质谱法概念和图谱分析
质谱的图谱分析与介绍
若分子中含C9,则其余元素的原子量总和为132-12×9=24。由N、O、H原子量推导出可能 的分子式1. C9H24 2.C9H10N 3. C9H8O
1.不符合价键理论2.不符合氮规则3.合理的分子式
6. 计算化合物的不饱和度 (r+dB)---环加双键数 不饱和度表示有机化合物的不饱和程度,计算不饱和度有助于判断化合物的结构。
离子流强度有两种不同的表示方法:
(1)绝对强度
是将所有离子峰的离子流强度相加作为总离子流,用各离子峰的离子强度除以总离子流, 得出各离子流占总离子流的百分数
(2)相对强度
以质谱峰中最强峰作为100%,称为基峰(该离子的丰度最大、最稳定),然后用各种峰的 离子流强度除以基峰的离子流强度,所得的百分数就是相对强度。
子找子离子,或由子离子找母离子来确定离子间的亲缘关系。
质量分析离子动能谱(MIKES):反置(VBE)双聚焦系统第二无场所加速电压V和磁 场B固定不变,仅扫描静电场电压,由母找子
B/E联动扫描:第一无场所加速电压固定不变,B/E比值为常数联动扫描,由母找子 B2/E联动扫描:第一无场所由子找母,加速电压固定不变,B/E比值为常数联动扫描。 串联质谱法实现产物离子检测。
2.离子特征丢失与化合物的类型
质谱高质量端离子峰是由分子离子失去碎片形成的。从分子离子失去的碎片,可以确定化合 物中含有哪些取代基
M-1 -H 醛类(一些醚类和胺类)
M-15 -CH3 甲基取代
M-18 -H2O 醇类
M-28 -C2H4, CO, N2 失C2H4(McLafferty重排),失CO(从酯环酮脱下) M-29 -CHO, -C2H5 醛类、乙基取代物 M-34 -H2S 硫醇
分子中既没有杂原子又没有双键,其正电荷位置一般在分支碳原子上。如果电荷位置不确 定,或不需要确定电荷的位置,可在分子式的右上角标:"┒+",例如CH3COOC2H5┒+。
质谱与图谱解析
(1) 电子电离源(electron ionization EI)
动画
图4-6电子电离源原理图
质谱与图谱解析
EI是质谱中最常用的离子源,电子能量一般为70eV,大 多数有机化合物的电离电位7~15eV,多数分子离子进一 步裂解产生碎片离子。
样品分子形成离子的四种途径: • 样品分子被打掉一个电子形成分子离子(同位素离子)。 • 分子离子进一步发生化学键断裂形成碎片离子。 • 分子离子发生结构重排形成重排离子。 • 通过分子离子反应生成加合离子。 特点: ❖ 碎片离子多,结构信息丰富,有标准化合物质谱库; ❖ 主要用于挥发性样品的电离,不能汽化的样品不能分析; ❖ 稳定性不高的样品得不到分子离子;
质谱法的主要作用是: (1)准确测定物质的分子量 (2)根据碎片特征进行化合物的结构分析
分析时,首先将分子离子化,然后利用离子在电场或 磁场中运动的性质,把离子按质核比大小排列成谱, 此即为质谱。
质谱与图谱解析
第二节 质谱分析的原理与仪器 4.2.1 质谱分析的过程与原理
图4-1 MS分析过程示意图
质谱与图谱解析
(4)电喷雾源(electronspray ionization ESI)
动画
图4-8 电喷雾电 离原理图
❖ 多层套管组成的电喷雾喷咀,最内层是液相色谱流出 物,外层是喷射气(氮气),使喷出的液体容易分散 成微滴。
❖ 喷嘴斜前方有一个补助气喷咀,使微滴的溶剂快速蒸 发,表面电荷密度逐渐增大,到某个临界值时,离子 从表面蒸发出来。
图453环己酮的质谱图芳香酮经断裂失去烷基生成c离子mz105再进一步失去co生成c离子mz77图454苯乙酮的质谱图大的烷基与芳香酮的羰基相连也会发生mclafferty重排得到碎片离子mz120进一步经断裂失去烷基生成离子mz105459通常仍能观察到甲酯的分子离子峰但强度较弱
质谱介绍及质谱图的解析
质谱介绍及质谱图的解析质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。
一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。
1进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。
1.直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。
吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。
对于固体样品,常用进样杆直接导入。
将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。
这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。
目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。
主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。
质谱介绍及质谱图的解析
质谱介绍及质谱图的解析质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。
一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。
1进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。
1.直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。
吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。
对于固体样品,常用进样杆直接导入。
将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。
这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。
目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。
主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。
质谱分析图谱解析
离子质量:离子的质量是质 谱分析的关键参数,可以通
过质谱图直接读取
分子式:根据离子质量和相 对丰度,结合化学知识,可
以确定分子的分子式
解析图谱中的离子峰
确定离子峰的位置:根据图谱中的峰位和峰高,确定离子峰的位置。 计算离子峰的相对丰度:根据离子峰的峰高和峰面积,计算离子峰的相对丰度。 确定离子峰的质荷比:根据离子峰的位置和质量,确定离子峰的质荷比。
实例分析:选取 一个具体的有机 化合物,分析其 质谱分析图谱, 解释图谱中各峰 的含义和相互关 系
解析技巧:介绍 解析有机化合物 质谱分析图谱的 技巧和方法
结论:总结有机 化合物质谱分析 图谱解析的结果 和意义
Байду номын сангаас
解析实例二:生物大分子的质谱分析图谱
生物大分子:蛋白质、核酸、多糖等 质谱分析:测定生物大分子分子量、结构和组成 图谱解析:通过图谱分析生物大分子的结构和功能 实例:蛋白质的质谱分析图谱解析,如胰岛素、血红蛋白等
解析结果的解释和表达
解析结果需要结合实验目的和预期结果进行解释 解析结果需要与文献报道的结果进行比较和分析 解析结果需要以图表的形式清晰、准确地展示 解析结果需要以简洁明了的语言进行描述和表达
Prt Six
质谱分析图谱解析 的发展趋势和展望
质谱分析技术的进展
质谱技术的发展历程:从最初的质谱仪到现在的高分辨率质谱仪
质谱分析图谱解析在科学研究中的应用前景
质谱分析图谱解析在生命科学领域的 应用
质谱分析图谱解析在环境科学领域的 应用
质谱分析图谱解析在材料科学领域的 应用
质谱分析图谱解析在食品科学领域的 应用
质谱法简介—质谱法基本原理(分析化学课件)
m/z 123 -CH3
-CO 108
80
m/z 80 离子是由分子离子经过两步裂解产生的,而不是一步形成的
质谱法基本原理
4.同位素离子
大多数元素都是由具有一定自然丰度的同位素组成。化合物 的质谱中就会有不同同位素形成的离子峰,由于同位素的存在, 可以看到比分子离子峰大一个质量单位的峰M+1;有时还可以 观察到M+2,M+3。通常把由同位素形成的离子峰叫同位素峰。
离子子还可能进一步裂解成更小的碎片离子,在裂解的同时也可能
发生重排。
质谱法基本原理
3.亚 稳 离 子(m*)
在离子源中形成的碎片离子没有进一步裂解,而是在 飞行进入检测器的过程中发生自行的裂解,这样所形成的低 质量的离子叫亚稳离子。 形成过程 m1 (母离子) m2 (子离子) 中性碎片
表观质量 m m22
37
(a+b)n=(3+1)2=9+6+1
即三种同位素离子强度之比为9:6:1。 这样,如果知道了同位素的元素个数,可以推测各同
位素离子峰强度之比。 同样,如果知道了各同位素离子强度之比,可以估计
出分子中是否含有S、Cl、Br原子以及含有的个数。
质谱法基本原理 四、质谱法的特点与主要用途
❖ 特点: ❖ 1.样品用量少。灵敏度高,精密度好。 ❖ 2.分析速度快。 ❖ 3.分析范围广,适合联机。 ❖ 4.能够同时给出样品的精确分子质量和结构信息
色谱-质谱联用分析法 气质联用(GC-MS)的应用领域:
气质联用已经成为有机化合物常规检测中的
必备工具。环保领域的有机污染物检测,特别是
低浓度的有机污染物;药物研究生产质控的进出
口环节;法庭科学中对燃烧爆炸现场调查,残留
质谱分析法
m:离子质量 υ :离子的速度 z:离子所带的电荷数 U:加速电压
加速后的离子进入磁场,在磁场的作用下,带电离子按曲 线轨迹飞行; mυ2 离心力 =向心力; = Bzυ 曲率半径: 质谱方程式:
R 2Um 1 R = ( 2 )2 Bz 2 2 m BR = z 2U
离子在磁场中的轨道半径R取决于: m/z ; B; U (1)若加速电压U和磁场强度B都一定时,不同m/z 的离 子,由于运动的曲率半径不同,在质量分析器重彼此 被分开,并记录各m/z离子的相对强度。 (2)固定R,B,连续改变加速电压U,电场扫描法。 固定R,U,连续改变磁场强度B,磁场扫描法。
质谱图解析 (C6H12O结构未知,酮) 结构未知,
解析: 1. 100,分子离子峰 2.85,失去CH3(15)的产物 3.57, 丰度最大, 稳定结构 失去CO(28)后的产物
O CH3 ‖∣ CH3-C-C-CH3 ∣ CH3
第七章 质谱分析法
1、什么是质谱? 2、质谱仪主要是由进样系统、离子源、质量分析器、检测器、 数据记录系统组成的。 3、离子源和质量分析器都需要在高真空下工作。 4、质谱方程式;
1.质谱法是唯一可以确定物质分子质量的方法,且可 以确定化合物的化学式和进行结构分析。 2.灵敏度极高,鉴定最小量达10-10g,检出限可达10-14g。
质谱分析法基本原理
质谱法是采用高速电子来撞击气态分子或原子, 质谱法是采用高速电子来撞击气态分子或原子,将 电离后的正离子加速导入质量分析器中, 电离后的正离子加速导入质量分析器中,然后按质荷比 (m/z)的大小顺序进行收集和记录,即得到质谱图。 )的大小顺序进行收集和记录,即得到质谱图。 质谱不是波谱,而是物质带电粒子的质量谱。 质谱不是波谱,而是物质带电粒子的质量谱。
质谱定性分析及图谱解析
实验步骤与操作
1. 样品准备
选择合适的溶剂将待测样品溶解,并调整至适当的浓度 。
2. 质谱仪调试
打开质谱仪,调整仪器参数,如离子源电压、质量分析 器参数等,以确保仪器处于最佳工作状态。
3. 样品进样
将准备好的样品通过进样系统注入到离子源中。
4. 质谱图获取
启动数据采集系统,记录质谱图。根据需要,可以选择 不同的扫描范围和扫描速度。
峰检测与识别
利用算法对预处理后的数据进行峰检测,识别出质谱图中 的各个峰,并记录其质荷比(m/z)和强度信息。
峰对齐与校正
对多个样本的质谱数据进行峰对齐操作,确保相同物质在 不同样本中的峰能够对应起来。同时,进行峰校正,消除 由于仪器误差等因素引起的峰偏移。
峰匹配与注释
将检测到的峰与已知的化合物数据库进行匹配,对峰进行 注释,明确各个峰所代表的化合物。
重金属污染物检测
通过质谱技术可以准确地检测环境中的重金属污染 物,如铅、汞、镉等,为环境治理提供依据。
大气颗粒物分析
质谱技术可用于分析大气颗粒物的化学组成 和来源,为大气污染防控提供科学支持。
食品安全检测中的应用
农药残留检测
质谱技术可用于检测食品中的农药残留,保障食品的 安全性和消费者的健康。
食品添加剂检测
质谱定性分析及图谱解析
汇报人:文小库
2024-01-20
CONTENTS
• 质谱技术概述 • 质谱定性分析方法 • 图谱解析方法 • 质谱定性分析实验设计 • 质谱定性分析数据处理与结果
展示 • 质谱定性分析应用实例
01
质谱技术概述
质谱技术原理
离子化过程
将待测样品转化为气态离 子,常见的方法有电子轰
质谱的原理和图谱的分析精选全文完整版
m/z 154 155 156 157 RI 100 9.8 5.1 0.5 RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S 5.1/100×100=4.4S S=1(含1个硫) RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18 H数目=15432128=26 不合理 分子式为C8H10OS
二、分子离子与分子式
(1)分子离子峰的识别 • 在质谱图中,分子离子峰应是最高质荷比的离子峰。
(同位素离子及准分子离子峰除外)。 • 分子离子峰是奇电子离子峰。 • 分子离子能合理地丢失碎片(自由基或中性分子)。 • 符合氮律:
当化合物不含氮或含偶数个氮时,分子量为偶数; 当化合物含奇数个氮时,该化合物分子量为奇数。
若某一元素有两种同位素,在某化合物中含有 m 个 该元素的原子,则分子离子同位素峰簇的各峰的相对 丰度可用二项式 (a+b)m 展开式的系数推算
若化合物含有 i 种元素,它们都有非单一的同位素 组成,总的同位素峰簇各峰间的强度可用下式表示:
(a1+b1)m1 (a2+b2)m2 … (ai+bi)mi
例:化合物的质谱图如下,推导其分子式
164:166=1:1, 164-85 = 79 (Br),
164: 166≈1 : 1, 分子中含有1Br, 不含氮或含偶数氮
m/z: 85 (49) , 86 (3.2), 87 (0.11)
85÷12=7, 7个及以下C
7、质谱中的各种离子
质谱分析PPT精选文档
(3)这系列的碎片离子的相对强度随着质荷 比的减少而增加的。 (4)还有一系列的碎片离子,来自碳正离子 的裂分。m/z:27、41、55、……。 2、支链烷烃
支链烷烃在分支处断裂,形成最稳定的碳 正离子,并优先失去较大的烷基。
36
37
38
3、环烷烃
m/z 56
m/z 83
39
二、烯烃
40
53
54
八、胺
1、分子离子峰 脂肪族胺的分子离子峰很弱, 环胺、芳胺的分子离子峰很强。
2、断裂方式
55
56
九、酰胺
1、分子离子峰 酰胺类分子离子峰通常可测到。
2、断裂方式(具有羰基裂解的特点)
57
十、硝基化合物
58
59
60
61
十一、腈
62
63
十二、醚
1、分子离子峰 脂肪族醚的分子离子峰不稳定, 芳香族醚的分子离子峰较强。
二、分子式的确定 1、同位素峰与分子式 (l)同位素峰簇。有机化合物中常见的元素不只 含有一种同位素,因此在分子离子峰或碎 片离子 峰附近一般都以同位素峰簇的形式存在。
常见元素的同位素丰度如下表所示,根据此丰 度表可计算出化合物中分子离子峰旁的(M+1)、 (m+2)的同位素峰的丰度比。
77
同位素峰的相对强度与元素的组成以及同位素的天然丰 度有关。利用此原理从质谱图中找出分子离子峰及它的同位 素峰的相对强度即可推断分子式。
离子峰,但不是所有的有机化合物都呈现分子离子峰。 (1)分子离子峰一般应是质谱中最高质量端最大丰度的峰。 一般情况下,分子离子峰是有机质借图中最高质量端最大 丰度的峰,但具有最大质量数的峰不一定就是分子离子峰。 醛类、酮类、缩醛、仲醇、含氮杂环等化合物易失掉一个 氢,出现(M-l)+峰、而胺类、醚类、酯类、多元酸、含硫化 合物,在电子轰击条件下容易质子化出现(M+l)+峰、
第10章-质谱分析法
1、离子通道半径 2、加速器和收集器的狭缝宽度 3、离子源
1000以下为低分辨率
三、质谱仪的基本结构
质谱仪须有进样系统、电离系统 ( 离子源或电离室)、质量分析器和检测 系统。为了获得离子的良好分析,必 须避免离子损失,因此凡有样品分子 及离子存在和通过的地方,必须处于 真空状态。
有机化合物受高能作用时会产生各种形式的 分裂,一般强度最大的质谱峰相应于最稳定的碎 片离子,通过各种碎片离子相对峰高的分析,有 可能获得整个分子结构的信息。碎片离子并不是 只由M+一次碎裂产生,还可能会断裂或重排产生, 因此要准确地进行定性分析最好与标准图谱进行 比较。
有机化合物中,C-C键不如C-H键稳定, 因此烷烃的断裂一般发生在C-C键之间,且较 易发生在支链上。各类有机化合物分子离子的稳 定性次序为:芳香烃>共轭多烯烃>环状化合物> 羰基化合物>醚>酯>胺>醇>支链烷烃。
质谱过程
撞击
高速电子
气态分子
顺序谱图
按质荷比m/z
得到
阳离子
导 入
质量分析器
峰位置
峰强度
定性结构
定量分析
进样系统
1.直接进样 2.间接进样
离子源
质量分析器
1.电子轰击 2.化学电离 3.电喷雾电离 4.激光解吸
1.单聚焦 2.双聚焦 3.飞行时间 4.离子阱 5.四极杆
检测器
质量分析器
•
质谱仪的质量分析
I17/I16=0.011。而在丁烷中,出现一个13C的几率是 甲烷的4倍,则分子离子峰m/z=59、58的强度之比
I59/I58 =0.044。同样,在丁烷中出现M+2(m/z=60) 同位素峰的几率为0.00024,即I60/I58=0.00O24, 非常小,故在丁烷质谱中一般看不到(M+2)+峰。
质谱定性分析及谱图解析
MS
MS
横坐标表示 m/z(实际上就是磁场强度),由于分子离 子或碎片离子在大多数情况下只带一个正电荷,所以 通常称m/z为质量数,例如-CH3离子的质量数(m/z)是 15,对于低分辨率的仪器,离子的质荷比在数值上就 等于它的质量数。
质谱图的纵坐标表示离子强度,在质谱中可以看到 几个高低不同的峰,纵坐标峰高代表了各种不同质荷 比的离子丰度-离子流强度。
O
CH2
R`
H
R CH2 O+ CH2 R` + [M+1]+
.
R CH2 O CH R`
(游离基)
出现M-1峰较典型的化合物是醛类、醇类或含 氮化合物,如:
+.
RC O
H
[M]+
+ RC O
[M-1]+
例: 2-甲基-2-丁醇质谱图
100
观察图中最高质量数峰 为87,但它不应是分子离 子峰。Why?
Байду номын сангаас
分子离子 (8-1)
MS
碎片离子
ABCD+
BCD + A+
CD + AB+
B + A+ 或 A + B+
AB + CD+
D + C+ 或 C + D+
MS
重排后裂分
ABCD+
ADBC+
分子离子反应
BC + AD+ 或 AD + BC+
ABCD+ + ABCD
(ABCD)
+ 2
BCD + ABCDA+
质谱分析图谱解析-图文
Cl2: (a + b) n = (3 +1) 2 =9: 6: 1
Br2: (c + d) m =(1 + 1) 2 =1: 2: 1
(9 6 1) ×1= 9 6 1
( 9 6 1) ×2= 18 12 2
( 9 6 1) ×1 =
96 1
—————————————
如何识别质谱图中的的OE+·?
不含氮的化合物, m/z 为偶数的离子是奇电子离子 在质谱图中, 奇电子离子并不多见, 但重要.
烃类化合物的裂解规律:
烃类化合物的裂解优先生成稳定的正碳离子
CH3(CH2)nCH3
m/z 43或57 是基峰
C6H5CH2(CH2)n CH3 m/z 91是基峰
含杂原子化合物的裂解(羰基化合物除外):
1-十二烯的质谱图如下:
环烯: RDA反应
芳烃
烷基苯M+·强或中等强度。 β-键的断裂,产生m/z 91的基峰或强峰; γ-H的重排,产生m/z 92的奇电子离子峰, 进一步裂解,产生m/z 77,65,51,39的峰或 者m/z 78, 66,52,40的峰。
例如,正己基苯的MS如下:
醇、酚、醚
H2 H2+ H. .CH3 O. or NH2
OH. H2O HF
= 4~14, 21~24, 37~38……通常认为是不合理丢失
■ 判断其是否符合氮律
不含N或含偶数N的有机分子, 其分子离子峰的m/z
(即分子量)为偶数。含奇数N的有机分子, 其分子离
子峰的m/z (即分子量)为奇数。
◎ 使用CI电离时,可能出现 M+H, MH, M+C2H5, M+C3H5… ◎ 使用FAB时,可出现 M+H, MH, M+Na, M+K… ◎ 较高分子量的化合物,可能同时生成 M+H, M+2H, M+3H等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质谱的图谱分析
1. 分子离子峰(分子失去一个价电子而生成 的离子称为分子离子M+.) 作为分子离子的必要条件:
必须是谱图中最高质量的离子,必须是奇电 子离子
符合氮规则 必须能够通过丢失合理的中性碎片,产生谱
图中高质量区的重要离子。
13
分子离子峰丰度大小排列: 芳香化合物>共轭双键>脂环化合物>直链烷烃> 硫醇>酮>胺>酯>酸>分支烷烃>醇
谱图中有较多的碎片离子,能提供丰富的结构信息。 灵敏度高,能检测纳克级样品。 重复性好。相对于其他电离技术,EI的重复性最好。
EI法的缺点:
70eV的轰击电子能量较高,使某些化合物的分子离子检测 不到,造成分子量测定的困难。
EI法要求样品先气化然后才能电离,受热易分解,或者是 不能气化的物质都不适宜用电子轰击法电离。
M-1峰: 醛 氮规则:只有C, H, O,组成的化合物,其
分子离子峰质量数为偶数。C, H, O, N 组 成的,N为奇数,则分子离子峰质量数为 奇数。N为偶数,则分子离子峰质量数为 偶数。
离子在质谱仪的无场漂移区中分解而形成的峰。 母离子 在任一反应中发生分解的离子。 子离子 离子碎裂反应产生的离子。
9
基峰 谱图中表现为最高峰度离子的峰。
负离子
通过电子捕获及电离时形成离子对等机理产生的。含电负 性原子 F、Cl、O、N等的化合物产生负离子的产率较高。
准分子离子 [M+H]+
2
空空气气的的质质谱谱图图
3
横坐标表示 m/z,由于分子离子或碎 片离子在大多数情况下只带一个正电 荷,所以通常称m/z为质量数,对于低 分辨率的仪器,离子的质荷比在数值 上就等于它的质量数。
纵坐标表示离子强度,在质谱中可以 看到几个高低不同的峰,纵坐标峰高 代表了各种不同质荷比的离子丰度-离 子流强度。
11
质谱的解析是一种非常困难的事情。自从有 了计算机联机检索之后,特别是数据库越来 越大的今天,尽管靠人工解释EI质谱已经越 来越少,但是,通过对化合物分子断裂规律 的了解,作为计算机检索结果的检验和补充 手段,质谱图的人工解释还有它的作用,特 别是未知化合物质谱的解释。另外,在MSMS分析中,对于离子谱的解释,目前还没 有现成的数据库,主要靠人工解释。因此, 学习一些质谱解析方面的知识,在目前仍然 是有必要的。
简单断裂 仅涉及一个键断裂的离子分解反应
重排
指一个反应,其离子或中性产物中的原子排列与前体离子 不同
α断裂
与奇电子原子邻接原子的键断裂,化学均裂转移一个电子。
i断裂
涉及到一对电子的转移,是化学键异裂的,同时正电荷位 置发生转移
(全箭头) 电子对转移
(鱼钩) 单个电子转移
r+db
环加双键数
现在一般的质谱图都以相对强度表示,并以棒图 的形式画出来。
6
有机质谱提供分子结构的信息包括:
分子量 元素组成 由裂解碎片检测官能团、辨认化合物的类
型、推导碳骨架。
7
对于有机质谱最经典、使用最广泛的是电子轰击法(EI)。
EI法的特点:
方法成熟。无论是理论研究,仪器设备,还是资料积累都 比较完善。至今出版的质谱标准图集基本上是70eV的电子 轰击质谱图。
5
表示方法: (以上图为例)
m/z 14 (4.0) 16 (0.8) 20 (0.8)
m/z 28 (100) 29 (0.76) 32 (23)
m/z 33 (0.02) 34 (0.99) 40 (2.0) 44 (0.10)
括弧中的数字即峰的相对强度,表示100%者是 基是10峰O0%2,,,N在O2在空2就空气占气中N中占2的含1/25量3,%最N。高2占而4且/5也,最N2稳的定峰。高(为32)
8
质谱常用术语
分子离子 被电离了的分子。 “+”表示分子离子带一个电子 电量的正电荷, “.” 表示它有一个不成对电子。
碎片离子 由分子离子在离子源中碎裂生成的。 奇电子离子 外层有未成对电子的离子。 偶电子离子 外层电子全部成对的离子。 同位素峰 元素组成中含有一个非最高天然丰
度的同位素。 亚稳峰 m*
分子离子的丰度主要取决于其稳定性和分子电离 所需的能量。因此分子离子的强弱提供了分子结 构的信息。
一般情况下,分子的稳定性与分子离子的稳定性 有平行关系,分子离子的稳定性通常随不饱和度 和环的数目的增加而增大。
杂原子外层自右而左的方向增大。
4
离子流强度有两种不同的表示方法:
(1)绝对强度 是将所有离子峰的离子流强度相加作
为总离子流,用各离子峰的离子强度除以 总离子流,得出各离子流占总离子流的百 分数 (2)相对强度
以质谱峰中最强峰作为100%,称为基 峰(该离子的丰度最大、最稳定),然后 用各种峰的离子流强度除以基峰的离子流 强度,所得的百分数就是相对强度。
14
分子电离所需的能量越低,分子离子也越 高。
n-C4H9OH n-C4H9SH n- C4H9NH CH3-CH3 CH2=CH2 苯
萘
电离能(eV) 10.1 9.1 8.7 11.5 10.5 9.2 8.1
分子离子丰度 1 54 6 30 100 100 100
15
M+1峰:醚、酯、胺、酰胺、腈化物、氨 基酸酯、胺醇
质谱法概念和图谱 分析
1
概述:
质谱法是有机化合物结构分析的最重要的 方法之一。它能准确地测定有机物的分子量, 提供分子式和其他结构信息。它的测定灵敏 度远高于其他结构分析方法,如红外、核磁 等。
学习有机质谱的目的就是学会利用质谱谱 图所提供的信息进行有机化合物的结构鉴定, 包括元素组成和一级结构的推导。
10
关于离子的电荷位置,一般认为有下列几 种情况:如果分子中含有杂原子,则分子易 失去杂原子的未成键电子而带电荷,电荷 位置可表示在杂原子上,如CH3CH2O+H。 如果分子中没有杂原子而有双键,则双键 电子较易失去,则正电荷位于双键的一个 碳原子上。如果分子中既没有杂原子又没 有双键,其正电荷位置一般在分支碳原子 上。如果电荷位置不确定,或不需要确定 电荷的位置,可在分子式的右上角标: "┒+",例如CH3COOC2H5┒+。