热管换热器计算

合集下载

热管换热器计算

热管换热器计算

热管换热器计算(2009-02-20 22:50:45)转载标签:热管换热器计算德天热管亚洲热管网热管换热器计算可用热平衡方程式进行计算,对于常温下使用的通风系统中的热管换热器的换热后温度,回收的冷热量也可用下列公式计算,由于公式采用的是显热计算,但实际热回收过程也发生潜热回收,因此计算值较实测值偏小,其发生的潜热回收可作为余量或保险系数考虑。

本文选自【亚洲热管网】热管换热器的计算:1. 热管换热器的效率定义η=t1-t2/t1- t3 (1-1)式t1、t2——新风的进、出口温度(℃)t3——排风的入口温度(℃)2.热管换热器的设计计算一般已知热管换热器的新风和排风的入口温度t1和t3,取新风量L x 与排风量L P相等。

即L x = L P,新风和排风的出口温度按下列公式计算:t2=t1-η(t1-t3) (1-2)t4=t3+η(t1-t3) (1-3)t4——排风出口温度(℃)回收的热量Q (kW), 负值时为冷量:Q(kW)= L xρX C x(t2-t1)/3600 (1-4)式中L x——新风量(m3/h )ρx——新风的密度(kg/m3)(一般取1.2 kg/m3)C x——新风的比热容,一般可取1.01kJ/ (kg ·℃)。

3.选用热管换热器时,应注意:1)换热器既可以垂直也可以水平安装,可以几个并联,也可以几个串联;当水平安装时,低温侧上倾5℃~7℃。

2)表面风速宜采用1.5 m/s~3.5m/s。

3)当出风温度低于露点温度或热气流的含湿量较大时,应设计冷凝水排除装置。

4)冷却端为湿工况时,加热端的效率η值应增加,即回收的热量增加。

但仍可按上述公式计算(增加的热量作为安全因素)。

需要确定冷却端(热气流)的终参数时,可按下式确定处理后的焓值,并按处理后的相对湿度为90%左右考虑。

h2=h1- 36Q/ L×ρ (1-5)式中h1, h2——热气流处理前、后的焓值(kJ/kg);Q ——按冷气流计算出的回收热量(W);L ——热气流的风量(m3/h );ρ——热气流的密度(kg/m3)。

热管换热器的设计计算

热管换热器的设计计算
1. 1. 1 声速极限的管径
热管中从冷凝段回流到蒸发段的液体的一部 分 ,由于蒸汽流的流动将被携带到冷凝段 ,因而造成 蒸发段干枯 ,引起蒸发段过热 ,这一极限称为热管的 携带限 。 对重力式无吸液芯热管 , 携带极限的管径可用 下式计算 :
dc =
1. 78 Q ent
- 1/ 4 - 1/ 4 π γ(ρ ) + ρV L - 2
L经 = L1 = L2 K2 K1
饱和温度 , K; T1 、 T2 — — — 分别为热流体和冷流体的温度 , K。 安全长度比主要用于验证计算确定的长度比是 否安全 。 1. 3 工质的选择 工质的选择要满足与热管材质相容性和热物理
( 4)
2001 年第 3 期 王 磊 : 热管换热器的设计计算
1. 5 翅片效率与翅化比 1. 5. 1 翅片效率
G
单位 kg/ m2 ・ s
流动方向上的管排数
8 2. 4~2. 7
热管在气体侧传热时热阻较大 , 常采取加翅片 的方法来强化传热 。加翅片后 ,随翅片高度的增加 , 其温度与热管壁温有一个梯度 。当以热管光管面积 计算给热系数时 ,即存在一个翅片传热效率问题 ,即 η=
( 见 2. 3 中定义) ,W/ m2 ・ K;
M1 、 M2 — — — 分别为热流体和冷流体的质量流
单管传输功率 (kW)
<1 <3 <7
管径 d o ( 外径) (mm)
16~25 25~32 32~60
量 ,kg/ h 。 在计算时 , 需先确定 L 经 , 再根据传热原理求 K1 、 K2 。为此 , 可先估计 K1 、 K2 值 , 估算出 L 经 , 再进 行精确的传热计算 。 K1 与 K2 值可按表 2 估计 。

气气热管换热器计算书

气气热管换热器计算书

热管换热器设计计算1确定换热器工作参数1.1确定烟气进出口温度ti,t3,烟气流量V,空气出口温度頁,饱和蒸汽压力Pc・对于热管式换热器,ti范圉一般在250°C〜600°C之间,对于普通水-碳钢热管的工作温度应控制在300°C以下.t2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180°C.空气入口温度的.所选取的各参数值如下:2确定换热器结构参数2.1确定所选用的热管类型烟气定性温度:f 宇_4沁;2沁=310比在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的半均值所得出:烟气入口处:q =如+営=420・c+严z = 18O°C烟气出口处:. t2+tiX4 200°C+20°Cx4l° 5 5 C选取钢-水重力热管.其工作介质为水.工作温度为30OC~250°C・满足要求.其相容壳体材料:铜.碳钢(内壁经化学处理)。

2.2确定热管尺寸对于管径的选择,由音速极限确定所需的管径d v = 1.64 Qc t J厂9必)2根据参考文献《热管技能技术》,音速限功率参考范闱,取Qc=4kW,在10 = 56吃启动时p v = O.1113k^/7H3p v = 0.165 X 105par = 2367.4幼/kg因此d v = 1.64 I ! = 10.3 mmyr(p v p v)l由携带极限确定所要求的管径d _ I 1.78 X QentP Ji (P L"1/4+P V~1/4)_2^(P L -Pv]1/4根据参考文献《热管技能技术》,携带限功率参考范围,取Q ent=4kw 管内工作温度t t = 180°C时P L = 886.9kg/m3 pv = 5.160/c^/m3 r = 20\3kJ/kgJ = 431.0xl0^N/m178x4因此nx20L3x(8Q6.^i/4+SA6^i/4)-2 [gX431.0xl0-4(886.9-5.160)]1/4=13.6nun考虑到安全因素,最后选定热管的内径为4 = 22111111管売厚度计算由式Pv420qcr]式中,Pv按水钢热管的许用压力28.5kg /nmr选取,由对应的许用230°C來选取管壳最大应力乐朋=14kg/nim2,而[<r]= -(7,^ = 3.5ka / nmr 4考虑安全因素,= 1.5111111,管壳外径:df =4+2S= 22+2x1.5= 25mm. 通常热管外径为25〜38mm 时,翅片高度选10〜17mm (—般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对 干净气流取2.5〜4mm :积灰严重时取6〜12inm,并配装吹灰装置.综上所述, 热管参数如下: 光管内径光管外径 翅片外径 翅片高度翅片厚度翅片间距肋化系数d]/mmd 。

换热器热量及面积计算公式

换热器热量及面积计算公式

换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h H h,1- H h,2= W c H c,2- H c,1式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口;2、无相变化Q=W h c p,h T1-T2=W c c p,c t2-t1式中:c p为流体平均定压比热容,kj/kg.℃;T为热流体的温度,℃;t为冷流体的温度,℃;3、有相变化a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c t2-t1式中:W h为饱和蒸汽即热流体冷凝速率即质量流量kg/sr为饱和蒸汽的冷凝潜热J/kgb.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h r+c p,h T s-T w = W c c p,c t2-t1式中:c p,h为冷凝液的比热容J/kg/℃;T s为饱和液体的温度℃二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = kj/h = kcal/h1 kcal = kj2、温差1逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=△t2-△t1/㏑△t2/△t12并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=△t2-△t1/㏑△t2/△t1对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值; 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热;对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>时用公式:△Tm=△T1-△T2/㏑△T1/△T2.如果△T1/△T2≤时,△Tm=△T1+△T2/2二种流体在热交换器中传热过程温差的积分的平均值;逆流时△T1=T1-t2 △T2=T2-t1顺流时△T1=T1-t1 △T2=T2-t2其中:T1 ——热流进口温度℃ T2——热流出口温度t1——冷流进口温度 t2——冷流出口温度ln——自然对数3、面积计算S=Q/K. △t m三、管壳式换热器面积计算S=其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m;注:冷凝段为潜热,根据汽化热计算;冷却段为显热,根据比热容计算;。

换热器热量及面积计算公式

换热器热量及面积计算公式

换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。

3、有相变化a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1)式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h1 kcal = 4.18 kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。

( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。

) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值。

192空调用热管换热器的设计计算全文

192空调用热管换热器的设计计算全文

空调用热管换热器的设计计算西安工程大学 王晓杰 黄翔 武俊梅 郑久军摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在空调领域热管技术也逐渐受到重视,除了理论研究热管技术在空调领域的应用外,设计出合适的换热设备对热管在空调领域的应用也及其重要。

热管换热器的计算内容主要有热力计算和校核计算。

其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。

空调用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在制冷空调领域的应用研究。

关键词: 热管 空调 热力计算1 引言[1][2][4]热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,制冷空调领域冷冷热流体温差小,因此热管技术也逐渐受到重视。

根据实际需要设计出合理的热管换热器对于空调领域来说也极为重要。

同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。

在这里主要对热管换热器的热力计算做个介绍。

热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。

常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。

离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。

定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。

从而避免露点腐蚀及因结露而形成的灰堵。

空调系统要处理的对象一般为室外新风或是室内排风,都属于气态介质,因此空调用热管换热设备为气-气热管换热器。

本文将对空调用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是待处理室外新风,二次空气可以是室内排风或室外新风。

热管换热器计算书

热管换热器计算书

热管换热器设计计算1 确定换热器工作参数1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c,饱和蒸汽压力p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c.所选取的各参数值如下:2 确定换热器结构参数2.1 确定所选用的热管类型 烟气定性温度: t f =t 1+t 22=420°C+200°C2=310°C在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出:烟气入口处: t i =t 1+t 2c ×45=420°C+152°C×45=180°C 烟气出口处:t o =t 2+t 1c ×45=200°C+20°C×45=56°C选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸对于管径的选择,由音速极限确定所需的管径d v =1.64√Q cr(ρv p v )12根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW =,在t o =56°C 启动时ρv =0.1113kg/m 3p v =0.165×105pa r =2367.4kJ/kg因此 d v =1.64√Q cr(ρv p v )12=10.3mm由携带极限确定所要求的管径d v =√1.78×Q entπ∙r(ρL −14⁄+ρv −14⁄)−2[gδ(ρL−ρv ]14⁄ 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent =kw 管内工作温度 t i =180℃时ρL =886.9kg/m 3 ρv =5.160kg/m 3r =2013kJ/kg4431.010/N m δ-=⨯因此 d v =√1.78×4π×2013×(886.9−14⁄+5.16−14⁄)−2[g×431.0×10−4(886.9−5.160)]14⁄=13.6mm考虑到安全因素,最后选定热管的内径为m m 22d i =管壳厚度计算由式][200d P S iV σ=式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm σ=,而2MAX 1[] 3.5/4kg mm σσ==故 0.896mm 3.52000.02228.5S =⨯⨯=考虑安全因素,取 1.5S mm =,管壳外径:m m 25.51222S 2d d i f =⨯+=+=. 通常热管外径为25~38mm 时,翅片高度选10~17mm (一般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对干净气流取2.5~4mm ;积灰严重时取6~12mm ,并配装吹灰装置.综上所述,热管参数如下:翅片节距:'415f f f S S mm δ=+=+= 每米热管长的翅片数:'10001000200/5f f n m S === 肋化系数的计算:每米长翅片热管翅片表面积22[2()]14f f o f f f A d d d n ππδ=⨯⨯-+⋅⋅⋅⋅每米长翅片热管翅片之间光管面积(1)r o f f A d n πδ=⋅⋅-⋅每米长翅片热管光管外表面积o o A d π=⋅ 肋化系数:22[2()]1(1)4f o f f f o f f f rood d d n d n A A A d ππδπδβπ⨯⨯-+⋅⋅⋅⋅+⋅⋅-⋅+==⋅22[0.5(0.050.025)0.050.001]2000.025(10.2)8.70.025⨯-+⨯⨯+⨯-==2.3 确定换热器结构将热管按正三角形错列的方式排列,管子中心距S ′=(1.2~1.5)d f 取S ′=70mm 。

换热器热量及面积计算公式

换热器热量及面积计算公式

换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。

3、有相变化a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1)式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h1 kcal = 4.18 kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。

( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。

) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值。

热管换热器设计计算及设计说明

热管换热器设计计算及设计说明
1964年至1966年期间,美国无线电公司制作了以玻璃、铜、镍、不锈钢、钼等材料作为壳体,水、铯、钠、锂、铋等作为管内的工作液体的多种热管,操作温度达到1650℃。
1967年至1968年,美国应用于工业的热管日渐广泛,应用范围涉及到空调、电子器件、核电机的冷却等方面。并初次出现了柔性热管和平板式的异形热管。
1962年特雷费森向美国通用电气公司提出报告,倡议在宇宙飞船上采用一种类似Gaugler的传热设备。但因这种倡议并未经过实验证明,亦未能付诸实施。
1963年Los-Alamos科学实验室的Grover在他的专利中正式提出热管的命名,该装置基本上与Gaugler的专利相类似。他采用一根不锈钢管作壳体,钠为工作介质,并发表了管内装有丝网吸液芯的热管实验结果,进行了有限的理论分析,同时提出了以银和锂作为热管的工作介质的观点。
1964年Grover等人首次公开了他们的试验结果。此后英国原子能实验室开始了类似的以钠和其它物质作为工作介质的热管研究工作。工作的兴趣主要是热管在核热离子二极管转换器方面的应用。与此同时,在意大利的欧洲原子能联合核研究中心也开展了积极的热管研究工作。但兴趣仍然集中在热离子转换器方面,热管的工作温度达到1600~1800℃。
当蒸发段里的液体一旦因吸收了汽化潜热并蒸发时,蒸汽就开始通过热管的蒸汽腔向冷却段流动。此流动是由蒸汽腔两端的小压差引起的。蒸发段内蒸汽的温度比冷却段内的饱和温度稍高一些,从而形成了两端的温度差。蒸发段与冷却段之间这个温差常常可作为热管工作成功与否的一个判据。如果此温差小于0.5℃或1℃,则热管常常被称为在“热管工况”下工作,即等温工作。
当蒸汽凝结时,液体就浸透冷却段内的吸液芯毛细孔,弯月面具有很大的曲率半径,可以认为是无穷大。在热管内只要有过量的工质,就一定集中在冷凝表面上,因而实际上冷凝段的汽—液分界面是一个平面,蒸汽凝结释放出的潜热通过吸液芯、液体层和管壁把热量传给管外冷源。如果有过量液体存在,则从分界面到管壁外面的温降将比蒸发段内相应的温降大,因而,冷却段内的热阻在热管设计中是应当考虑的重要热阻之一。

计算热管换热器范文

计算热管换热器范文

计算热管换热器范文热管换热器是一种高效的换热设备,适用于许多工业领域和应用。

它采用了热管的原理进行换热,能够实现高效率的热量传递和控制。

热管是一种由金属壳体和内部工质组成的热传导管。

它利用液体工质的蒸发和凝结过程,在热端和冷端之间传递热量。

热管换热器主要由热管、散热片和外壳组成。

热管换热器的工作原理是这样的:首先,在热管的热端,热管内的工质开始蒸发,吸收热量。

蒸发后的工质因为温度升高,被压力推动,流动到冷端。

在冷端,工质开始凝结,释放热量。

凝结后的工质因为温度下降,被压力差推动,流回热端。

这样,热量就通过热管从热端传递到冷端。

热管换热器的热传导能力高,热流路径短,传热效率高。

它可以实现高效的传热和控制,适用于许多需要快速冷却或加热的工业过程。

热管换热器在各种应用中发挥着重要的作用,如电子设备散热、太阳能热水器、汽车发动机冷却等。

热管换热器的设计需要考虑多个因素。

首先是工质的选择。

工质应具有合适的蒸发和凝结性质,以及合适的工作温度范围。

其次是热管的尺寸和结构设计。

热管的尺寸应根据具体的传热需求和场景进行设计,以保证传热效果。

最后是热管换热器的安装和管路设计。

安装的位置和方式应根据具体情况进行选择,以便实现最佳的传热效果。

热管换热器的优点主要有以下几个方面。

首先,热管换热器具有高换热效率和快速响应的特点。

热管换热快,热流路径短,传热效果好。

其次,热管换热器具有较高的热传导能力,能够实现高效的热量传递和控制。

再次,热管换热器具有较小的体积和重量,适用于空间受限或重量要求较高的场合。

最后,热管换热器具有良好的可靠性和耐用性,能够长时间稳定工作。

当然,热管换热器也存在一些不足。

首先,热管换热器在设计和制造过程中较为复杂,需要一定的专业知识和技术。

其次,热管换热器的工质选择较为有限,一些特殊要求的工况难以适应。

再次,热管换热器的使用寿命和维护成本相对较高,需要定期检修和更换。

总之,热管换热器是一种高效的换热设备,适用于许多工业领域和应用。

热管换热器及设计计算

热管换热器及设计计算

冷流体4.9t/h 进口温度70℃ 出口温度135℃
热流体速度 0.8m/s
冷流体速度 1.5m/s
螺旋板式换热器板宽 0.3m
? 设计结果
换热面积 8.4m2
螺旋通道长度 14m
THANKS
? 翅片材料-低碳钢 焊接方式-高频焊接
? 光管外径0.032m 热管内径0.027m
? 热管全长2m
翅片高度0.015m
主要设计步骤
? 计算传热量、空气流出口温度和对数平均 温差
? 确定引风面积、迎风面管排数 ? 求总传热系数 ? 求加热侧总传热面积、热管换热器根数 ? 求换热器纵深方向排数 ? 求流体通过热管换热器的压力降
? 常规设计计算法与常规间壁式换热器相似 将热管群看成是一块热阻很小的“间
壁”,热流体通过“间壁”的一侧不断冷却, 冷流体通过“间壁”的另一侧不断被加热。
主要原始数据
? 排烟烟气流量4507m3/h 温度240-260℃
? 预热空气流量3800m3/h
进口温度20℃ 出口温度160-170℃
? 热管工质-水 管壳材料-20号锅炉无缝钢管
主要内容
? 热管介绍 ? 热管换热器分类 ? 热管换热器设计计算 ? 热管技术的应用 ? 螺旋板换热器介绍 ? 螺旋板换热器设计计算
热管的介绍
? 热管一般由管壳、毛细多孔材料 吸液芯和工作介质组成。
? 在蒸发段吸热热量气化成气体; ? 在冷凝段放出气化潜热热凝结成
液体; ? 在工业利用中,工作介质依靠重
螺旋板式换热器较多采用液 -液换热。
螺旋板式换热器分类
1、按流动方式分 ? 逆流型 ? 错流型 ? 混合型 2、按焊接方式分 ? “Ⅰ”型 螺旋体端面全部焊

换热器热量及面积计算公式

换热器热量及面积计算公式

换热器热量及面积计算之阿布丰王创作一、热量计算1、一般式Q=Qc=QhQ=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别暗示冷流体和热流体,下标1和2分别暗示换热器的进口和出口。

2、无相变更Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)式中:cp为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。

3、有相变更a.冷凝液在饱和温度下离开换热器,Q=Whr=Wccp,c(t2-t1)式中:Wh为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=Wh[r+cp,h(Ts-Tw)]=Wccp,c(t2-t1)式中:cp,h为冷凝液的比热容(J/(kg/℃));Ts为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△tm=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。

( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。

)对数平均温差因为在冷凝器板换一系列的换热器中温度是变更的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值。

管式换热器的计算公式

管式换热器的计算公式

管式换热器的计算公式
管式换热器的计算公式主要涉及到换热面积、热负荷、传热系数等方面,具体如下:
1. 换热面积计算公式:A=πdnL,其中d是管子的内径,n是管子的数量,L是管子的长度。

2. 热负荷计算公式:Q=(m1-m2)Cp(T1-T2),其中m1和m2是两个流体的质量流量,Cp是比热容,T1和T2是两个流体的温度差。

3. 传热系数计算公式:kd=m/πdnλv,其中λv是导管内膜的热导率,m是质量流量,d是导管的内径,n是导管数量。

4. 还有一个公式是:a=q/k(tr-△t),其中a为换热面积,q为总换热量,k 为导热系数。

这些公式在不同的场合有不同的应用,请根据实际情况选择合适的公式进行计算。

换热器的计算公式

换热器的计算公式

换热器的计算公式换热器是一种将热量从一个介质传递到另一个介质的设备。

根据传热方式的不同,换热器可以分为对流换热器和传导换热器两类。

对于对流换热器,可以根据传热器的具体形式分为壳管式换热器和板式换热器两种。

壳管式换热器的计算公式主要包括壳侧传热系数、管侧传热系数、壳侧传热区面积和管侧传热区面积的计算。

1.壳侧传热系数壳侧传热系数可以使用Dittus-Boelter公式计算,公式如下:Nu=0.023*Re^0.8*Pr^0.4其中,Nu为壳侧Nusselt数,Re为壳侧雷诺数,Pr为壳侧普朗特数。

2.管侧传热系数管侧传热系数可以使用Colburn公式计算,公式如下:Nu=0.023*Re^0.8*Pr^0.4其中,Nu为管侧Nusselt数,Re为管侧雷诺数,Pr为管侧普朗特数。

3.壳侧传热区面积壳侧传热区面积可以使用传热器换热面积计算:A=π*Do*L其中,A为壳侧传热区面积,Do为外径,L为传热器长度。

4.管侧传热区面积管侧传热区面积可以使用传热器换热面积计算:A=π*Di*L其中,A为管侧传热区面积,Di为内径,L为传热器长度。

对于换热器计算,还需要考虑热传导对换热性能的影响。

传导换热器的计算公式主要包括热传导方程、传热速率和温度分布的计算。

1.热传导方程热传导方程可以用Fourier定律表示:q = -k * A * (dT/dx)其中,q为换热速率,k为热导率,A为传热面积,dT/dx为温度梯度。

2.传热速率传热速率可以用热传导方程求解,根据不同的边界条件可以得到不同的方程形式。

3.温度分布温度分布可以用热传导方程和边界条件求解,得到不同位置的温度分布。

需要注意的是,以上公式只是换热器计算中的基本公式,具体计算还需要考虑不同的情况和参数,例如流体的性质、流速、换热器的结构等。

此外,在实际应用中,通常也需要考虑一些修正系数来修正公式中的假设条件对计算结果的影响。

例如,对于壳管式换热器,还需要考虑壳侧的修正系数,如修正因子和段长修正系数等。

换热器计算公式

换热器计算公式

换热器计算公式换热器部分计算管程介质为热水进口温度(℃) Tt1=110给定出口温度(℃) Tt2=120给定工作压力MPa) Pt=1.0给定平均温度(℃) Tt=115(计算流体的比定压热容Cp(KJ/(kg.℃))=4.2358(查表流量(t/h) Q=50给定流体密度kg/m3)ρ=1000(查表所需热量(KJ/h)=2117900(计算壳程进口温度(℃) Ts1=158.5给定蒸发潜热(KJ/kg)Rs1 =2087.43出口温度(℃) Ts2=115给定蒸发潜热(KJ/kg)Rs2 =2216.6工作压力MPa) Pt =0.5给定平均温度(℃) Ts=136.75(计算流体的比定压热容Cp1(KJ/(kg.℃)=4.2781(查表158.5℃降为115℃1.温差放出热量(KJ/(kg)为186.10115℃129.17158.5(℃) 饱和蒸汽密度kg/m3)ρ13.144(查表115.0(℃) 饱和蒸汽密度kg/m3)ρ20.9647(查表1立方饱和蒸汽从158.5℃降为115.0放出潜热(KJ/(m3)所需要水蒸汽量为(m3/h)435.845088(计算饱和蒸汽流速(m/s)15(查表壳程进出口管径(mm)101.373458(计算取壳程进出口管径DN1002.密度变化放出热量(KJ/(kg)4673.20设计计算介质为饱和蒸汽每1千克饱和水蒸汽从每1千克饱和水蒸汽吸收热量(KJ/(kg)换热管外径mm 25给定换热管内径mm20给定换热管长度mm6000给定换热管数量180给定换热器管程程数2给定换热管换热面积m284.8230002换热管内介质流速(m/s)0.49146811总传热系数K计算流体的导热系数λ(W/(m.℃))0.683流体主体粘度Pa.s)μ0.00024313管内强制湍流传热ai283.014896流体的导热系数λ(W/(m.℃))0.684壳程流体介质平均温度下密度kg/m3)ρ1.7895壳程流体介质平均温度下流体主体粘度Pa.s)μ2.02E-04壳程流体介质在管壁温度下流体粘度Pa.s)μw2.21E-04管外强制湍流传热ao71.2633298换热管选用材料20管换热管传热系数51.8(查表总传热系数 K=15.1910132低粘度流体在管内强制湍流传热低粘度流体在管外强制湍流传热流体的有效平均温差(℃)16.4117511换热面积m2 F=8495.00787(查表(查表设计计算。

热管的换热原理及其换热计算

热管的换热原理及其换热计算

热管的换热原理及其换热计算热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。

热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。

其结构如图所示:热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。

蒸发段的饱和蒸汽压随着液体温度上升而升高。

在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。

放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。

冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。

如此往复,不断地将热量从蒸发段传至冷凝段。

绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。

在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。

根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。

基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。

(1) 产品展示(2) 产品参数说明项目技术参数热管长度> 100mm主体材料铜管毛细结构槽沟/烧结芯/丝网管工作介质冷媒设计工作温度30~200℃设计使用倾角> 5°传热功率50~1000w (根据实际产品规格型号)热阻系数< 0.08℃/W (参考值)传热功率测试原理测试总体要求1)加热功率有功率调节仪控制输入;2)热管保持与水平台面α角度(根据具体应用定);3)管壁上监测点的温度变化在5min 内小于0.5℃认为传热达到稳定状态,记录此时传热功率为最大传热功率。

热管换热器计算

热管换热器计算

热管换热器计算热管换热器计算可用热平衡方程式进行计算,对于常温下使用的通风系统中的热管换热器的换热后温度,回收的冷热量也可用下列公式计算,由于公式采用的是显热计算,但实际热回收过程也发生潜热回收,因此计算值较实测值偏小,其发生的潜热回收可作为余量或保险系数考虑。

热管换热器的计算:1. 热管换热器的效率定义/t1- t3(1-1)式t1、t2——新风的进、出口温度(℃)t3——排风的入口温度(℃)2.热管换热器的设计计算一般已知热管换热器的新风和排风的入口温度t1和 t3,取新风量Lx与排风量L P 相等。

即 Lx= LP,新风和排风的出口温度按下列公式计算:t2=t1-η(t1-t3) (1-2)t4=t3+η(t1-t3) (1-3)t4——排风出口温度(℃)回收的热量Q (kW), 负值时为冷量:Q(kW)= Lx ρXCx(t2-t1)/3600 (1-4)式中 Lx——新风量( m3/h )ρx——新风的密度(kg/m3)(一般取1.2 kg/m3)C x ——新风的比热容,一般可取1.01kJ/ (kg ·℃ )。

η=t1-t 23.选用热管换热器时,应注意:1)换热器既可以垂直也可以水平安装,可以几个并联,也可以几个串联;当水平安装时,低温侧上倾5℃~7℃。

2)表面风速宜采用1.5 m/s~3.5m/s。

3)当出风温度低于露点温度或热气流的含湿量较大时,应设计冷凝水排除装置。

4)冷却端为湿工况时,加热端的效率η值应增加,即回收的热量增加。

但仍可按上述公式计算(增加的热量作为安全因素)。

需要确定冷却端(热气流)的终参数时,可按下式确定处理后的焓值,并按处理后的相对湿度为90%左右考虑。

h 2=h1-36Q/ L×ρ(1-5)式中 h1, h2——热气流处理前、后的焓值(kJ/kg);Q ——按冷气流计算出的回收热量(W); L ——热气流的风量(m3/h );ρ——热气流的密度(kg/m3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热管换热器设计计算1 确定换热器工作参数1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c,饱和蒸汽压力p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c.所选取的各参数值如下:2 确定换热器结构参数2.1 确定所选用的热管类型 烟气定性温度: t f =t 1+t 22=420°C+200°C2=310°C在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出:烟气入口处: t i =t 1+t 2c ×45=420°C+152°C×45=180°C 烟气出口处:t o =t 2+t 1c ×45=200°C+20°C×45=56°C选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸对于管径的选择,由音速极限确定所需的管径d v =1.64√Q cr(ρv p v )12根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW =,在t o =56°C 启动时ρv =0.1113kg/m 3p v =0.165×105pa r =2367.4kJ/kg因此 d v =1.64√Q cr(ρv p v )12=10.3mm由携带极限确定所要求的管径d v =√1.78×Q entπ∙r(ρL −14⁄+ρv −14⁄)−2[gδ(ρL−ρv ]14⁄ 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent =kw 管内工作温度 t i =180℃时ρL =886.9kg/m 3 ρv =5.160kg/m 3r =2013kJ/kg4431.010/N m δ-=⨯因此 d v =√ 1.78×4π×2013×(886.9−14⁄+5.16−14⁄)−2[g×431.0×10−4(886.9−5.160)]14⁄ =13.6mm考虑到安全因素,最后选定热管的内径为m m 22d i =管壳厚度计算由式][200d P S iV σ=式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm σ=,而2MAX 1[] 3.5/4kg mm σσ==故 0.896mm 3.52000.02228.5S =⨯⨯=考虑安全因素,取 1.5S mm =,管壳外径:m m 25.51222S 2d d i f =⨯+=+=.通常热管外径为25~38mm 时,翅片高度选10~17mm (一般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对干净气流取2.5~4mm ;积灰严重时取6~12mm ,并配装吹灰装置.综上所述,热管参数如下:翅片节距:'415f f f S S mm δ=+=+= 每米热管长的翅片数:'10001000200/5f f n m S === 肋化系数的计算:每米长翅片热管翅片表面积22[2()]14f f o f f f A d d d n ππδ=⨯⨯-+⋅⋅⋅⋅每米长翅片热管翅片之间光管面积(1)r o f f A d n πδ=⋅⋅-⋅每米长翅片热管光管外表面积o o A d π=⋅ 肋化系数:22[2()]1(1)4f o f f f o f f f rood d d n d n A A A d ππδπδβπ⨯⨯-+⋅⋅⋅⋅+⋅⋅-⋅+==⋅22[0.5(0.050.025)0.050.001]2000.025(10.2)8.70.025⨯-+⨯⨯+⨯-== 2.3 确定换热器结构将热管按正三角形错列的方式排列,管子中心距S ′=(1.2~1.5)d f 取S ′=70mm 。

3 热力计算3.1 确定换热器中热管的热侧和冷侧的管长l ℎl c ,以及迎风面管数B1)确定烟气标准速度v ,一般取2.5~5m/s ,假设v =4m/s ,可得出烟气迎风面的面积A =V v=400004×3600=2.8m 22)确定迎风面宽度E ,取E =1.8m ,热管的热侧管长l ℎ=AE =2.81.8=1.56m ,适当取l ℎ=1.5m ,并且l ℎl c ⁄=31⁄,∴l c =0.5m 。

3)求出迎风面的管数B ,B =E S ′⁄=1.80.07⁄=25.7,B 为整数,应取B =26,因此实际的迎风面的宽度E =0.07×26=1.82m ,同时实际的迎风面面积A ′=E ×l ℎ=1.82×1.5=2.73m 2,实际的速度是v ′=v A ′⁄=400003600×2.73=4.07m/s 。

3.2 确定传热系数1)烟气定性温度:t f =t 1+t 22⁄=420℃+200℃2=310℃,从而确定烟气的物性参数:2)确定烟气侧管束的最小流通截面积NFA =[(S ′−d o )−2∙(l f ∙δf ∙n f )]∙l ℎ∙B=[(0.07−0.025)−2×(0.0125×0.001×200)]×1.5×26 =1.56m 2求烟气侧的最大质量流速 G max =(V ∙ρf )/NFA=40000×0.6083600×1.56⁄ =4.33kg/(m 2∙s) 求烟气侧流体雷诺数 R ℎ=(G max ∙d o )/ηf=4.33×0.02528.6×10−6⁄ =3785通过Briggs 公式,求的烟气侧流体的对流换热系数 ℎf =0.1378∙R ℎ0.718∙ρf 13∙(S f l f)0.296∙λf d o=0.1378×(3785)0.718×(0.65)13×(412.5)0.296×(4.93×10−20.025)=62.3 w/(m 2∙℃) 3) 假定热管管壁温度t w =(t 1+t 22+t 1c +t 2c 2)2⁄=190℃4) 由t w 可以在查出热管侧的管材导热系数λ=40w/(m ∙℃)∆t =t w −t 2c =190℃−120℃=70℃在米海耶夫推荐的105~4×106pa 下,可推出冷侧流体的对流换热系数ℎf c=0.122∙∆t 2.33∙p 0.5=0.122×702.33×20.5 =3435 w/(m 2∙℃)同时 μ=l f ∙[2ℎf (λw ∙δf )⁄]12=0.0125×(2×62.340×0.001)12 =0.7由μf 和d f d o ⁄=2两参数,可以查圆形翅片管的肋效率图,烟气侧的热管效率ηf ℎ=0.85) 算出烟气侧每米长的热管的翅片表面积:A 1=[2×π4×(d f 2−d o 2)+π∙d f ∙δf ]∙n f ∙1=0.62 m 2烟气侧每米长的翅片和热管之间的面积: A 2=π∙d o ∙(1−n f ∙δf ) =0.063 m 2烟气侧管外每米长的热管的管外总面积: A 3=A 1+A 2=0.62+0.063=0.683 m 2 6) 算出烟气侧的管外有效对流换热系数ℎf ′=ℎf ∙(A 2+ηf ℎ∙A 1)A 3⁄=62.3×(0.063+0.8×0.62)0.683⁄ =51 w/(m 2∙℃)算出冷流体管外有效对流换热系数ℎc =ℎf c ∙A c A c ⁄=ℎf c=3435 w/(m 2∙℃)7) 算出总传热系数参考《热交换器原理与设计》,可查得烟气污垢热阻ε= 0.001 m 2∙℃/w 。

因此,管壁的导热热阻为ε′=d o2λ∙ln do d i=4×10−5 m 2∙℃/wK =1[1ℎf∙β+ε′+ε′(l ℎl c)+1ℎf(lℎlc)+ε]⁄ =1(151×8.7+4×10−5+4×10−5×3+33435+0.001)⁄=233.3 w/(m 2∙℃)3.4 确定烟气侧总传热面积和换热器所需要的管数 1)算出传热量Q ℎ=V ∙ρf ∙c p (t 1−t 2) =400003600×0.608×1.125×220℃=1672 kw由于热平衡,并且考虑到6%的综合热损 Q c =Q h ∙(1−6%)=1571.68 kw2) 确定对数平均温差∆t 2,420℃→200℃120℃←120℃,忽略其预热过程,因此 ∆t 2=∆t max −∆t min ln ∆t max ∆t min ⁄=300℃−80℃/ln300℃80℃=166.4 ℃3) 确定烟气侧的总传热面积A ′和换热器所需要的管数m A ′=(Q ℎ+Q c )2∙K ∙∆t 2⁄=[(1672+1571068)×103]/(2×233.3×166.4) =41.8 m 2 m =A ′π∙d o ∙l ℎ⁄=41.8(3.14×0.025×1.5)⁄ =354.9应取整 m =355 根3.5 确定管排数N =m B ⁄=35526⁄=13.6 取整N =14 排按之前说的,以正三角方式排列,即以26、25依次排列,这样总共的管数应该是 N =3574 流阻计算4.1 确定烟气侧的流阻对于圆形翅片管,使用Robinson 和Briggs 公式 先求出烟气侧摩擦系数 f =37.86∙(d o ∙G max ηf )−0.316(S ′d o)−0.927=37.86×(0.025×4.33228.6×10−6)−0.316(0.070.025)−0.927=0.68烟气侧的压力降 ∆P ℎ=f ∙N∙G max 22∙ρf=0.68×15×4.3322×0.608=157.3 pa4.2 确定引风机的功率增量=1942 w P=(∆P h∙V)η⁄=157.3×400003600×0.9η为电动机效率,通常取0.9。

相关文档
最新文档