均匀分布·指数分布·随机变量函数的概率分布
分布函数、均匀分布、指数分布函数-精品文档
X pk
3
0 .1
4
0 .3
5
0 .6
例4、 向[0,1]区间随机抛一质点,以 X表示质点坐标. 假定质点落在[0,1]区间内任一子区间内的概率与区间 长度成正比,求 X的分布函数. 解:F x P { X x } 当 x 时 0,
F x 0 ;
1, 当 x 时
F A B 0 1 1 2 A B 2 A F B 1 2
1 1 所以 F r c t a n x x a 2
例2. 已知随机变量X 的分布律为 求分布函数 F ( x )
X
pk
0 1 3
1
2
1 2
1 6
F ( x ) P { X x } 解:
F x 1
当0 时 , x 1
F ( x ) P { X x } P { 0 X x } kx
特别,令 x 1, P k 1 { 0 X 1 } k 1 1
, x0 0 F (x ) = P { X x } = , 0x1 x 1 x1 ,
F ( x ) F ( x ) P { X x } 2 1 1
同理,还可以写出 P P { x X x } { x X x }, 1 2 1 2
二、分布函数的性质
,则 F ⑴ 单调不减性: ( x ) F ( x ) 若 x 1 2 1 < x2
F ( x ) 1,且 F ( ) l i m F () x 0 , ⑵ 0
一般地,设离散型随机变量 X 的分布律为
P { X x } p , k 1 , 2 , 3 , k k
常见的几种分布函数
常见的几种分布函数概率论中,分布函数(distribution function)是描述随机变量取值的概率分布的函数。
常见的几种分布函数包括离散型分布函数、连续型分布函数以及混合分布函数。
1. 离散型分布函数离散型分布函数是指随机变量在有限或可数个点上取值的分布函数。
离散型分布函数的特点是其概率质量函数只在有限或可数个点上取值,或者说离散型分布函数所描述的随机变量的取值是离散的。
比较常见的离散型分布函数有:- 二项分布函数:二项分布函数是描述n个独立的、相同概率的随机试验中成功的次数的分布函数。
- 泊松分布函数:泊松分布函数是描述一定时间间隔内一个随机事件发生次数的分布函数。
- 几何分布函数:几何分布函数是描述进行一系列独立的、相同概率的实验,成功的次数需要进行多次才能得到的情况的分布函数。
2. 连续型分布函数连续型分布函数是指随机变量的取值范围为连续区间的分布函数。
连续型分布函数所描述的随机变量的取值是连续的。
比较常见的连续型分布函数有:- 正态分布函数:正态分布函数又称高斯分布函数,是一种描述随机变量分布最为常用的分布函数之一。
- 均匀分布函数:均匀分布函数是描述随机变量在一定区间内取值时等概率分布的分布函数。
- 指数分布函数:指数分布函数是描述随机变量取值时间间隔的分布函数。
3. 混合分布函数混合分布函数是指一个随机变量可以同时满足两种或两种以上的分布函数时的情况。
比较常见的混合分布函数有:- 混合正态分布函数:混合正态分布函数是指由多个正态分布函数混合而成的分布函数。
- 混合伯努利分布函数:混合伯努利分布函数是指由多个伯努利分布函数混合而成的分布函数。
总之,分布函数是描述随机变量的 one-stop-shop,而离散型、连续型和混合型都是这一目的下的不同实现方式。
不同的分布函数有不同的特点和应用场景,选择合适的分布函数是进行概率论研究和应用的前提。
数学分布泊松分布、二项分布、正态分布、均匀分布、指数分布+生存分析+贝叶斯概率公式+全概率公式
数学期望:随机变量最根本的数学特征之一。
它反映随机变量平均取值的大小。
又称期望或均值。
它是简单算术平均的一种推广。
例如*城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为*,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(*)=1.11。
也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。
可以简单的理解为求一个概率性事件的平均状况。
各种数学分布的方差是:1、一个完全符合分布的样本2、这个样本的方差概率密度的概念是:*种事物发生的概率占总概率(1)的比例,越大就说明密度越大。
比方*地*次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知*=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。
下列图为概率密度函数图(F(*)应为f(*),表示概率密度):离散型分布:二项分布、泊松分布连续型分布:指数分布、正态分布、*2分布、t分布、F分布二项分布〔binomial distribution〕:例子抛硬币1、重复试验〔n个一样试验,每次试验两种结果,每种结果概率恒定————伯努利试验〕2、P(*=0), P(*=1), P(*=3), ……….所有可能的概率共同组成了一个分布,即二项分布泊松分布〔possion distribution〕:1、一个单位〔时间、面积、空间〕*稀有事件2、此事件发生K次的概率3、P(*=0), P(*=1), P(*=3), ……….所有可能的概率共同组成了一个分布,即泊松分布二项分布与泊松分布的关系:二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、n种可能的结果2、每个可能的概率相等(1/n)连续型均匀分布:1、可能的结果是连续的2、每个可能的概率相等()连续型均匀分布概率密度函数如下列图:指数分布〔e*ponential distribution〕:用来表示独立随机事件发生的时间间隔,比方旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。
均匀分布·指数分布·随机变量函数的概率分布
⎧ 1 ⎪ f ( x ) = ⎨800 e 800 , x > 0 ;⎩P ( A ) = P ( A ) = P ( A ) = P ( X > 1000) = ⎰+∞1000 800 P ( X > 1000) = ⎰+∞ P ( X ≥ s + t X ≥ s ) = P ( A B ) = P ( AB )1) 7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔 5 分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过 3 分钟的概率.解:设随机变量 X 表示“乘客的候车时间”,则 X 服从 [0 , 5] 上的均匀分布,其密度函数为⎧1 5, x ∈ [0 , 5]f ( x ) = ⎨⎩0, x ∉ [0 , 5]于是有 P (0 ≤ X ≤ 3) = ⎰ 33 f ( x )dx = = 0.6.5二、已知某种电子元件的使用寿命 X (单位:h)服从指数分布,概率密度为x- ⎪0 , x ≤ 0.任取3个这种电子元件,求至少有1个能使用 1000h 以上的概率.解:设 A 表示“至少有1个电子元件能使用 1000h 以上”; A 、A 、A 分别表示“元件甲、乙、丙能 123使用 1000h 以上”.则1 2 3 1 x x 5 e -800 dx = - e -800 +∞ = e -4 ≈ 0.2871000P ( A ) = P ( A ⋃ A ⋃ A ) = P ( A ) + P ( A ) + P ( A ) - P ( A A ) - P ( A A ) - P ( A A ) + P ( A A A )1231231 2231 31 23= 3 ⨯ 0.287 - 3 ⨯ 0.287 2 + 0.287 3 ≈ 0.638(另解)设 A 表示“至少有1个电子元件能使用 1000h 以上”.则1 1000 800x x 5 e -800 dx = - e -800 +∞ = e - 4 ≈ 0.2871000从而有 P ( X ≤ 1000) = 1 - P ( X > 1000) = 1 - e- 5 4≈ 0.713 ,进一步有P ( A ) = 1 - [P ( X ≤ 1000)]3 ≈ 1 - 0.7133 ≈ 0.638三、(1) 设随机变量 X 服从指数分布 e (λ ) .证明:对于任意非负实数 s 及 t ,有P ( X ≥ s + t X ≥ s ) = P ( X ≥ t ).这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数 X 服从指数分布 e (0 . .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为 X ~ e (λ ) ,所以 ∀x ∈ R ,有 F ( x ) = 1 - e -λx ,其中 F ( x ) 为 X 的分布函数.设 A = X ≥ s + t , B = X ≥ t .因为 s 及 t 都是非负实数,所以 A ⊂ B ,从而 AB = A .根据条件 概率公式,我们有P ( A ) P ( X ≥ s + t ) 1 - P ( X < s + t )= = =P ( B ) P ( B ) P ( X ≥ s ) 1 - P ( X < s )1 - [1 - e -λ ( s +t ) ] = = e -λt .1 - [1 - e -λs ]另一方面,我们有1 / 32p0.216ppf ( x ) = ⎨π ( x 2 + 1) ⎩ P ( X ≥ t ) = 1 - P ( X < t ) = 1 - P ( X ≤ t ) = 1 - F (t ) = 1 - (1 - e -λt ) = e -λt .综上所述,故有P ( X ≥ s + t X ≥ s ) = P ( X ≥ t ) .(2)由题设,知 X 的概率密度为⎧0.1e -0.1x , x > 0 ;f ( x ) = ⎨⎩0 ,x ≤ 0 . 设某人购买的这台旧电视机已经使用了 s 年,则根据上述证明的(1)的结论,该电视机还能使用5 年以上的概率为P ( X ≥ s + 5 X ≥ s ) = P ( X ≥ 5) = ⎰ +∞f ( x )dx = 0.1⎰ +∞ e -0.1x d x = -e -0.1x55+∞ 5= e -0.5 ≈ 0.6065 .答:该电视机还能使用 5 年以上的概率约为 0.6065 .四、设随机变量 X 服从二项分布 B (3, 0.4) ,求下列随机变量函数的概率分布:(1) Y = 1 - 2 X ;(2) Y = X (3 - X)12解: X 的分布律为.Xp0.216(1) Y = 1 - 2 X 的分布律为11 2 30.432 0.288 0.064Y11 - 10.432 - 3 0.288 - 5 0.064(2) Y =2X (3 - X )2Y2的分布律为0 1 1 00.216 0.432 0.288 0.064即Y2五、设随机变量 X 的概率密度为0 10.28 0.72⎪⎪0 ,⎧ 2, x > 0;x ≤ 0.求随机变量函数 Y = ln X 的概率密度.解:因为 F ( y ) = P (Y < y ) = P (ln X < y ) = P ( X < e y ) = F (e y )Y X所以随机变量函数Y = ln X 的概率密度为2/3π (e 2 y + 1)π (e 2 y + 1)2e yf ( y ) = F ' ( y ) = F ' (e y )e y = f (e y )e y = (-∞ < y < +∞) ,即Y Y X2e yf ( y ) = (-∞ < y < +∞) .Y3 / 3。
分布函数、均匀分布、指数分布函数
则称 X 服从 [a, b]上的均匀分布,
记作: X ~ U [a, b]
0,
分布函数为: F (x)
x
f
(t)dt
x a
b
a
,
1,
x a, a x b,
x b.
均匀分布的概率背景
因为 P{c X c l}
cl
f (x)dx
2 PX 3.5 X 1.5
P{X 3.5, X 1.5} P{X 1.5}
3e3xdx
3.5
3e3xdx
1.5
= e- 6
由⑴、⑵结果得:指数分布具有无记忆性,即
PX s t X s PX t (t 0)
) 1
例2、设连续型随机变量 X的概率密度为
求 A的值,
解:
f (x)dx
Ae3xdx
0
A( 1)e3x 3
0
A 1 3
A 3.
1
1
1
3 f (x)dx
3 3e3xdx
0
e3x
3 0
的指数分布。若等待时间超过10
分钟,则他离开。假设他一个月内要来银行5次, 以 Y
表示一个月内他没有等到服务而离开窗口的次数,求Y
的分布律及至少有一次没有等到服务的概率
解 Y是离散型,Y ~ b(5, p) ,其中 p = P{X > 10}
现在 X 的概率密度为
1/ 5ex /5 x 0 f (x)
0 x 0,
例4 .电子元件的寿命X(年)服从λ=3的指数分布 (1)求该电子元件寿命超过2年的概率。 (2)已知该电子元件已使用了1.5年,求它还能使用2 年的概率为多少?
指数分布和均匀分布转换
指数分布和均匀分布转换
指数分布和均匀分布之间的转换可以通过累积分布函数(CDF)
和反函数的关系来实现。
首先,让我们来看一下指数分布和均匀分
布的概念。
指数分布是描述独立随机事件发生时间间隔的概率分布,它通
常用于模拟随机事件的间隔时间,比如等待下一次地铁到达的时间
或者设备的寿命。
指数分布的概率密度函数为f(x) = λe^(-λx),其中λ是速率参数,x是随机变量。
指数分布的累积分布函数为
F(x) = 1 e^(-λx)。
而均匀分布则是指在一个区间内各个数值出现的概率相等的分布。
均匀分布的概率密度函数为f(x) = 1/(b-a),其中a和b分别
是区间的上下界,x为随机变量。
均匀分布的累积分布函数为F(x)
= (x-a)/(b-a)。
现在,我们来讨论如何从指数分布转换为均匀分布。
假设X是
指数分布随机变量,其累积分布函数为F(x) = 1 e^(-λx),我们
可以通过以下步骤将X转换为均匀分布随机变量Y:
1. 计算指数分布随机变量X的累积分布函数F(x)。
2. 令Y = F(X),这样Y就会服从于[0,1]上的均匀分布。
这个转换的关键在于利用了累积分布函数的性质,将指数分布的随机变量X通过累积分布函数的转换得到了均匀分布的随机变量Y。
另外,从均匀分布到指数分布的转换也是可行的,只需进行相反的操作,即利用均匀分布随机变量Y的累积分布函数F(y) = y,通过F^(-1)(Y)得到指数分布的随机变量X。
总之,通过累积分布函数和反函数的关系,我们可以实现指数分布和均匀分布之间的转换,这为概率分布的模拟和分析提供了便利。
分布函数、均匀分布、指数分布函数讲解
一、连续型随机变量的定义
1. 概率密度 定义1. 设 F(x) 是随机变量 X的分布函数,若存在非负 函数 f x x , ,使对任意实数 x 有
则称 X为连续型随机变量,称 f ( x)为 X 的概率密度函 数,简称概率密度或密度函数。
对于连续型随机变量的 分布函数 F ( x)必是连续函数 .
0 1 10 F x 2 5 1
x3 3 x 4
4 x5
x5
2 1 3 P X 4 F 4 F 4 0 5 10 10
2 3 P X 5 F 5 F 4 1 5 5
130 , 0 x 30 即 f ( x) 其它 0,
为使候车时间 X 少于 5 分钟,乘客必须在7:10 到 7:15 之间,或在7:25 到 7:30 之间到达车站
P{10 X 15} P{25 X 30} 15 1 30 1 1 dx dx 10 30 25 30 3
例 2、 设连续型随机变量 X的概率密度为
求 A的值, 解:
A 1 3
1 3 x 3 0
f ( x)dx
0
A 3.
1 3
1 3 x Ae dx A( )e 3
3 x
0
f ( x ) dx
1 3 0
3e 3 x dx e
∴可以使用分布函数值描述随机变量落在区间里的概率。 (1) P{x1 X x2} (2) P{x1 X x2} 同理,还可以写出
P{X x1} P{X x1}
二、分布函数的性质
⑴ 单调不减性: ,则
指数分布和均匀分布变换-概述说明以及解释
指数分布和均匀分布变换-概述说明以及解释1.引言1.1 概述指数分布和均匀分布是概率论中两个重要的概率分布模型。
它们在统计学研究和实际应用中具有广泛的应用和重要的意义。
指数分布是一种连续型概率分布,其概率密度函数具有以下形式:f(x) = λe^(-λx),其中λ为正常数,表示单位时间内事件发生的平均次数。
指数分布在描述随机事件的时间间隔、寿命和可靠性等方面具有重要作用。
在实际中,许多自然现象和实验现象可以近似地服从指数分布,例如辐射衰减、进化过程和信号传输时间等。
均匀分布是一种简单的连续型概率分布,其概率密度函数在一个区间内的取值是常数,其余区间的取值为零。
均匀分布常用于表示在某个范围内的随机变量的可能取值的概率均等的情况,例如抛掷硬币、掷骰子和随机选取物品等。
均匀分布具有平均分布的特点,无论在何处抽取样本,概率均等。
本文将对指数分布和均匀分布的基本概念和特征进行介绍和分析。
首先,将详细介绍指数分布的概念和特征,包括概率密度函数、期望值、方差等。
然后,对均匀分布的基本概念和特征进行讨论,包括概率密度函数、期望值、方差等。
接下来,将重点探讨指数分布和均匀分布之间的关系,以及它们之间的变换方法及其应用。
通过对指数分布和均匀分布的比较与分析,我们可以更好地理解和应用这两种概率分布模型。
对于统计学的学习和实际问题的研究,了解指数分布和均匀分布的特点和应用是非常重要的。
在实际应用中,我们可以根据问题的性质和要求,选择适合的分布模型进行建模和分析,从而得到更准确和可靠的结果。
这对于优化工程设计、风险评估和决策分析等方面具有重要的作用。
在接下来的章节中,我们将详细介绍指数分布和均匀分布的基本概念和特征,探讨它们之间的关系,并讨论其变换方法及其在实际应用中的应用。
通过深入研究和理解这些内容,我们将对概率分布模型有更全面和深入的了解,并能够更好地运用它们解决实际问题。
1.2 文章结构本文将围绕指数分布和均匀分布的变换展开讨论,并探讨它们在实际应用中的意义和作用。
16种常见概率分布概率密度函数、意义及其应用
目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。
2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。
正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。
1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。
其 中,.0为尺度参数。
指数分布的无记忆性:Plx s t|X = P{X t}。
f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。
大学概率论均匀分布·指数分布
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§2.7 均匀分布 • 指数分布
均匀分布的概率密度与分布函数
(1) 概率密度
在区间[a,b]上概率密度 f (x) C(常数),于是
b
C d x C(b a) 1 C
P(x1 X x2)
x2 f (x) dx.
x1
f (x)
P(x1 x x2 )
x
O
x1
x2
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§2.6 连续随机变量的概率密度
[例2] 设连续随机变量 X 的概率密度
f
(x)
A 1 x2
,
x .
求: (1) 常数 A 的值;
x0
x
F(x);
x
(2) F (x) P( X x) f (x) dx.
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§2.6 连续随机变量的概率密度
[例 1] 设随机变量 X 的概率密度为:
f
(x)
1 2
cos
x,
0,
求 X 的分布函数 F (x).
1 (arctan x π) 1 1 arctan x.
π
2 2π
[柯西(Cauchy)分布]
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
概率论中几种常用重要分布
概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。
其在实际中的应用。
关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。
它是一种“定性”类型的概念。
为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。
称这种变数为随机变数。
本章内将讨论取实值的这种变数—— 一维随机变数。
定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。
它是一个普通的函数。
成这个函数为随机函数X 的分布函数。
有的随机函数X 可能取的值只有有限多个或可数多个。
更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。
称它的分布为离散型分布。
【例1】下列诸随机变数都是离散型随机变数。
(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。
称这种随机变数的分布为退化分布。
一个退化分布可以用一个常数a 来确定。
(2)X 可能取的值只有两个。
确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。
如果([])P X b p ==,那么,([])1P X a p ===-。
因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。
特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。
数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式
数学期望:随机变量最基本的数学特征之一。
它反映随机变量平均取值的大小。
又称期望或均值。
它是简单算术平均的一种推广。
例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。
也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。
可以简单的理解为求一个概率性事件的平均状况。
各种数学分布的方差是:1、一个完全符合分布的样本2、这个样本的方差概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。
比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。
下图为概率密度函数图(F(x)应为f(x),表示概率密度):离散型分布:二项分布、泊松分布连续型分布:指数分布、正态分布、X2分布、t分布、F分布抽样分布抽样分布只与自由度,即样本含量(抽样样本含量)有关二项分布(binomial distribution):例子抛硬币1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验)2、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即二项分布泊松分布(possion distribution):1、一个单位内(时间、面积、空间)某稀有事件2、此事件发生K次的概率3、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即泊松分布二项分布与泊松分布的关系:二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、n种可能的结果2、每个可能的概率相等(1/n)连续型均匀分布:1、可能的结果是连续的2、每个可能的概率相等()连续型均匀分布概率密度函数如下图:指数分布(exponential distribution):用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。
《概率论与数理统计)考试重点
《概率论与数理统计》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。
第一章 随机事件与概率1.随机事件的关系与计算 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念2.古典概型中概率的计算 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式3. 利用概率的性质计算概率 (一级重点)选择、填空)()()()(AB P B P A P B A P -+=⋃,)()()(AB P B P A B P -=-(考得多)等,要能灵活运用。
4. 条件概率的定义 (一级重点)选择、填空 记住条件概率的定义和公式:)()(B P AB P = 5. 全概率公式与贝叶斯公式 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。
一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。
6. 事件的独立性(概念与性质) (一级重点)选择、填空定义:若)()()(B P A P AB P =,则称A 与B 相互独立。
结论:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 都相互独立。
7. n 重贝努利试验中事件A 恰好发生k 次的概率公式 (一级重点)选择、填空在n 重贝努利试验中,设每次试验中事件A 的概率为p (10 p ),则事件A 恰好发生k 次的概率n k p p C k P k n k k n n ,,2,1,0,)1()( =-=-。
第二章 随机变量的分布及其数字特征8.离散型随机变量的分布律及相关的概率计算 (一级重点)选择、填空、计算、综合。
常用概率分布函数
– 则f(x)为X的概率密度函数(PDF)
– f(x)满足:
(1) f (x) 0
(2) f (x)dx 1
常用概率分布函数
• 连续型随机变量
– F(x)为连续型随机变量的累积分布函数(CDF)
F(x) P(X x) x f (x)dx
– 连续型随机变量X均值和方差分别为:
E(X ) xf (x)dx
常用概率分布函数
二项分布 泊松分布 均匀分布 正态分布 指数分布 伽马分布
常用概率分布函数
• 离散型随机变量
– 若随机变量的取值为有限个或可以逐一列举的无穷多个 数值,则称此类随机变量为离散型随机变量。
– 设离散随机变量X有:P( X xi ) p( xi )
– 将P={p1,p2,…pn…}称为X的概率密度函数 (Probability Density Function,PDF)
– 泊松分布是二项分布的特殊情况(n趋近无穷大,令 np->λ),当一个固定时间间隔内有大量事件以恒定的 速率发生,且事件之间相互独立时,可以用泊松分布描 述,并称这样的随机事件为泊松流。
– 泊松分布的概率密度函数: P(x k) k e k {0,1, 2..., n}
k!
– 累积分布函数:
– x=0:0.001:5;
0.4
– n=10;
0.35
– p=0.1;
0.3
– y=binopdf(x,n,p); 0.25
– plot(x,y);
0.2
0.15
0.1
0.05
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
常用概率分布函数
• 泊松分布( Poisson Distribution )
概率论作业习题及答案
1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则 (1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω(2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”. 解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω}.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯= (2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率.解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率.解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++=)7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率.解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P 故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作出正确决策的概率. 解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++=901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布.解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X 的概率分布为四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈ 设随机变量X 的概率分布为 2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x+可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数. (2)设211)(xx F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形.解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度. 解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F ξP(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数. 解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率. 解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰ee dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-e X P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f yyY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X 落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有 ⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx2713)322(92922132102=-++=x x x x .9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY 求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意YX ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyXY ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jjn Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki i n i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p Ck P k n n k i n n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z四、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ 从而有)3,2,1( =i i η的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321ηηη=Z .从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为于是有3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为于是有4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.09.04091.0)(22=-=-=EX EX DX565.03191.0≈==DX X σ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX ni i ni i ni i 1)1()1()(211111=-='-='===∑∑∑==-=- 2X 的分布为p pp p q q p q p q q p pqi EX ni i n i i ni i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑===- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx xx dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-122112221211)()(ππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY 2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---eee EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x 0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),( 010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--=于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理三、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,。
概率论中的六种常用分布
U ab . [ ,]
基金项 目: 河南省教育科学 “ 十一五” 规划课题 ( 2 1 ] K H G一 4 6 [0 0 一J G A 00 ) 作者 简介 : 崔欢欢 (9 2一) 女 , 18 , 河南偃 师人 , 讲师 .
・
2 4・
洛 阳师 范学 院学报 2 1 0 1年第 8期
=
.
发生的概率时, 我们对事件 所在的试验进行独立
重 复观 察 ,统 计 出事 件 / 生 的 次 数 .这 里 4发 是一 个 随机 变量 ,它 就 服 从 二项 分 布 .另 外 ,一 批
收 稿 日期 : 0 1 l 7 2 1 —0 一1
则 称 服 从 区 间 [ ,] 的 均 匀 分 布 ,记 作 — a b上
( 洛阳师范学院数学科学学 院 , 河南洛 阳 4 12 ) 7 0 2
摘
要 :本文主要探讨 了概率论 中的六种常用分布 ,即( 0—1 分 布、二 项分布 、泊松 分布、均 匀分布 、指数 分 )
布和正 态分布 ,的来 源及其在 实际 中的应用.有助 于增进 学生对该部分 内容的理解与 掌握.
均 匀分 布 描述 的是 在一 个 区 间上等 可 能取 值 的
分 布规 律 , 即是 说 概率 在该 区间上 的分 布是 均匀 也 的 .均 匀 分布 是 最 简 单 、最基 本 的 连续 型分 布 , 就
其 中 , 为常 数且 >0 ,则 称 服 从 参 数 为 和 r o 的正 态分 布 , 作 ~ /, . 记 N( o ) zr 正 态分 布 是 德 国数 学 家 和 天 文 学 家 棣 莫 弗 于
关 键 词 :随机 变 量 ; 离散 型 分 布 ; 续 型 分 布 连
数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式
数学期望:随机变量最基本的数学特征之一。
它反映随机变量平均取值的大小。
又称期望或均值。
它是简单算术平均的一种推广。
例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。
也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。
可以简单的理解为求一个概率性事件的平均状况。
各种数学分布的方差是:1、一个完全符合分布的样本2、这个样本的方差概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。
比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。
下图为概率密度函数图(F(x)应为f(x),表示概率密度):离散型分布:二项分布、泊松分布连续型分布:指数分布、正态分布、X2分布、t分布、F分布抽样分布抽样分布只与自由度,即样本含量(抽样样本含量)有关二项分布(binomial distribution):例子抛硬币1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验)2、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即二项分布泊松分布(possion distribution):1、一个单位内(时间、面积、空间)某稀有事件2、此事件发生K次的概率3、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即泊松分布二项分布与泊松分布的关系:二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、n种可能的结果2、每个可能的概率相等(1/n)连续型均匀分布:1、可能的结果是连续的2、每个可能的概率相等()连续型均匀分布概率密度函数如下图:指数分布(exponential distribution):用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。
数学分布泊松分布二项分布正态分布均匀分布指数分布生存分析贝叶斯概率公式全概率公式
数学期望:随机变量最基本的数学特征之一。
它反映随机变量平均取值的大小。
又称期望或均值。
它是简单算术平均的一种推广。
例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0, 1, 2, 3,其中取0 的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0X 0.01 + 1X 0.9+ 2X 0.06+ 3X 0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。
也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。
可以简单的理解为求一个概率性事件的平均状况。
各种数学分布的方差是:1、一个完全符合分布的样本2、这个样本的方差概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。
比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。
下图为概率密度函数图(F(x)应为f(x),表示概率密度):2、抽样分布抽样分布只与自由度,即样本含量(抽样样本含量)有关二项分布(binomial distribution ):例子抛硬币1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定伯努利试验)离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、 F 分布J很事件A出现的辄率为恥则蛊刃次独立渕验中, 事件A恰好出现比次的概率务:P(X = k) = C^k(l-7r)nk3、P(X=O), P(X=1), P(X=3), .... .所有可能的概率共同组成了一个分布,即二项分布某毒物的50%致死剂拭后5只动物妊亡数的二项分布(0=5, ^0,5 )泊松分布(possion distribution:1、一个单位内(时间、面积、空间)某稀有事件2、此事件发生K次的概率3、P(X=0), P(X=1), P(X=3),•所有可能的概率共同组成了一个分布,即泊松分布0.2P(X)().10.() HI 川l!h0 4 8 0 4 8 12对泊松流,在任意时间间隔(0/)内,事件 (如交通事故)出现的次数服从参数为入t的泊松分布・入称为泊松流的强度.二项分布与泊松分布的关系:二、二项分布与泊松分布历史上,泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入的.近数十年來,泊松分和日益显示其重要性,成为概率论中最重要的几个分布之一.在实际中,许多随机现象服从或近似服从泊松分布’二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、n种可能的结果2、每个可能的概率相等(1/n)连续型均匀分布:1、可能的结果是连续的2、每个可能的概率相等()连续型均匀分布概率密度函数如下图:1 _ _________p-a----- --------------------- ka P x指数分布(exponential distribution:用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。
2.7 均匀分布·指数分布
目录 上一页 下一页 返回 结束
几何分布
若随机变量 X 的概率分布为
X 1 2 k k 1 p (1 p ) p (1 p ) p pk
记为X~G(p) 则称 X 服从几何分布,
注:几何分布可作为描述在独立试验序列中, 直到某个随机事件A 发生为止需要进行的试验次数 的概率模型.
x a; a x b; x b.
概率论与数理统计教程(第五版)
目录
上一页
下一页
返回
结束
§2.7 均匀分布 • 指数分布
应用背景举例:
(1)数值计算中“四舍五入”的舍入误差;
(2)在刻度器读数时把零头数化为最靠近的整分度时 发生的误差.
(3)每隔一定时间有一辆车通过的汽车停车站上 乘客候车时间;
均匀分布(或等概率分布).
定义
记作 : U (a, b) .
当 X 在 [a, b] 上服从分布 U (a, b) 时,记为 :
X ~U (a, b) .
概率论与数理统计教程(第五版)
目录
上一页
下一页
返回
结束
§2.7 均匀分布 • 指数分布
均匀分布的概率密度与分布函数
(1) 概率密度
于是 在区间[a, b]上概率密度 f ( x) C (常数), b 1 a C d x C (b a) 1 C b a .
当 x a 时, F ( x)
x
f ( x)dx 0; 当 a x b 时,
x x a a
1 xa dx ; ab a ba 当 x b 时,
F ( x)
a
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 均匀分布·指数分布·随机变量函数的概率分布
乘客到达汽车站的任一时刻是等可能的.求乘客候车时间一、公共汽车站每隔5分钟有一辆汽车通过.3分钟的概率.不超过XX]5[0,解:设随机变量表示“乘客的候车时间”,则上的均
?..6)dx??P(0X?3)??0f(x于是有匀分布,其密度函数为服从],5,x?[015??x)f(?],5,x?[00?33
50
X:h)二、已知某种电子元件的使用寿命服从指数分布,概率密度为(单位x?1??e0;,x?800?)f(x ?800?,.0x?0? 1000h以上的概率.任取3个这种电子元件,求至少有1个能使用、、AAA A分别表示“元件甲、乙、丙能解:设;表示“至少有1个电子元件能使用1000h以上”
?287.??e?e???P(A)P(X?1000)?0edx(PA)?P(A)8008004 321.则1000h使用以上”xx51???????
10002138001000)?P(AAA)?P(AA)?P(AA)A?(A)?PA?A?A)?P(A)P(A)?P(A)?P(AP(332111121322 323236380.287?0.287??3?0.287?3?0.
A以上”(另解)设.则表示“至少有1个电子元件能使用1000h xx51?????
????edx??e0.?e)P(X?1000?2878008004100080010005?
7130.1?e?)?1?P(X?1000?P(X?1000)4,进一步有从而有
33638713?01000)].?1?0.1P(A)??[P(X?
?st X)e(,有三、(1) 设随机变量及服从指数分布.证明:对于任意非负实数
P(X?s?tX?s)?P(X?t).
这个性质叫做指数分布的无记忆性.
Xe(01).服从指数分布设电视机的使用年数.某人买了一台旧电视机,求还能使用5年以上(2) 的概率.
?x??XR??x e?)?1F(x)xFX~e(()的分布函数.解:(1)因为,其中,所以,有为
st A?BAB?AtXA?X?s?tB??.根据条件,.因为都是非负实数,所以设及,从而概率公式,我们有
P(AB)P(A)P(X?s?t)1?P(X?s?t)?P?sP(X??tXs)?(AB??)?
P(B)P(B)P(X?s)1?P(X?s)?(s?t)?]e[?1?1?t?e??.?s?1?[1?e]另一方面,我们有
1 / 3
??tt??e?(1?e)?(X?t)?1?F(t)?1)P(X?t)?1?P(X?t?1?P.
综上所述,故有
P(X?s?tX?s)?P(X?t).
X的概率密度为(2)由题设,知
?0.1x?,1ex?0;0.f(x)??x?0.0,?s年,则根据上述证明的(1)的结论,该电视机还能使用设某人购买的这台旧电视机已经使用了
5年以上的概率为
?????0.1x?0.1x???0.5???xf()dx?0.1?e?ee0.6065dx)s(PX?s?5X?)?P(X?5??.5550.6065.答:该电视机还能使用5年以上的概率约为X B(3, 0.4),求下列随机变量函数的概率分布:服从二项分布四、设随机变量X(3?X)?Y X21?Y?.( 1)2);(212X的分布律为解:
3
X(3?X)?Y的分布律为(2)22
即
Y 0 1
2p0.280.72
X五、设随机变量的概率密度为2?,x?0;?f(x)?2?)?1(x??x?0.0,?Y?lnX的概率密度.求随机变量函数
yy)eF?Xe)?((?yXP)?(?y(F)PYy?(ln?)P解:因为XY XlnY?所以随机变量函数的概率密度为2 / 3
y e2''yyyy) (???y????()?F(fy)?(y)F(ee?fe)e,即XYYy2?)(e1?y e2f(y)? (???y???).Y2y?(e?1)
3 / 3。