M、UHF频宽的电子标签中,它具有线路精细、电阻率低、耐候性好、信号稳定等优点。 3、蚀刻天线制作方法简介 蚀刻天线常用铜天线和铝天线,其生产工艺与挠性印制电路板的蚀刻工艺接近。 3.1 蚀刻天线的制作流程 挠性聚酯覆铜(铝)板基材――贴感光干膜/印感光油墨――连续自动曝光――显像――蚀刻――退膜--水洗--干燥—质检—包装 3.2 制作流程说明 挠性聚酯覆铜(铝)板基材:采用软板专用的合成树脂胶(环氧胶、丙烯酸胶)将铜箔(铝箔)与聚酯膜压合在一起,经高温后固化后而成,其电性能、耐高温性、耐腐蚀性较强。材料的组成截面图如下:

激光打孔(论文)

激光打孔技术 班级:XX 作者:周欣指导老师:XX 摘要: 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求, 而用激光打孔则不难实现。激光束在空间和时间上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 关键词: 激光打孔 一.激光打孔的原理 激光束打孔机一般由固体激光器、电气系统、光学系统和三坐标移动工作台等四大部分组成。 1)固体激光器工作原理 当激光工作物质钇铝石榴石受到光泵(激励脉冲氙灯)的激发后,吸收具有特 定波长的光,在一定条件下可导致工作物质中的亚稳态粒子数大于低能级粒 子数,这种现象称为粒子数反转。 一旦有少量激发粒子产生受激辐射跃迁,就会造成光放大,再通过谐振腔内 的全反射镜和部分反射镜的反馈作用产生振荡,最后由谐振腔的一端输出激 光。激光通过透镜聚焦形成高能光束照射在工件表面上,即可进行加工。2)电气系统包括对激光器供给能量的电源和控制激光输出方式(脉冲式或连续 式等)的控制系统。在后者中有时还包括根据加工要求驱动工作台的自动控制 装置。 3)光学系统的功能是将激光束精确地聚焦到工件的加工部位上。为此,它至少含有激光聚焦装置和观察瞄准装置两个部分。 4)投影系统用来显示工件背面情况,在比较完善的激光束打孔机中配备。

5)工作台由人工控制或采用数控装置控制,在三坐标方向移动,方便又准确地 调整工件位置。 工作台上加工区的台面用玻璃制成,因为不透光的金属台面会给检测带来不 便,而且台面会在工件被打穿后遭受破坏。工作台上方的聚焦物镜下设有吸、 吹气装置,以保持工作表面和聚焦物镜的清洁。 二、激光打孔的特点 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求。例如,在高熔点金属钼板上加工微米量级孔径,在硬质碳化钨上加工几十微米的小孔;在红、蓝宝石上加工几十微米的深孔以及金刚石拉丝模具、化学纤维的喷丝头等。这一类的加工任务用常规的机械加工方法很难,有时甚至是不可能的,而用激光打孔则不难实现。激光束在空间和时间上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 激光打孔技术与机械钻孔、电火花加工等常孔打孔手段相比,具有显著的优点:(1)激光打孔速度快,效率高,经济效益好 由于激光打孔是利用功率密度为l07-109W/cm2的高能激光束对材料进行瞬时作用,作用时间只有0.001-0.00001s,因此激光打孔速度非常快。将高效能激光器与高精度的机床及控制系统配合,通过微处理机进行程序控制,可以实现高效率打孔。在不同的工件上激光打孔与电火花打孔及机械钻孔相比,效率提高l0-1000倍。 (2)激光打孔可获得大的深径比 小孔加工中,深径比是衡量小孔加工难度的-个重要指标。对于用激光束打孔来说,激光束参数较其它打孔方法草便于优化,所以可获得比电火花打孔及机械钻孔大得多的深径比。一般情况下,机械钻孔和电火花打孔所获得的深径比值不超过10。 (3)激光打孔可在硬、脆、软等各类材料上进行 高能量激光束打孔不受材料的硬度、刚性、强度和脆性等机械性能限制,它既适于金属材料,也适于一般难以加工的非金属材料,如红宝石、蓝宝石、陶瓷、人造金刚石和天然金刚石等。由于难加工材料大都具有高强度、高硬度、低热导率、加工易硬化、化学亲和力强等性质,因此在切削加工中阻力大、温度高、工具寿命短,表面粗糙度差、倾斜面上打孔等因素使打孔的难度更大。而用激-光在这些难加工材料上打孔,以上问题将得到解决。我国钟表行业所用的宝石轴承几乎全部是激光打孔。人造金刚石和天然金刚石的激光打孔应用也非常普遍。用YAG激光在厚度为5.5mm的硬质合金上打孔,深径比高达l4:1,而在1l.5mm 厚的65Mn上可打出深径比为l9:1的小孔。在l0mm厚的坚硬的氮化硅陶瓷上可容易地打出直径为0.6mm的小孔,这都是常规打孔手段无法办到的。特别是在弹性材料上,由于弹性材料易变形,很难用一般方法打孔。

蚀刻工艺之酸性氯化铜蚀刻液

目录 摘要 (1) 1设计任务书 (2) 1.1项目 (2) 1.2设计内容 (2) 1.3设计规模 (2) 1.4设计依据 (2) 1.5产品方案 (2) 1.6原料方案 (2) 1.7生产方式 (3) 2 工艺路线及流程图设计 (3) 2.1工艺路线选择 (3) 2.2内层车间工艺流程简述 (4) 3.车间主要物料危害及防护措施 (6) 3.1职业危害 (6) 3.2预防措施 (6) 4.氯酸钠/盐酸型蚀刻液的反应原理 (7) 4.1蚀刻机理 (7) 4.2蚀刻机理的说明 (8) 4.3蚀刻中相关化学反应的计算 (8) 5.影响蚀刻的因素 (6) 5.1影响蚀刻速率的主要因素 (10) 5.2蚀刻线参数设计 (10) 6 主要设备一览表 (12) 7车间装置定员表 (13) 8投资表 (13) 9安全、环保、生产要求 (14) 致谢 (15) 参考文献 (16)

蚀刻工艺之酸性氯化铜蚀刻液 摘要:本文介绍了印制电路板制造过程中的酸性氯化铜蚀刻液,并对其蚀刻原理和影响蚀刻的因素进行了阐述。 关键词:印制电路板;酸性氯化铜;蚀刻; 分类号:F407.7 Brief principies to acid chlorination copper etching and factors analysis Chen yongzhou (Tutor:Pi-yan) (Department of Chemistry and Environmental Engineering, Hubei NormalUniversity , Huangshi ,Hubei, 435002) Abstract: In this paper acid chlorination etching solution was introduced. Meanwhile the etching principle and the factors affecting the etching rate been explain. Keywords: PCB;acid chlorination copper solution;etching

玻璃表面蚀刻的原理

玻璃表面蚀刻的原理 热度 6已有 84 次阅读2010-10-23 17:15|个人分类:理论和实践| 玻璃表面化学深蚀刻的工艺原理与操作方案 2007-12-17 18:57 本文对平板玻璃表面化学蚀刻做一些较为通俗的理性论述: 一、化学蚀刻的原理: 我们知道玻璃属于无机硅物质中的一种,非晶态固体。易碎;透明。它与我们的生活密不可分,现代人已不再满足于物理式机械手段加工的艺术玻璃制品,更致力于用多种化学方式对玻璃表面进行求新求异深加工,以求得到更好的视觉享受,从而使玻璃产品的附加值再度得到提高. 例如对玻璃表面进行化学粗化[蒙砂;玉砂],化学深蚀刻[凹蒙;冰雕],化学抛光及其它工艺,本文论述的重点将是玻璃化学的氧化与还原反应的构造及工艺操作控制性。 对于玻璃蚀刻液中起氧化反应的物质是选择纯液质的能与玻璃起氧化反应的可以是H2SO4; HCL, HNO3. 它们能与玻璃中的硅原子发生氧化作用, 形成SIO2, 做为蚀刻液中设定的络合剂氢氟酸正好能将SIO2再次分解, 从而形成我们设计的化学反应程式,达到对玻璃表面进行蚀刻的目地。例如程式: a:3SI+4HNO3=3SIO2+2H2O+4NO b:SIO2+6HF = H2[SIF6]+2H2O 对玻璃蚀刻液配制可以展现的物质性质包含氧化剂;络合剂;缓冲剂;催化剂;附加剂;表面活性剂;酸雾抑制剂. 如下再例: 氧化剂: H2SO4 ; HCL ; HNO3; 还原剂: HF 缓冲剂: H2O; CH3COOH; 催化剂: NH4NO3; CuSO4; NaNO2; AgNO3; 附加剂: Br2 酸雾抑制剂: FC-129; FC-4; FT248TM 湿润活性剂 ; 长直链烷基TH系;烷基酚聚氧乙烯醚 按重量百分比配制玻璃蚀刻液可以视深蚀刻、浅蚀刻及抛光要求对蚀刻液中各物质百分比投料进行调整. 如下续例: 缓冲剂--------------------------------------- 40----67% 氧化剂--------------------------------------- 15----38% 络合剂--------------------------------------- 27----45% 催化剂--------------------------------------- 0.03---0.06 附加剂--------------------------------------- 0.05---0.1 表面湿润活性剂--------------------------- 0.04 酸雾抑制剂----------------------------------0.003

激光打孔加工

金属激光打孔加工 激光打孔加工产品图 精密激光打孔产品图和激光打孔加工设备介绍,激光打孔加工速度快,无毛刺,激光打孔加工产品可实现自动化生产 1.喷油嘴细孔--激光打孔加工 2.不锈钢精密细孔--激光打孔加工

3.平板电脑喇叭孔--激光打孔加工 4.不锈钢圆管花洒水平面垂直孔---激光打孔加工

激光打孔主要进行金属非接触打孔,最小孔径可达到0.01mm,适合普通金属及合金(铁、铜、铝、镁、锌等所有金属),稀有金属及合金(金、银、钛)等材料的打孔。 根据小孔的尺寸范围划分为六档: 小孔:1.00~3.00(mm) 次小孔:0.40~1.00(mm) 超小孔:0.1~0.40(mm) 微孔:0.01~0.10(mm) 次微孔:0.001~0.01(mm) 超微孔:<0.001(mm) 要了解设备的可以找我,橙色数字(王经理)专业激光打孔/割切/焊接加工设备厂家,也可承接激光加工. 2.激光打孔设备介绍 (1)激光打孔的机理 激光束是一种在时间上和空间上高度集中的光子流束,其发散角极小、聚焦性能良好,采用光学聚焦系统,可以将激光束会聚到微米量级的极小范围内,其功率密度可高达,当这种微细的高能激光束照射到工件上时,由于这种高强热源对材料加热的结果,可使得照射区内的温度瞬时上升到一万度以上,从而引起被照射区内的材料瞬时熔化并大量汽化蒸发,气压急剧上升,高速气流猛烈向外喷射,在

照射点上立即形成一个小阻坑。随着激光能量的不断输入,阻坑内的汽化程度加剧,蒸气量急剧增多气压骤然上升,对阻坑的四周产生强烈的冲击波作用,致使高压蒸气带着溶液,从凹坑底部高速向外喷射,火花飞溅,如同产生一种局部微型爆炸那样,利用辅助气体吹走激光熔化的范围,在工件上迅速打出孔来. (2)激光打孔设备组件 激光打孔设备主要由激光器、电源、光学传输系统,聚焦系统、观察对准系统、工作台,检控装置等部分组成。激光打孔用的激光器有固体激光器和气体激光器两大类。

IC工艺流程简介

晶体的生长 晶体切片成wafer 晶圆制作 功能设计à模块设计à电路设计à版图设计à制作光罩 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化Si(固) + O2 àSiO2(固) 湿法氧化Si(固) +2H2O àSiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反应气体至反应炉的载气体精密装置;(2)使反应气体原料气化的反应气体气化室;(3)反应炉;(4)反应后的气体回收装置等所构成。其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出,且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的装置。 2 低压CVD (Low Pressure CVD) 此方法是以常压CVD 为基本,欲改善膜厚与相对阻抗值及生产所创出的方法。主要特征:(1)由于反应室内压力减少至10-1000Pa而反应气体,载气体的平均自由行程及扩散常数变大,因此,基板上的膜厚及相对阻抗分布可大为改善。反应气体的消耗亦可减少;(2)反应室成扩散炉型,温度控制最为简便,且装置亦被简化,结果可大幅度改善其可靠性与处理能力(因低气压下,基板容易均匀加热),因基可大量装荷而改善其生产性。 3 热CVD (Hot CVD)/(thermal CVD) 此方法生产性高,梯状敷层性佳(不管多凹凸不平,深孔中的表面亦产生反应,及气体可到达表面而附着薄膜)等,故用途极广。膜生成原理,例如由挥发性金属卤化物(MX)及金属有机化合物(MR)等在高温中气相化学反应(热分解,氢还原、氧化、替换反应等)在基板上形成氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜方法。因只在高温下反应故用途被限制,但由于其可用领域中,则可得

蚀刻液分类及工艺流程

蚀刻液分类及工艺流程 一、目前PCB业界使用的蚀刻液类型有六种类型: 酸性氯化铜碱性氯化铜氯化铁过硫酸铵硫酸/铬酸硫酸/双氧水蚀刻液前三种常用。 二、各种蚀刻液特点 酸性氯化铜蚀刻液 1) 蚀刻机理:Cu+CuCl2→Cu2Cl2 Cu2Cl2+4Cl-→2(CuCl3)2- 2) 影响蚀刻速率的因素:影响蚀刻速率的主要因素是溶液中Cl-、Cu+、Cu2+的含量及蚀刻液的温度等。 a、Cl-含量的影响:溶液中氯离子浓度与蚀刻速率有着密切的关系,当盐酸浓度升高时,蚀刻时间减少。在含有6N的HCl溶液中蚀刻时间至少是在水溶液里的1/3,并且能够提高溶铜量。但是,盐酸浓度不可超过6N,高于6N盐酸的挥发量大且对设备腐蚀,并且随着酸浓度的增加,氯化铜的溶解度迅速降低。添加Cl-可以提高蚀刻速率,原因是:在氯化铜溶液中发生铜的蚀刻反应时,生成的Cu2Cl2不易溶于水,则在铜的表面形成一层氯化亚铜膜,这种膜能够阻止反应的进一步进行。过量的Cl-能与Cu2Cl2络合形成可溶性的络离子(CuCl3)2-,从铜表面上溶解下来,从而提高了蚀刻速率。 b、Cu+含量的影响:根据蚀刻反应机理,随着铜的蚀刻就会形成一价铜离子。较微量的Cu+就会显著的降低蚀刻速率。所以在蚀刻操作中要保持Cu+的含量在一个低的范围内。 c、Cu2+含量的影响:溶液中的Cu2+含量对蚀刻速率有一定的影响。一般情况下,溶液中Cu2+浓度低于2mol/L时,蚀刻速率较低;在2mol/L时速率较高。随着蚀刻反应的不断进行,蚀刻液中铜的含量会逐渐增加。当铜含量增加到一定浓度时,蚀刻速率就会下降。为了保持蚀刻液具有恒定的蚀刻速率,必须把溶液中的含铜量控制在一定的范围内。 d、温度对蚀刻速率的影响:随着温度的升高,蚀刻速率加快,但是温度也不宜过高,一般控制在45~55℃范围内。温度太高会引起HCl过多地挥发,造成溶液组分比例失调。另外,如果蚀刻液温度过高,某些抗蚀层会被损坏。 碱性氯化铜蚀刻液 1) 蚀刻机理:CuCl2+4NH3→Cu(NH3)4Cl2 Cu(NH3)4Cl2+Cu→2Cu(NH3)2Cl 2) 影响蚀刻速率的因素:蚀刻液中的Cu2+浓度、pH值、氯化铵浓度以及蚀刻液的温度对蚀刻速率均有影响。 a、Cu2+离子浓度的影响:Cu2+是氧化剂,所以Cu2+的浓度是影响蚀刻速率的主要因素。研究铜浓度与蚀刻速率的关系表明:在0~82g/L时,蚀刻时间长;在82~120g/L时,蚀刻速率较低,且溶液控制困难;在135~165g/L时,蚀刻速率高且溶液稳定;在165~225g/L时,溶液不稳定,趋向于产生沉淀。 b、溶液pH值的影响:蚀刻液的pH值应保持在8.0~8.8之间,当pH值降到8.0以下时,一方面对金属抗蚀层不利;另一方面,蚀刻液中的铜不能被完全络合成铜氨络离子,溶液要出现沉淀,并在槽底形成泥状沉淀,这些泥状沉淀能

激光切割和激光打孔

激光切割和激光打孔 激光器可以完成各种不同的切割任务。从在半导体芯片上生成只有几微米的切口,到高质量地切割 30 毫米钢板。在激光打孔时,激光束无接触地在金属、塑料、纸张和石头上生成细微的或者较大的孔眼。 激光切割的原理 聚焦的激光束照射到工件上,将材料加热,使其熔化或者蒸发。一旦激光束将工件完全穿透,就开始了切割工艺:激光束沿着工件轮廓移动,不断地熔化工件材料。在大多数情况下,气流将熔体从切口中向下挤出。切口的宽度不会比聚焦的激光束宽多少。 在激光打孔时,短脉冲激光以很高的功率密度将工件材料熔化和蒸发。由此产生的高压将熔体从孔眼中向下排出。 氧炔切割 激光氧炔切割是一种大量应用于建筑钢材切割的标准工艺。

氧炔切割需要氧气作为切割气体。在最大6 bar 的压力下,将氧气吹入切口。被加热的金属在切口中与氧气发生反应。氧化反应释放出大量能量,最高可达激光能量的五倍,帮助激光束实现切割。氧炔切割可以加快切割速度,并且可以加工比较厚的金属板。例如可以切割厚度超过30 mm 的建筑用钢板。 激光熔融切割 激光熔化切割可以切割所有可熔化的材料,例如金属。 工艺决定了加工结果:采用等离子体支持的熔融切割速度快、表面粗糙(后),采用传统的熔融切割速度慢、表面光滑(前)。 在激光熔化切割时,通常使用氮气或者氩气作为切割气体。在 2 到 20 bar 压力的推动下,切割气体穿过切口。氩气和氮气都是惰性气体。这意味着,这两种切割气体不与切口中的熔化金属发生反应,而是只向下排出。同时,切割气体将切边与空气隔离。 优点是,切边不被氧化,不必再作后续加工。但是,在切割时只有激光束的能量起作用。 在加工金属薄板时,切割速度和在气割时一样快。对于加工比较厚的金属板以及在穿孔时,加工速度就比气割慢了一些。某些切割设备可以用氧气进行穿孔,然后用氮气进行切割。

激光钻孔工艺介绍

随着微电子技术的飞速发展,大规模和超大规模集成电路的广泛应用,微组装技术的进步,使印制电路板的制造向着积层化、多功能化方向发展,使印制电路图形导线细、微孔化窄间距化,加工中所采用的机械方式钻孔工艺技术已不能满足要求而迅速发展起来的一种新型的微孔加工方式即激光钻孔技术。 一激光成孔的原理 激光是当“射线”受到外来的刺激而增加能量下所激发的一种强力光束,其中红外光和可见光具有热能,紫外光另具有光学能。此种类型的光射到工件的表面时会发生三种现象即反射、吸收和穿透。 透过光学另件击打在基材上激光光点,其组成有多种模式,与被照点会产生三种反应。 激光钻孔的主要作用就是能够很快地除去所要加工的基板材料,它主要靠光热烧蚀和光化学烧蚀或称之谓切除。 (1)光热烧蚀:指被加工的材料吸收高能量的激光,在极短的时间加热到熔化并被蒸发掉的成孔原理。此种工艺方法在基板材料受到高能量的作用下,在所形成的孔壁上有烧黑的炭化残渣,孔化前必须进行清理。 (2)光化学烧蚀:是指紫外线区所具有的高光子能量(超过2eV电子伏特)、激光波长超过400纳米的高能量光子起作用的结果。而这种高能量的光子能破坏有机材料的长分子链,成为更小的微粒,而其能量大于原分子,极力从中逸出,在外力的掐吸情况之下,使基板材料被快速除去而形成微孔。因此种类型的工艺方法,不含有热烧,也就不会产生炭化现象。所以,孔化前清理就非常简单。 以上就是激光成孔的基本原理。目前最常用的有两种激光钻孔方式:印制电路板钻孔用的激光器主要有RF激发的CO2气体激光器和UV固态Nd:YAG激光器。 (3)关于基板吸光度:激光成功率的高低与基板材料的吸光率有着直接的关系。印制电路板是由铜箔与玻璃布和树脂组合而成,此三种材料的吸光度也因波长不同有所不同但其中铜箔与玻璃布在紫外光0.3mμ以下区域的吸收率较高,但进入可见光与IR后却大幅度滑落。有机树脂材料则在三段光谱中,都能维持相当高的吸收率。这就是树脂材料所具有的特性,是激光钻孔工艺流行的基础。 二 CO2激光成孔的不同的工艺方法 CO2激光成孔的钻孔方法主要有直接成孔法和敷形掩膜成孔法两种。所谓直接成孔工艺方法就是把激光光束经设备主控系统将光束的直径调制到与被加工印制电路板上的孔直径相同,在没有铜箔的绝缘介质表面上直接进行成孔加工。敷形掩膜工艺方法就是在印制板的表面涂覆一层专用的掩膜,采用常规的工艺方法经曝光/显影/蚀刻工艺去掉孔表面的铜箔面形成的敷形窗口。然后采用大于孔径的激光束照射这些孔,切除暴露的介质层树脂。现分别介绍如下: (1)开铜窗法: 首先在内层板上复压一层RCC(涂树脂铜箔)通过光化学方法制成窗口,然后进行蚀刻露出树脂,再采用激光烧除窗口内基板材料即形成微盲孔:

金属蚀刻工艺流程

金属蚀刻工艺流程 (一)金属蚀刻工艺流程 金属的种类不同,其蚀刻的工艺流程也不同,但大致的工序如下:金属蚀刻板→除油→水洗→浸蚀→水洗→干燥→丝网印刷→千燥→水浸2~3min→蚀刻图案文字→水洗→除墨→水洗→酸洗→水洗→电解抛光→水洗→染色或电镀→水洗→热水洗→干燥→软布抛(擦光)光→ 喷涂透明漆→干燥→检验→成品包装。 1.蚀刻前处理 在金属蚀刻之前的工序都是前处理,它是保证丝印油墨与金属面具有良好附着力的关键工序,因此必须要彻底清除金属蚀刻表面的油污及氧化膜。除油应根据工件的油污情况定出方案,最好在丝印前进行电解除油,保证除油的效果。除氧化膜也要根据金属的种类及膜厚的情况选用最好的浸蚀液,保证表面清洗干净。在丝网印刷前要干燥,如果有水分,也会影响油墨的附着力,而且影响后续图纹蚀刻的效果 甚至走样,影响装饰效果。 2.丝网印刷 丝网印刷要根据印刷的需要制作标准图纹丝印网版。图纹装饰工序中,丝印主要起保护作用,涂感光胶时次数要多些,以便制得较厚的丝网模版,这样才使得遮盖性能好,蚀刻出的图纹清晰度高。丝网版的胶膜在光的作用下,产生光化学反应,使得光照部分交联成不溶于水的胶膜,而未被光照部分被水溶解而露出丝网空格,从而在涂有胶膜丝网版上光刻出符合黑白正阳片图案的漏网图纹。 把带有图纹的丝印网版固定在丝网印刷机上,采用碱溶性耐酸油墨,在金属板上印制出所需要的图纹,经干燥后即可进行蚀刻。 3.蚀刻后处理 蚀刻后必须除去丝印油墨。一般的耐酸油墨易溶于碱中。将蚀刻板浸入40~60g/L的氢氧化钠溶液中,温度50~80℃,浸渍数分钟即可退去油墨。退除后,如果要求光亮度高,可进行抛光,然后进行染色,染色后为了防止变色及增加耐磨、耐蚀性,可以喷涂透明光漆。 对于一些金属本身是耐蚀性能好而且不染色的,也可以不涂透明漆,要根据实际需要而定。 (二)化学蚀刻溶液配方及工艺条件 蚀刻不同的金属要采用不同的溶液配方及工艺条件,常用金属材料的蚀刻溶液配方及工艺条件见表6―4~表6-6。

玻璃蚀刻液的配方及使用方法

玻璃蚀刻液的配方及使用方法 218.15.161.* 1楼 在当前的装饰装璜热潮中,雕刻有各种花纹图案、书法字体的 玻璃、镜、器皿等深受消费者欢迎。玻璃工艺品的雕刻其关键 在于蚀刻液的配制。现将一种原料易购、成本低、制作简单的 蚀刻液配方及使用方法介绍如下: 50-60℃热水18.4%、氢氟酸铵23.5%、草酸12.4%、硫 酸铵15.7%、甘油6.5%、硫酸钡23.5%,此外还添加少许有机 染料适当配色。上述成份混和搅拌均匀即可。配方中的原料在 各地化工商店均有售。加工前预先把玻璃制品洗涤干净,再进 行温热,温热的方式可视玻璃制品大小而定。小件的放入热水 中浸泡一下,大件的放在火炉旁烘一下就行了。最后用毛笔蘸 透蘸匀蚀刻液在玻璃表面书写文字或描出花纹图案,约经2分 钟,一件精美的玻璃雕刻工艺品即展现于眼前。 ?2005-9-18 23:17 ?回复 218.15.182.* 2楼 玻璃蚀刻液的配制 配方: 单位:克 醋氟化氨15 草酸7 硫酸铵8 硫酸纳14 甘油35 水10 配方2: (醋)醋氟化氨180 硫酸30 水90 按配方将各原料溶于60℃左右的热水中,搅拌均匀即可,此配 方可用毛笔蘸少许本剂在玻璃上描绘图案,还可用排笔均匀地 涂上一层蚀刻液,即可成毛玻璃。 ?2005-9-18 23:22

回复 218.15.182.* 3楼 酸在艺术玻璃上的运用 酸在艺术玻璃上的运用 玻璃可以抵抗许多种酸,而磷酸和氢氟酸能够轻易地腐蚀和抛光 玻璃表面。用氢氟酸等物质对玻璃表面进行腐蚀具有很大的危险 性,它可以伤及人的皮肤甚至骨头,且挥发的气体具有毒性和腐 蚀性。 因此,对玻璃进行酸洗必须格外小心,需要有专业的萃取、冲洗 设备,包括排除腐蚀性气体的防护罩、广口的塑料容器、合适的 储藏空间和工作设备。塑料的长柄勺是很有用的工具,但在金属 勺外包裹蜡后也可以使用。工作人员在处理酸时要穿上防护服、 防护靴并戴上面罩。建议配备碱性中和设备以解决突发事件。 腐蚀的深度和效果取决于酸的强度和温度、玻璃的品质和浸泡时 间。酸洗玻璃需要根据不同的情况调整酸洗的方法。大致上,4 份水核60%浓度的氢氟酸是普遍适用的,如果要进行深度酸洗, 则需要2份水和1份氢氟酸,切记必须将酸加入水中,而不是将 水加入酸中。4份水与1份酸在2小时的情况下可以腐蚀大约 1.5mm厚度的玻璃。来自斯堪的那维亚的一个配方是:3份60%浓 度的氢氟酸+5份水+1份90%浓度的硫酸。 有一种酸的配方可以使碱石灰玻璃表面达到绸缎般无光的效果: 氢氟酸(60%)1.0kg=2磅 氟化氢铵 0.2kg=6盎司 硫酸 0.2kg=6盎司 许多艺术家用酸腐蚀玻璃器皿的表层或里层,达到理想的效果。 产生灯泡效果的酸洗操作程序大致为:用热水清洗玻璃,将腐蚀 溶液喷洒在玻璃表面或将玻璃浸入腐蚀溶液中20秒后用热水清 洗。 想在玻璃表面获得装饰性的图案可以使用蜡纸模板抵抗酸的侵 蚀。通常将加热的玻璃进入熔融的蜡中,在蜡全部覆盖在玻璃表 面后,除去装饰纹样部分的蜡,将玻璃浸入腐蚀溶液中以获得期 待的效果。蜡、液体(石油)沥青和铅箔是覆盖在玻璃表面抵抗 腐蚀的常用材料。被称为乳白色蚀剂或法蓝西浮雕的腐蚀溶液, 是一种具有粘性的、腐蚀速度慢但仍然具有毒性的酸洗溶液。为 安全,但操作时需谨慎。它的配方是:

玻璃蚀刻配方设计方案

玻璃蚀刻液的配方及使用方法 在当前的装饰装璜热潮中,雕刻有各种花纹图案、书法字体的玻璃、镜、器皿等深受消费者欢迎。玻璃工艺品的雕刻其关键在于蚀刻液的配制。现将一种原料易购、成本低、制作简单的蚀刻液配方及使用方法介绍如下: 50-60℃热水18.4%、氢氟酸铵23.5%、草酸12.4%、硫酸铵15.7%、甘油6.5%、硫酸钡23.5%,此外还添加少许有机染料适当配色。上述成份混和搅拌均匀即可。配方中的原料在各地化工商店均有售。加工前预先把玻璃制品洗涤干净,再进行温热,温热的方式可视玻璃制品大小而定。小件的放入热水中浸泡一下,大件的放在火炉旁烘一下就行了。最后用毛笔蘸透蘸匀蚀刻液在玻璃表面书写文字或描出花纹图案,约经2分钟,一件精美的玻璃雕刻工艺品即展现于眼前。 玻璃蚀刻液的配制 配方: 单位:克 醋氟化氨15 草酸7 硫酸铵8 硫酸纳14 甘油35 水10 配方2: (醋)醋氟化氨180 硫酸30 水90 按配方将各原料溶于60℃左右的热水中,搅拌均匀即可,此配方可用毛笔蘸少许本剂在玻璃上描绘图案,还可用排笔均匀地涂上一层蚀刻液,即可成毛玻璃。 酸在艺术玻璃上的运用 酸在艺术玻璃上的运用 玻璃可以抵抗许多种酸,而磷酸和氢氟酸能够轻易地腐蚀和抛光玻璃表面。用氢氟酸等物质对玻璃表面进行腐蚀具有很大的危险性,它可以伤及人的皮肤甚至骨头,且挥发的气体具有毒性和腐蚀性。 因此,对玻璃进行酸洗必须格外小心,需要有专业的萃取、冲洗设备,包括排除腐蚀性气体的防护罩、广口的塑料容器、合适的储藏空间和工作设备。塑料的长柄勺是很有用的工具,但在金属勺外包裹蜡后也可以使用。工作人员在处理酸时要穿上防护服、防护靴并戴上面罩。建议配备碱性中和设备以解决突发事件。 腐蚀的深度和效果取决于酸的强度和温度、玻璃的品质和浸泡时间。酸洗玻璃需要根据不

激光打孔

激光打孔 一、激光打孔简介: 激光打孔利用激光束高能量,高相干性,高光束质量的特点, 通过聚焦系统经而易举地可将光斑直径缩小到微米级,从而获得 100~1000W/cm2的激光功率密度。如此高的功率密度几乎可以在 任何材料实行激光打孔。打孔加工技术广泛应用于众多工业加工工 艺中,使得硬度大、熔点高的材料越来越多容易加工。例如,在聚 晶金刚石,高熔点金属钼板,高温合金,陶瓷,上加工微米量级孔 径;在硬质碳化钨上加工几十微米的小孔;在红、蓝宝石上加工几 十微米的深孔以及金刚石拉丝模具、化学纤维的喷丝头,在不锈钢 板上打筛网孔等,激光束以一定的形状及精度重复照射到工件固定 的一点上。 在和辐射传播方向垂直的方向上,没有光束和工件的相对位 移。复制法包括单脉冲和多脉冲。目前一般采用多脉冲法,其特 点是可使工件上能量的横向扩散减至最小,并且有助于控制孔的 大小和形状。毫秒级的脉冲宽度可以使足够的热量沿着孔的轴向 扩散,而不只被材料表面吸收。激光束形状可用光学系统获得。 如在聚焦光束中或在透镜前方放置一个所需形状的孔栏,即可以 打出异形孔。加工表面形状由激光束和被加工工件相对位移的轨迹决定。用轮廓迂回法加工时,激光器既可以在脉冲状态下也可以在连续状态下工作。用脉冲方式时,由于孔以一定的位移量连续的彼此迭加,从而形成一个连续的轮廓。采用轮廓加工,可把孔扩大成具有任意形状的横截面。 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺要求。例如,在高熔点金属钼板上加工微米量级孔径;在硬质碳化钨上加工几十微米的小孔;在红、蓝宝石上加工几百微米的深孔以及金刚石拉丝模具、化学纤维的喷丝头等。这一类的加工任务用常规机械加工方法很困难,有时甚至是不可能的,而用激光 打孔则不难实现。激光束在空间和时间上高度集中,利用透镜聚 焦,可以将光斑直径缩小到微米级从而获得105-1015W/cm2的激 光功率密度。如此高的功率密度几乎可以在任何材料实行激光打 孔,而且与其它方法如机械钻孔、电火花加工等常规打孔手段相 比,具有以下显著的优点:1)激光打孔速度快,效率高,经济效益好。 由于激光打孔是利用功率密度为l07-109W/cm2的高能激光束对材 料进行瞬时作用,作用时间只有10-3-10-5s,因此激光打孔速度非 常快。将高效能激光器与高精度的机床及控制系统配合,通过微处 理机进行程序控制,可以实现高效率打孔。在不同的工件上激光打 孔与电火花打孔及机械钻孔相比,效率提高l0-1000倍。 二、现代激光打孔技术 激光打孔、不锈钢激光打孔、陶瓷激光打孔、激光精密打孔,主要用于不锈钢、陶瓷、

相关文档
最新文档