高炉冶炼工艺

合集下载

高炉炼铁生产工艺流程与特点

高炉炼铁生产工艺流程与特点

高炉炼铁生产工艺流程与特点下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高炉炼铁是钢铁生产过程中的重要环节,其生产工艺流程具有以下几个特点:1. 原料准备高炉炼铁的原料主要包括铁矿石、焦炭和石灰石。

高炉炼铁的主要工艺流程

高炉炼铁的主要工艺流程

高炉炼铁的主要工艺流程
《高炉炼铁的主要工艺流程》
高炉是钢铁企业中用于炼铁的主要设备,其工艺流程是将铁矿石和焦炭加入高炉内,经过一系列的化学和物理反应,最终得到熔融的生铁。

下面将介绍高炉炼铁的主要工艺流程。

1. 搅拌坩埚法:将原铁矿石和焦炭按一定的比例混合,放入高炉的上部,即炉料层。

在高炉内,炉料层受到高温和高压的影响,发生一系列的物理和化学反应。

2. 燃烧:通过给炉料层加入空气或者氧气,点燃炉料层的顶部,使其燃烧。

燃烧产生的热量使炉料层内的焦炭燃烧,并提供高温条件,促进各种反应的进行。

3. 还原反应:当焦炭燃烧释放出一定量的一氧化碳时,与高炉内的铁矿石发生还原反应,使氧化铁还原为生铁。

4. 精炼:在高温下,生铁中的杂质和一些有害元素(如硫、磷等)会被氧化成气体,并通过炉顶排出。

这一过程称为精炼,是炉料中杂质清除的重要环节。

5. 收得生铁:经过一定时间的冶炼,高炉内的炉料最终产生了熔融的生铁。

生铁通过炉口排除,并进入铁水槽中,成为炼铁的产物。

通过上述简单介绍,可以看出高炉炼铁的主要工艺流程是一个
复杂的过程,包括搅拌坩埚法、燃烧、还原反应、精炼和收得生铁等环节。

这一流程不仅需要科学合理的原料比例和控制方法,还需要高炉操作者的丰富经验和技巧。

只有合理的工艺流程和专业的操作技术,才能保证高炉炼铁的顺利进行和生产出优质的生铁产品。

高炉炼铁工艺流程

高炉炼铁工艺流程

高炉炼铁工艺流程
《高炉炼铁工艺流程》
高炉炼铁是一种重要的冶炼工艺,用于将铁矿石转化为铁和炉渣。

该工艺流程经过多年的发展和优化,已经成为大规模生产铁的重要方法。

工艺流程通常包括以下几个步骤:
1. 铁矿石的预处理:首先需要将铁矿石经过破碎、磨粉和浸泡等预处理工序,将其加工成适合高炉炼铁的原料。

这些原料通常包括铁矿石、焦炭和石灰石。

2. 原料的投放和燃烧:在高炉中,铁矿石、焦炭和石灰石按一定比例投放到高炉内,然后通过燃烧反应。

焦炭在高炉中将煤进行还原,释放出大量的热能,使铁矿石中的铁氧化物转化为金属铁。

3. 炉渣的处理:在高炉炼铁过程中,除了产生金属铁外,还会产生一定数量的炉渣。

炉渣是一种残渣物质,需要通过特定的工艺处理,以便回收炉渣中的有价值物质,并将未处理的废渣安全处理。

4. 金属铁的提炼和处理:高炉产出的金属铁还需要经过一系列处理工艺,以提高纯度和质量。

这些工艺通常包括熔炼、除杂、除气、定型等。

通过这些工艺,可以获得符合要求的铁制品。

总的来说,高炉炼铁工艺流程是一种复杂而有效的工艺,通过多个步骤的组合和优化,实现了从铁矿石到金属铁的高效转化。

它在现代工业生产中扮演着重要的角色,为各行各业提供了丰富的铁制品。

高炉炼钢的工艺流程

高炉炼钢的工艺流程

高炉炼钢的工艺流程1. 引言1.1 概述高炉炼钢是目前广泛应用的一种重要的冶金工艺,它采用高温高压条件下对铁矿石进行还原反应,从而获得纯净的铁质产品。

该工艺具有产能大、生产周期短、资源利用率高等优点,被广泛应用于钢铁行业。

1.2 文章结构本文将详细介绍高炉炼钢的工艺流程,并探讨其中涉及到的关键技术与设备。

文章主要分为五个部分:引言、高炉炼钢的工艺流程、工艺参数控制与优化、主要设备与操作原理以及结论和展望。

1.3 目的本文旨在全面了解高炉炼钢的工艺流程,并深入探讨其中涉及到的关键技术与设备。

通过对该工艺流程进行系统性地剖析和讲解,旨在提供给读者一个清晰明了的指南,使其对高炉炼钢有更加全面深刻的认识。

同时,通过分析可能的未来发展方向和挑战,希望能够激发更多的创新思路,推动高炉炼钢工艺在未来的发展和改进。

2. 高炉炼钢的工艺流程2.1 高炉概述高炉是用于炼制铁水并产生熔化的设备。

它通常由一个大型圆筒形躯体组成,内部分为上、中和下三个区域。

上部是料柱区,中部是还原区,下部则是渣铁混合物收集和排出的区域。

2.2 原料准备在高炉炼钢的过程中,主要原料包括焦炭、铁矿石和添加剂。

焦炭作为还原剂,在高温下与铁矿石反应,释放出一定量的碳气体,起到还原反应的作用。

铁矿石通常经过粉碎、洗选等处理步骤后投入高炉。

添加剂可以包括造渣剂和合金元素等,用于调整冶金反应过程中的温度、化学成分以及最终产品的性能。

2.3 炼铁过程高炉的主要目标是将铁矿石还原成可利用的纯铁,并去除其中的杂质。

在高温和压力环境下,焦碳与铁氧化物发生反应,产生一系列还原和冶金反应。

通过这些反应,铁矿石中的氧化铁被还原为铁,其他杂质则形成渣或气体并排出高炉。

高炉炼钢的工艺流程主要包括以下步骤:1. 原料装载:焦炭、铁矿石和添加剂按特定比例装载到高炉顶部的料柱区,并逐层放置,以确保充分的还原和冶金反应。

2. 预热和干燥:在投料之前,对原料进行预先加热和除湿处理,以降低进入高温环境时的蒸发水含量,并提高冶金反应效率。

高炉炼铁工艺流程

高炉炼铁工艺流程

高炉炼铁工艺流程高炉炼铁是一种常用的铁矿石冶炼方法,具体工艺流程如下:1. 炉前处理高炉炼铁之前,需要进行炉前处理工作。

首先,将铁矿石进行选矿,去除其中的非矿石矿物。

其次,对选矿后的矿石进行破碎,使其粒度适宜进入高炉。

然后,将破碎后的矿石进行均质,以确保矿石的化学成分均匀。

最后,将均质后的矿石进行烘干,以去除其中的水分。

2. 铁矿石装入高炉将经过炉前处理的铁矿石,通过铁矿石仓的进料系统进入高炉。

铁矿石被平均均匀地布料到炉料层上,以确保矿石在高炉内的氧化反应和还原反应能够达到最佳效果。

3. 还原反应在高炉内,矿石经过还原反应,将含氧化铁的矿石还原为金属铁。

还原反应主要是通过煤粉提供的碳与铁矿石中的氧化铁反应来完成的。

煤粉燃烧生成的一氧化碳在高炉内与氧化铁反应,生成二氧化碳和金属铁。

还原反应同时也需要一定的温度和气氛条件。

4. 碱性矿渣的形成在高炉炼铁的过程中,还会产生一种称为矿渣的物质。

矿渣主要是由炉料中的非铁物质经过氧化和还原反应产生的。

矿渣中主要成分为碱性氧化物,如氧化钙(CaO)、氧化镁(MgO)等。

矿渣的形成有助于炼铁过程的进行,可以稀释炉内含铁物质的浓度,减少炉石反应温度。

5. 渗碳反应在高炉内,碳通过渗碳反应进一步与铁进行反应,生成碳化物。

这个过程通常需要在高炉底部的温度比较高的炉渣中进行,以确保足够的反应速率。

碳化物生成后,还需要通过进一步的处理来使其转变为可用的铁。

6. 炉缸维护和清理高炉炼铁过程中,会产生一些固体杂质物质,如炉渣和金属铁结晶等。

这些杂质会在高炉底部形成一层坚硬的物质,称为炉缸。

定期对高炉进行炉缸维护和清理是必要的,以保证高炉运行的正常和稳定。

7. 铁水和渣化处理高炉炼铁过程中,会产生两种产品,一种是铁水,另一种是矿渣。

铁水通过高炉底部的铁口流出,进入铁水包。

然后,将铁水通过通道输送到后续的冶金工艺中进行进一步的处理。

矿渣则从高炉底部的渣口流出,进入矿渣车,最终被运到矿渣堆存放。

炼铁高炉工艺知识点总结

炼铁高炉工艺知识点总结

炼铁高炉工艺知识点总结高炉是用于冶炼铁矿石的重要设备,其结构包括上部料柱、中部燃烧区和下部铁口三个部分。

1. 上部料柱上部料柱主要由料斗、布料装置和煤气分布装置组成。

在高炉冶炼过程中,生铁矿石和还原剂通过料斗和布料装置放入高炉中,并在上部料柱中进行干燥、预热和还原反应。

2. 中部燃烧区中部燃烧区是高炉中最重要的区域,也是冶炼反应最为激烈的地方。

在高炉的中部燃烧区,铁矿石的还原反应和燃料的燃烧反应同时进行,产生的热量和还原气体将铁矿石还原成铁,同时熔化生铁矿石。

3. 下部铁口下部铁口是高炉的出铁口,也是生铁的最终产出地。

铁水从下部铁口流出并通过管道输送至铁水罐或铁水车,最终用于制造钢铁产品。

二、高炉工艺过程高炉冶炼的主要工艺过程包括预处理、还原和熔融三个阶段。

1. 预处理铁矿石在高炉冶炼前需要进行预处理,主要包括干燥、预热和分级。

在高炉上部料柱中,铁矿石经过干燥和预热,使其内部水分挥发、结晶水分析出,并提高其温度,为还原反应和熔融反应提供条件。

此外,铁矿石还需要分级,以确保高炉内部燃料和还原气体的匹配,提高冶炼效率和生铁质量。

2. 还原在高炉的中部燃烧区,煤气和空气混合后燃烧产生的高温燃气对铁矿石进行还原作用。

这一阶段的主要冶炼反应包括颗粒还原和熔融还原两个过程。

颗粒还原是指铁矿石颗粒的直接还原反应,将铁矿石中的氧还原成铁,并生成还原气体。

熔融还原是指生铁矿石在高温条件下熔化,并在熔融状态下进行还原反应,产生液态生铁。

3. 熔融在高炉下部,液态生铁通过铁口流出,并通过管道输送至后续的冶炼工艺中。

在熔融过程中,熔融生铁的温度、成分和质量需要得到控制,以确保后续的钢铁生产工艺顺利进行。

三、高炉冶炼的关键技术1. 燃料配比高炉冶炼所需的燃料包括焦炭、焦炉煤气和其他燃料。

为了提高冶炼效率和生铁质量,需要合理确定燃料的配比,保证还原气体的成分和温度符合冶炼工艺的要求。

2. 熔炼温度在高炉冶炼过程中,熔炼温度对生铁的成分和质量具有重要影响。

简述高炉炼铁的基本过程

简述高炉炼铁的基本过程

简述高炉炼铁的基本过程高炉炼铁是一种产生高质量生铁的主要方法,在钢铁工业中得到广泛应用。

下面将对高炉炼铁的基本过程进行详细描述。

高炉炼铁基本过程分为三个步骤:准备工作、冶炼过程和处理产物。

一、准备工作高炉炼铁的准备工作包括矿石的选矿、破碎、筛分、混合和预处理,以及高炉的预热和点火。

1.选矿:选矿是将矿石中的有用成分以及杂质进行分离的过程。

通常会根据矿石的性质和要求,对矿石进行鉴别和分类。

2.破碎:矿石经过选矿后,需要进行破碎,以便更好地与其他原料混合。

3.筛分:破碎后的矿石需要通过筛分装置进行分级,从而得到不同粒径范围的矿石。

4.混合:将不同粒径范围的矿石按比例混合,从而保证高炉炉料的均匀性。

5.预处理:预处理包括烘干、预热和固硬。

烘干是为了去除矿石中的水分,预热是为了降低高炉内的燃料消耗,固硬是为了增加料柱的强度。

6.高炉预热和点火:在准备工作的最后,高炉需要进行预热和点火。

预热可以提高高炉的工作效率,点火是将高炉内的燃料点燃,开始冶炼过程。

二、冶炼过程高炉炼铁的冶炼过程主要包括五个部分:焦化、还原、熔融、炉渣形成和产铁。

1.焦化:焦炭是高炉冶炼的主要燃料之一、焦化是将煤炭通过加热、干馏和冷却等过程,得到含有高固定碳和较低灰分的焦炭的过程。

2.还原:高炉冶炼的核心过程是还原。

在高炉中,焦炭作为还原剂,将含氧化铁的矿石还原为铁金属。

还原反应产生的一氧化碳进一步与矿石中的铁氧化物反应,生成铁和二氧化碳。

3.熔融:矿石还原后的金属铁会逐渐熔化,形成称为铁水的液体金属铁。

铁水温度通常在1400℃以上。

4.炉渣形成:炉渣是由矿石中的非金属物质和冶炼过程中生成的氧化物等组成的。

炉渣具有良好的流动性,可以将冶炼过程中产生的杂质和不溶于金属铁的物质捕捉和分离。

5.产铁:在高炉的下部,金属铁和炉渣被分离。

金属铁通过开口孔流出高炉,进入铁水池中。

炉渣则从高炉的炉底排出。

三、处理产物产铁后,还需要进行一系列的处理工艺来得到高质量的生铁。

高炉炼铁工艺

高炉炼铁工艺

高炉炼铁工艺1. 预处理原料:在高炉炼铁之前,需要对原料进行一定的预处理。

首先要破碎和磨细铁矿石,以增加其表面积,便于后续的还原反应。

同时要对焦炭进行粉煤处理,以增加其反应表面积,并降低硫和灰分含量。

此外,石灰石也需要进行破碎和磨细,以便混合均匀。

2. 加料和还原反应:预处理好的原料按一定比例加入高炉中,与风推入的煤气(还原气)一起在高温下进行还原反应。

在这个过程中,煤气中的一氧化碳和二氧化碳与铁矿石中的氧化铁发生化学反应,将氧气从氧化铁中除去,从而生成熔融的铁水和气体的渣浆。

3. 收集铁水:熔融的铁水通过高炉底部的出口流出,并收集到铁水坩埚中。

铁水可以通过连续铸造机或者浇铸处理成各种规格和形状的铸铁产品。

4. 渣浆处理:在还原反应过程中,高炉内产生的含有铁和其他杂质的渣浆需要被处理。

通常,渣浆会通过热风炉或转炉处理,以及重新冶炼过程,从而提炼出有用的铁和其他金属。

高炉炼铁工艺是一项高温高压的工艺过程,需要严格控制各种工艺参数,以保证生产铁水的质量和数量。

同时,高炉炼铁工艺也是一个能耗较高的工艺过程,如何提高能源利用效率,降低生产成本,是钢铁企业一直在努力解决的问题。

随着科技的不断创新和进步,高炉炼铁工艺也在不断地完善和改进,为钢铁工业的可持续发展做出了重要贡献。

高炉炼铁工艺作为钢铁行业的核心工艺之一,对于钢铁产品的质量和产量起着至关重要的作用。

在过去的几十年里,随着工业技术的不断发展和创新,高炉炼铁工艺也在不断地完善和改进。

首先,钢铁企业在高炉炼铁工艺方面不断引入优化技术和自动化控制系统,以提高生产效率和产品质量。

通过智能化技术,高炉操作可以更加精准和稳定,从而减少了人为因素对于生产过程的影响,提高了工作效率和产品一致性。

同时,一些新型的高炉炼铁工艺还采用了先进的能源回收技术,将废热和废气重新利用,从而降低了能源消耗和环境排放,实现了资源的合理利用。

其次,高炉炼铁工艺也在材料的选用上有了新的突破。

高炉炼铁工艺流程

高炉炼铁工艺流程

高炉炼铁工艺流程
高炉炼铁是指将铁矿石通过高炉的加热、还原、冶炼过程,得到纯铁
的工艺流程。

它是钢铁工业中最重要的生产方式之一,也是铁矿石资源利
用的主要方式之一
高炉炼铁的流程包括炉料装入、加热还原、炉渣形成、熔化冶炼和产
铁等环节。

下面将详细介绍这些环节的工艺流程。

1.炉料装入:将铁矿石(主要是赤铁矿)、焦炭、石灰石、焦炉煤气
等炉料按照一定比例装入高炉的上部。

2.加热还原:在高炉的下部引入煤气、空气和预热的鼓风,并点燃煤气。

煤气燃烧产生的高温火焰将炉料加热至1000-1300℃左右,使铁矿石
中的Fe2O3被还原成铁(Fe)和一氧化碳(CO)。

还原反应如下:2Fe2O3+3C=4Fe+3CO2
3.炉渣形成:在高炉中,铁矿石中的杂质(如硅、锰、磷等)与石灰
石反应形成炉渣,同时焦炭燃烧的一氧化碳也与掺入的石灰石反应生成二
氧化硅。

这些炉渣混合在一起,并与铁水和残余焦炭一起下降到高炉底部。

4.熔化冶炼:高炉底部温度达到1500℃以上,铁水和炉渣分离。


水是含有铁和少量碳、硅、锰等元素的液体,通过出铁口排出。

炉渣是含
有二氧化硅、石灰石、氧化铁等成分的熔融物,通过炉渣口排出。

在熔化
冶炼的过程中,还会通过喷吹鼓风提高冶炼效果和热效率。

5.产铁:经过一系列的化学反应和物理变化,铁水中的杂质逐渐被除去,得到纯铁。

最后,铁液从出铁口流出,得到熟铁或铸铁。

高炉工艺流程

高炉工艺流程

高炉工艺流程
高炉是冶炼铁的主要设备,其工艺流程包括原料准备、炉料装入、炉内燃烧、还原、熔融和出铁等环节。

下面将详细介绍高炉工艺流程。

首先是原料准备。

高炉的主要原料有焦炭、铁矿石和石灰石。

焦炭是炼铁的燃料,铁矿石是生铁的主要原料,石灰石是用来消耗炉渣中的硅酸和硫。

这些原料需要经过破碎、筛分和配比等工序,确保其化学成分和粒度符合高炉冶炼的要求。

接下来是炉料装入。

在高炉顶部设有料斗,将原料按一定的配比顺序装入料斗,然后通过料斗的开闭装入到高炉内。

炉料的装入顺序和层次对高炉的冶炼过程有着重要的影响,需要根据炉料的性质和冶炼要求进行合理的设计。

然后是炉内燃烧和还原。

在高炉内,焦炭燃烧产生的热量使炉料逐渐升温,矿石中的铁氧化物被还原成金属铁。

同时,燃烧产生的一氧化碳还与矿石中的氧化物发生化学反应,生成二氧化碳和金属铁。

接着是熔融。

随着高炉内温度的升高,金属铁逐渐熔化,与炉渣分离。

炉渣是炼铁过程中产生的一种碱性物质,它能够与矿石中的杂质发生化学反应,形成易于分离的渣滓。

最后是出铁。

经过一系列的冶炼过程,炉内的金属铁和炉渣分离,金属铁在高炉底部聚集,通过出铁口流出。

而炉渣则通过炉渣口排出高炉。

总的来说,高炉工艺流程是一个复杂的物理化学过程,需要严格控制各个环节的操作参数,确保冶炼过程稳定、高效。

同时,高炉的自动化技术和智能化控制也在不断发展,为提高生产效率和降低能耗提供了重要的技术支持。

通过对高炉工艺流程的深入了解,可以更好地指导生产实践,提高炼铁工艺的技术水平,推动炼铁行业的可持续发展。

高炉炼铁工艺

高炉炼铁工艺

高炉炼铁工艺高炉炼铁是一种常见的冶金工艺,用于将生铁矿石转化为纯净的铁。

这种工艺采用高温和还原条件来实现铁矿石中的氧化铁还原为金属铁。

以下是高炉炼铁的基本工艺步骤:1. 铁矿石的预处理:铁矿石在进入高炉前需要进行一些预处理工作,包括破碎、磨粉和分类。

这些工作可以帮助提高炉内的氧化反应速度和还原效率。

2. 加料:铁矿石、焦炭和石灰石等原料按一定比例加入高炉中。

焦炭主要是提供还原剂,将铁矿石中的氧化铁还原为金属铁;石灰石主要是用于融化炉渣和吸收杂质。

3. 空气进风:高炉需要不断进风以供给氧气,促进焦炭的燃烧并提供裂解热。

同时,还需要加入一定的煤气或焦炉煤气作为还原剂,以保证炉内氧化铁的快速还原。

4. 矿石还原:在高温条件下,焦炭和煤气中的一氧化碳与氧化铁反应,生成二氧化碳和金属铁。

这些金属铁逐渐凝结成固体,并下沉至高炉底部。

5. 炉渣处理:金属铁下部的高炉炉渣是煤气和矿渣部分还原后生成的物质。

炉渣需要适当处理,以保证炉内温度和还原条件的稳定。

6. 铁水出流:通过炉底的出口,将炉内的铁水(金属铁)逐出高炉。

这些铁水会流进冷却池,凝固成板块状的生铁。

高炉炼铁工艺是一个高温高压的重工业过程,需要严格控制炉内的温度、气氛和物料流动。

通过这种工艺,铁矿石可以被转化为高品质的生铁,再经过一系列冶炼和精炼工序,最终得到各种铁合金和铁制品。

高炉炼铁是一个重要的冶金工艺,为现代工业提供了大量的生铁和铁合金。

虽然随着技术的不断发展,其他炼铁方法也得到了广泛应用,但高炉炼铁仍然是主要的铁矿石冶炼方法之一,其应用范围涵盖了钢铁工业、建筑材料工业和机械制造业等多个领域。

以下将详细介绍高炉炼铁工艺的特点、发展历程和应用前景。

高炉炼铁工艺的特点高炉炼铁工艺具有以下几个显著特点:1. 高温高压的特殊环境:高炉炼铁过程中,需要维持高温高压的炼铁环境。

通常高炉内温度达到1200摄氏度以上,高压和特殊气氛条件的维持对设备和操作人员的要求都非常高。

5-高炉炼铁工艺6高炉强化冶炼技术

5-高炉炼铁工艺6高炉强化冶炼技术

大批重 小批重
一般情况下 大矿批压中心;小矿批压边缘。
25
③ 装料顺序
定义:炉料中矿石和焦炭装入高炉内的先后次 序称为装料顺序。
一般而言,先入炉的料首先在炉墙边沿较多堆 积到一定程度后才滚向中心。
26
装料顺序对布料的影响图示
正装—先装矿石, 后装焦炭;
倒装—先装焦炭, 后装矿石;
同装—矿石和焦炭 一起装入炉内;
16
高炉炉顶装料设备
钟式炉顶
无钟炉顶
17
影响炉顶装料状况的因素
固定因素 布料设备参数 1、布料器形式 2、炉喉高度和直径 3、大钟与炉喉间隙 4、大钟倾角及速度 5、无钟炉顶参数 炉料特性
堆比重、堆角、粒度、外形
可变因素 布料器工作参数 料线高度 料批大小 装料顺序
18
可变因素 炉料装入炉内方式的总称
8
适宜冶炼强度和焦比的关系
高炉适宜的I适和Kmin取决于冶炼条件,随着高炉冶炼条件 的改善,I适不断升高,而Kmin不断下降,使ηv不断增大。
9
(2)效益与产量、消耗之间的关系
P>P0,单位成本在 P>P0附近,升高幅度 很小;单位生铁利润(C一 S)减少的幅度小于产量 (P)增加的幅度;A=P (C一S)仍可达到最大。
(4)调节的原则是早动、少动,以保持炉况的 长期稳定顺行。因此,对炉况的发展趋势和变 化幅度要有预见性,避免根据出渣出铁的状态 再进行调节,这种滞后调节会造成炉况周期性 的波动。
39
(3)造渣制度
★控制炉渣各种理化性能的总称
包括
熔化温度、熔化性温度、粘度、 炉渣成分、熔化滴落区间、 脱硫性、排碱性、表面性能等
正常生产时高炉两尺相差应小于 500mm。

高炉炼铁基本原理及工艺

高炉炼铁基本原理及工艺

(3)滴落带:主要由焦碳床组成,熔融状态的渣铁穿越焦碳床 主要反应:Fe、Mn、Si、P、Cr的直接还原,Fe的渗C。 (4)回旋区:C在鼓风作用下一面做回旋运动一面燃烧,是高炉热量发源地(C的不完全燃烧),高炉唯一的氧化区域。 主要反应: C+O2=CO2 CO2+C=2CO (5)炉缸区:渣铁分层存在,焦碳浸泡其中 主要反应: 渣铁间脱S,Si、Mn等元素氧化还原
3.脱S
(1)S的来源与分布: 焦碳60~80%、矿石及喷吹物20~40% ↓ (S负荷4~6kg/t铁) ↓ 煤气、炉尘5~10%,生铁5%,炉渣90% (2)降低生铁[S]途径: ①降低S负荷(降低焦碳S含量) ②气化脱S(一定值) ③适宜的渣量 (3)炉渣脱S基本反应: [FeS]+(CaO)=(CaS)+(FeO) 提高炉渣脱S能力的因素: ①↑温度 ②↑还原气氛 ③ ↑R
03
有益元素:Mn、V、Ni、Cr
04
强度和粒度: 强度↓易粉化影响高炉透气性,不同粒度应分级入炉; ⑹还原性: 被CO、H2还原的难易、影响焦比; ⑺化学成分稳定性: TFe波动≤±0.5%,SiO2 ≤±0.03%混匀的重要性(条件:平铺直取——原料场应足够大); ⑻矿石代用品: 高炉炉尘、转炉炉尘、轧钢皮、硫酸渣等。
*
高炉炉型
*
高炉还原过程 高炉炉内状况
(1)块状带:矿焦保持装料时的分层状态,与布料形式及粒度有关,占BF总体积60%±(200~1100℃) 主要反应:水分蒸发 结晶水分解 除CaCO3外的其它MCO3分解 间接还原 碳素沉积反应(2CO=C+CO2) (2)软熔带:矿石层开始熔化与焦碳层交互排列,焦碳层也称“焦窗” 形状受煤气流分布与布料影响,可分为正V型,倒V型,W型 主要反应:Fe的直接还原 Fe的渗碳 CaCO3分解 吸收S(焦碳中的S向渣、金、气三相分布) 贝波反应:C+CO2=2CO

高炉冶炼工艺流程

高炉冶炼工艺流程

高炉冶炼工艺流程高炉冶炼工艺流程是指将矿石经过一系列的处理和冶炼过程,最终得到铁和一些副产品的过程。

下面将介绍高炉冶炼工艺的主要流程。

首先,原料的准备是高炉冶炼工艺的第一步。

原料主要包括铁矿石、焦炭和石灰石。

铁矿石是高炉冶炼的主要原料,通常包括赤铁矿、磁铁矿和白云石等。

铁矿石需要经过破碎、磨矿和磁选等步骤,使其粒度适应高炉冶炼的要求。

焦炭是高炉的还原剂,用于将铁矿石中的氧化铁还原成金属铁。

石灰石主要用于形成含有铁和非铁杂质的熔融渣,并调节高炉的酸碱度。

将准备好的原料送入高炉的上料系统。

在上料系统中,原料需要经过称量和混合等步骤,确保各组分的比例和质量符合要求。

然后,经过上料系统的输送,原料进入高炉内。

在高炉内部,原料首先遇到炉床层。

炉床层主要由焦炭形成,通过燃烧产生高温,并提供还原剂。

炉床层的温度升高后,原料中的氧化铁开始被还原成金属铁。

还原反应主要由CO和H2等还原剂引发。

与此同时,炉床层还能够吸附和还原一些非铁杂质。

金属铁和渣液从炉床层沿炉底流出,并流入下部。

高温的金属铁被称为铁水,而渣液主要由石灰石和非铁杂质组成。

铁水和渣液在下部分离开,分别进入集渣机和铁水罐。

渣液通过集渣机的操作,主要目的是将铁水中的渣和非铁杂质分离并捞出。

在铁水中,由于与其他金属杂质的存在,铁水内液相中的溶解量较高,此时需要进行脱硫的操作。

脱硫通常是通过给予少量的石灰石进行的,石灰石与脱硫反应生成硫酸钙,并吸附了金属硫化物。

然后,通过浮渣方式将硫酸钙从金属铁中分离出来。

最后,清洗后的铁水进入铁水罐,然后通过铁水输送系统运送到连铸车间,进行铸造最终的铸锭或铸坯。

通过连铸工艺,铸锭或铸坯得以快速冷却,并变成半成品钢。

综上所述,高炉冶炼工艺流程是一个复杂的过程,包括原料准备、上料系统、炉床层、金属铁和渣液的分离以及铁水的处理等。

通过这些工艺步骤,高炉能够将矿石转化为铁和其他副产品,为钢铁工业提供了基础材料。

钢铁行业冶炼工艺工作原理

钢铁行业冶炼工艺工作原理

钢铁行业冶炼工艺工作原理钢铁是一种重要的金属材料,广泛应用于建筑、汽车、机械制造等领域。

而在钢铁的生产过程中,冶炼工艺是不可或缺的环节。

本文将介绍钢铁行业中常见的冶炼工艺,以及其工作原理。

一、高炉冶炼工艺高炉冶炼工艺是目前钢铁行业中最常用的冶炼工艺之一。

它的工作原理基于高炉内的物理和化学反应。

高炉是一个巨大的筒形炉子,一般由炉体、炉缸、炉喉和炉顶等部分组成。

在高炉冶炼中,通常使用焦炭、铁矿石和石灰石作为主要原料。

首先,焦炭在高炉内被加热至高温,产生一定的热量,使铁矿石发生还原反应,将其中的氧气去除,生成金属铁。

同时,石灰石起到熔化矿石的作用,形成炉渣。

最终,金属铁和炉渣会分层沉积于炉底,通过渣铁口分离。

二、电弧炉冶炼工艺电弧炉冶炼工艺是另一种常用的钢铁冶炼工艺。

相比高炉冶炼,电弧炉冶炼更加灵活和适应性强。

它的工作原理基于电弧放电和电热效应。

电弧炉主要由炉体、电极、电弧和底吹装置等组成。

在冶炼过程中,底部吹入氧气和其他燃烧物质,使熔融金属达到所需的成分和温度。

接下来,在电极的引导作用下,通过电弧放电加热炉内物料,使其熔化。

最后,通过倾倒装置将熔融的金属浇入铸型,形成所需的铸件。

三、转炉冶炼工艺转炉冶炼工艺是一种钢铁冶炼工艺的变种,主要用于生产大量的炼钢。

它的工作原理基于转炉内的物理和化学反应。

转炉是一个倾转的圆筒形炉体,主要由炉座、炉体和喷吹设备等组成。

在冶炼过程中,通常使用生铁、废钢和废铁作为原料。

首先,将原料加入转炉内,然后通过上方的喷吹设备进气底吹氧气,使熔融的金属迅速氧化反应,去除其中的杂质。

接下来,加入适量的生铁或废钢,进行还原反应,使炉内金属达到所需成分和温度。

最后,通过倾倒装置将熔融的金属浇入铸型,形成所需的铸件。

总结钢铁行业中的冶炼工艺有多种不同的形式,如高炉冶炼、电弧炉冶炼和转炉冶炼。

每种工艺都有其特定的工作原理和适用场景。

高炉冶炼适用于大规模钢铁生产,电弧炉冶炼适用于小批量定制钢铁生产,而转炉冶炼则适用于大规模炼钢。

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介高炉炼铁生产工艺流程主要包括以下几个步骤:1.原料准备:铁矿石、焦炭和石灰石是高炉炼铁的主要原料。

这些原料首先需要进行粉碎和筛分,然后根据一定的配比比例混合。

2.烧结:混合后的原料送入烧结机进行烧结,使得原料得以结合成为直径在5-20mm的球团。

这样可以增加燃烧性能,也方便高炉内料柱的下降。

3.高炉装料:球团矿、焦炭和石灰石混合物通过上料设备(比如布料机)装载至高炉顶部,形成一个混合料柱。

4.还原铁制备:高炉内处于高温状态,煤气和空气通过炉底喷吹,反应产生一系列化学反应,其中还原铁是最主要的反应产物。

这一步骤是炼铁的关键步骤。

5.副产品收集:除了还原铁外,高炉炼铁过程中还会生成一些副产品,例如煤气、炉渣和炉灰。

这些副产品可以进一步利用或者回收,以减少资源浪费和环境污染。

6.铸铁产出:炼铁结束后,还原铁通过流态床和渗碳处理等工艺得到精铁,这时的精铁已经是可以使用的铸铁。

7.高炉炉渣处理:高炉炼铁过程中产生的炉渣会被排出高炉,然后经过冷却、破碎、粉碎等工艺处理,可以用于水泥生产、路基材料等领域。

高炉炼铁生产工艺流程经过这一系列的步骤,就可以大规模生产出优质的铸铁,为各行业提供原材料。

同时,各种副产品的回收利用也可以节约能源和资源,降低生产成本。

高炉炼铁生产工艺流程是现代工业生产中至关重要的一环,它在铁矿石资源的利用、工业产品的生产以及经济社会发展中都发挥着不可替代的作用。

深入了解高炉炼铁的生产工艺流程对于理解现代工业生产的基本原理和技术非常重要。

因此,接下来我们将深入探讨高炉炼铁的生产工艺流程的各个环节。

首先,我们来了解一下高炉炼铁的原料。

高炉炼铁的原料主要包括铁矿石、焦炭和石灰石。

铁矿石是从矿山中开采出来的含铁矿石,它是高炉内产生还原铁的主要原料。

焦炭是煤炭经过高温干馏得到的一种固体燃料,其主要成分是碳,其燃烧产生的煤气是高炉内还原反应的重要还原剂。

石灰石用于高炉内矿石的烧结及调节高炉渣的成分。

高炉炼铁的基本原理与工艺流程

高炉炼铁的基本原理与工艺流程

高炉炼铁的基本原理与工艺流程高炉炼铁是指通过高炉设备将铁矿石转化为铁的过程。

它是现代工业生产中铁制品的主要来源之一,具有重要的经济意义。

本文将介绍高炉炼铁的基本原理与工艺流程。

一、高炉炼铁的基本原理高炉炼铁的基本原理是利用高温下的化学反应将铁矿石还原成金属铁。

在高炉中,铁矿石经过冶炼过程,通过高温和还原剂的作用,使得其中的铁氧化物被还原为金属铁,并与其他元素形成铁合金。

高炉炼铁的还原反应是一个复杂的过程,包括多个步骤。

首先,铁矿石与还原剂(一般为焦炭)在高温下发生氧化还原反应,将铁矿石中的氧气与还原剂中的碳发生反应生成一氧化碳和二氧化碳。

然后,一氧化碳与铁矿石中的铁氧化物发生反应,使其还原为金属铁。

最后,金属铁与其他元素形成铁合金。

二、高炉炼铁的工艺流程高炉炼铁的工艺流程一般包括铁矿石的预处理、炉料配制、高炉内的冶炼过程和铁水的处理等步骤。

1. 铁矿石的预处理铁矿石通常经过矿石选矿、破碎、磁选等步骤的预处理。

选矿是将原始铁矿石中的有用矿物与杂质进行分离的过程,以提高铁的品位。

破碎过程将大块的铁矿石破碎成为适合冶炼的小颗粒。

磁选则是利用磁力将磁性矿物与非磁性矿物分离。

2. 炉料配制炉料配制是将预处理后的铁矿石与还原剂(焦炭)、矿石烧结等辅助原料按照一定比例配制成为高炉的进料。

配制过程中需要根据铁矿石的品位、还原剂的质量等因素进行合理的配比,以保证炼铁过程的效果。

3. 高炉内的冶炼过程高炉内的冶炼过程是高炉炼铁的核心环节。

在高炉内,炉料由上部的料槽加入,并由炉底的鼓风口进入。

在高炉内,料层中的铁矿石与还原剂经过一系列的燃烧和还原反应,发生冶炼和还原,最终生成铁水和炉渣。

炉渣由高炉底部排出,而铁水则从高炉的铁口流出,进入下一步的处理。

4. 铁水的处理铁水是高炉炼铁的产物之一,但其中含有一定的杂质,需要进行进一步的处理。

首先,通过除渣工艺将铁水中的炉渣分离出去,得到较为纯净的铁水。

然后,将铁水进行调质处理,加入适量的合金等元素,以调整铁的成分和性能,得到所需的铁产品。

高炉冶炼的原理与工艺

高炉冶炼的原理与工艺

高炉冶炼在其他行业的应用
有色金属冶炼
高炉冶炼技术也可应用于有色金属的冶炼,如铜、镍等。
陶瓷与玻璃行业
高炉冶炼产生的副产品可作为陶瓷和玻璃行业的原料,实现资源 的循环利用。
化工行业
高炉冶炼过程中产生的煤气可用于化工行业,如合成氨、
随着环保意识的提高,高炉冶炼将更加注重环保和节能减排,实 现绿色化发展。
氢还原氧化物
氢气与氧化物反应生成水,同时 还原金属,提高金属的回收率。
直接还原与间接还

根据还原剂的不同,高炉冶炼中 的还原反应可分为直接还原和间 接还原,前者主要利用固体碳作 为还原剂,后者则利用气体还原 剂。
燃烧反应原理
燃烧反应
高炉内燃料与氧气发生燃烧反应,产生高温 气体和热量。
火焰传播速度
燃烧反应的火焰传播速度对高炉内气流和温 度分布有重要影响。
的影响,实现绿色生产。
05
高炉冶炼的挑战与解决方案
Chapter
能源消耗与环保问题
总结词
高炉冶炼过程中需要大量的能源,同时 也会产生大量的废气和废渣,对环境造 成影响。
VS
详细描述
高炉冶炼需要大量的煤炭、焦炭等燃料, 同时还需要大量的鼓风和水来冷却炉衬和 维持炉温。这些能源的消耗不仅成本高昂 ,而且会产生大量的二氧化碳、一氧化碳 、硫化物等有害气体,以及大量的炉渣和 粉尘等固体废弃物,对环境造成严重污染 。
原料供应与成本问题
总结词
高炉冶炼需要大量的铁矿石、煤炭等原料,这些原 料的供应和价格波动对高炉冶炼的成本和效益产生 影响。
详细描述
高炉冶炼的主要原料是铁矿石和煤炭,这些原料的 品质和价格对高炉冶炼的成本和效益产生直接影响 。如果铁矿石和煤炭的品质不稳定或者价格波动较 大,会导致高炉冶炼的成本增加,效益降低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概述课时:2学时授课内容:一、钢铁工业发展简史二、高炉冶炼产品三、高炉生产主要技术经济指标目的要求:1.了解炼铁、炼钢工业的发展简史;2.掌握炼铁产品及炼铁技术经济指标。

重、难点:1.炼铁产品及炼铁技术经济指标。

教学方法:利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。

讲授重点内容提要一、钢铁工业发展简史1、我国炼铁工业的发展简史◆早在2500年前的春秋、战国时期,就已生产和使用铁器,逐步由青铜时代过渡到铁器时代。

◆公元前513年,赵国铸的“刑鼎”。

◆1891年,清末洋务派首领张之洞首次在汉阳建造了两座日产lOOt生铁的高炉,迈出了我国近代炼铁的第一步。

◆之后,先后在鞍山、本溪、石景山、太原、马鞍山、唐山等地修建了高炉。

◆l943年是我国解放前钢铁产量最高的一年(包括东三省在内),生铁产量180万t,钢产量90万t,居世界第十六位。

◆1949年,生铁年产量仅为25万t,钢年产量l5.8万t。

◆新中国成立后,我国于l953年生铁产量就达到了190万t,当时超过了历史最高水平。

◆1957年生铁产量达到了597万t,高炉利用系数达到了l.321,我国在这一指标上跨入世界先进行列(美国当时高炉利用系数为1.0)。

◆1958年生铁产量为l364万t。

◆1978年生铁产量突破了3000万t。

◆1988年生铁产量达到了6000万t。

◆1993年生铁产量为8000万t,跃居世界第二位。

◆1995年生铁产量为1亿t,居世界第一位。

◆1998年生铁产量为l.2亿t。

2、现代炼钢方法及其发展趋势◆1855年英国冶金学家亨利²贝塞麦发明酸性空气底吹转炉炼钢方法。

◆平炉炼钢法由于用重油、成本高、冶炼周期长、热效率低等致命弱点,已基本上被淘汰。

◆氧气转炉炼钢法以氧气顶吹转炉炼钢法为主,同时还有底吹氧气转炉炼钢法、顶底复合吹炼氧气转炉炼钢法。

◆l996年我国钢产量已达到一亿多吨,其中氧气转炉炼钢法所炼钢约占70%。

◆2005年我国粗钢产量已达到3.49亿吨,其中氧气转炉炼钢法所炼钢约占75%。

◆电炉炼钢法以交流电弧炉炼钢为主,同时也有少部分直流电弧炉炼钢、感应炉炼钢及电渣重熔等。

◆纵观国内外炼钢方法的发展,主要炼钢方法的总发展趋势是:转炉炼钢法大力发展,成为最主要的炼钢方法;电炉炼钢法稳步发展、长兴不衰;平炉炼钢法则被淘汰。

◆目前炼钢的生产流程主要有以下两种:铁水→铁水预处理→氧气转炉→初炼钢水→炉外精炼→连铸机→连铸坯废钢→电弧炉→初炼钢水→炉外精炼→连铸机→连铸坯二、高炉冶炼产品高炉冶炼的主要产品是生铁,副产品是炉渣、煤气和一定量的炉尘(瓦斯灰)。

1.生铁◆生铁组成以铁为主,此外含碳质量分数为2.5%~4.5%,并有少量的硅、锰、磷、硫等元素。

◆生铁质硬而脆,缺乏韧性,不能延压成型,机械加工性能及焊接性能不好,但含硅高的生铁(灰口铁)的铸造及切削性能良好。

◆生铁按用途又可分为普通生铁和合金生铁。

◆普通生铁包括炼钢生铁和铸造生铁。

◆后者合金生铁主要是锰铁和硅铁。

◆我国现行生铁标准如下表所示。

表1-1 炼钢生铁国家标准(GB 717—82)表1-2铸造生铁国家标准(GB 718—82)2.炉渣◆矿石的脉石和熔剂、燃料灰分等熔化后组成炉渣,其主要成分为Ca0、Mg0、Si02、Al203及少量的Mn0、Fe0、S等。

◆炉渣有许多用途,常用做水泥原料及隔热、建材、铺路等材料。

◆每吨生铁的炉渣量l50-300kg。

3.煤气◆高炉煤气的化学成分为C0、C02、H2、N2及少量的CH4。

◆高炉煤气的发热值约(800~900)³4.18168kJ/m3 。

◆每吨铁可产煤气2000~3000m3。

◆高炉煤气是无色、无味的气体,有毒易爆炸。

4.炉尘◆炉尘是随高炉煤气逸出的细粒炉料,经除尘处理与煤气分离。

◆炉尘含铁、碳、Ca0等有用物质,可作为烧结的原料。

◆每吨铁产炉尘为l0~100kg。

三、高炉生产主要技术经济指标1.高炉有效容积利用系数()式中——每立方米高炉有效容积在一昼夜内生产铁的吨数;P——高炉一昼夜生产的合格生铁;——高炉有效容积,指炉缸、炉腹、炉腰、炉身、炉喉五段之和。

◆高炉有效容积利用系数是衡量高炉生产强化程度的指标。

◆越高,高炉生产率越高,每天所产生铁越多。

◆目前我国高炉有效容积利用系数为(1.8~2.3)t/(m3²d),高的可达3.0t/(m3²d)以上。

2.焦比(K)和燃料比(K f)式中 K—一吨生铁消耗的焦炭量;Q—高炉一昼夜消耗的干焦量。

式中——冶炼一吨生铁消耗的焦炭和喷吹燃料的数量之和;——高炉一昼夜消耗的干焦量和喷吹燃料之和。

◆煤比M是每吨生铁消耗的煤粉量。

◆油比Y是每吨生铁消耗的重油量)。

◆焦比和燃料比是衡量高炉物资消耗,特别是能耗的重要指标。

◆目前我国喷吹高炉的焦比一般低于450kg/t,燃料比小于550kg/t。

先进高炉焦比已小于400kg/t,燃料比约450kg/t。

◆将燃料也折合成焦炭计算出的总焦炭量为综合焦比。

3:冶炼强度(I)式中I一每昼夜每立方米高炉有效容积燃烧的焦炭量。

◆每昼夜每立方米高炉有效容积消耗的燃料总量,称为综合冶炼强度。

综合冶炼强度()◆计算冶炼强度要扣除休风时间。

◆冶炼强度是表示高炉生产强化程度的指标。

◆冶炼强度取决于高炉所能接受的风量。

鼓入高炉的风量越多,冶炼强度越高。

利用系数、焦比和冶炼强度之间的关系(当休风时间为零、不喷吹燃料时):4.生铁合格率合格生铁占高炉总产量的百分数为生铁合格率,即:◆化学成分符合国家标准的生铁为合格生铁。

◆生铁合格率是评价高炉产品质量好坏的重要指标。

5.休风率休风率是指休风时间占规定作业时间(日历时间扣除计划检修时间)的百分数,即:◆休风率反映设备管理维护和高炉的操作水平。

◆降低休风率是高炉增产节焦的重要途径。

6.生铁成本生铁成本是指冶炼一吨生铁所需的费用,包括原料、燃料、动力、工资、车间经费等。

◆原燃料成本费占80%左右。

◆冶炼成本费占20%左右。

◆降低焦炭消耗是降低成本的重要内容。

7.炉龄高炉从开炉到停炉大修之间的时间,为一代高炉的炉龄。

◆延长炉龄是高炉工作者的重要课题。

◆大高炉炉龄要求达到10年以上,国外大型高炉炉龄最长已达20年。

第二章炼铁原燃料课时:2学时授课内容:第一节铁矿石及其分类第二节高炉冶炼对铁矿石的要求第三节铁矿石冶炼前的准备和处理目的要求:1.知道常用的铁矿石的分类及主要特性;2.掌握高炉冶炼对铁矿石的要求;3.了解铁矿石冶炼前的准备和处理。

重、难点:1.铁矿石的分类和主要特性;2.高炉冶炼对铁矿石的要求。

教学方法:利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。

讲授重点内容提要第一节铁矿石及其分类一、矿物、矿石和岩石1. 矿物的概念及特点地壳中的化学元素经过各种地质作用,形成的天然元素和天然化合物称为矿物。

它具有较均一的化学成分和内部结晶构造,具有一定的物理性质和化学性质。

2.矿石和岩石的概念◆矿石和岩石均由矿物所组成,是矿物的集合体。

◆矿石是在目前的技术条件下能经济合理地从中提取金属、金属化合物或有用矿物的物质。

◆矿石由有用矿物和脉石矿物所组成。

能够被利用的矿物为有用矿物,目前尚不能利用的矿物为脉石矿物。

二、铁矿石的分类及主要特性根据含铁矿物的主要性质和矿物组成,铁矿石分为磁铁矿、赤铁矿、褐铁矿、菱铁矿四种类型。

1.磁铁矿磁铁矿化学式为Fe3O4,结构致密,晶粒细小,黑色条痕。

具有强磁性,含S、P较高,还原性差。

2.赤铁矿赤铁矿化学式为Fe2O3,条痕为樱红色,具有弱磁性。

含S、P较低,易破碎、易还原。

3.褐铁矿褐铁矿是含结晶水的氧化铁,呈褐色条痕,还原性好,化学式为nFe2O3²mH2O(n= 1~3,m=1~4)。

褐铁矿中绝大部分含铁矿物是以2Fe2O3²3H2O的形式存在的。

4.菱铁矿菱铁矿化学式为FeC03,颜色为灰色带黄褐色。

菱铁矿经过焙烧,分解出C02气体,含铁量即提高,矿石也变得疏松多孔,易破碎,还原性好。

其含S低,含P较高。

各种铁矿石的分类及其主要特性列于表2-1。

表2—1 铁矿石的分类及其特性第二节高炉冶炼对铁矿石的要求一、铁矿石品位高铁矿石品位是指铁矿石的含铁量,以TFe%表示。

铁矿石品位高有利于降低焦比和提高产量。

根据生产经验,矿石品位提高1%,焦比降低2%,产量提高3%。

从矿山开采出来的矿石,含铁量一般在30%~60%之间。

品位较高,经破碎筛分后可直接入炉冶炼的称为富矿。

一般当含铁量大于70%~90%时方可直接入炉。

品位较低,不能直接入炉的叫贫矿。

贫矿必须经过选矿和造块后才能入炉冶炼。

二、脉石成分愈低愈好铁矿石的脉石成分绝大多数为酸性的,SiO2含量较高。

铁矿石中si02含量愈高,需加入的石灰石也愈多,生成的渣量也愈多,这样,将使焦比升高,产量下降。

脉石中含碱性氧化物(Ca0、MgO)较多的矿石,冶炼时可少加或不加石灰石,对降低焦比有利,具有较高的冶炼价值。

三、有害杂质少和有益元素的含量1.有害杂质矿石中的有害杂质是指那些对冶炼有妨碍或使矿石冶炼时不易获得优质产品的元素。

主要有S、P、Pb、Zn、As、K、Na等。

◆硫硫在矿石中主要以硫化物状态存在。

硫的危害主要表现在:①当钢中的含硫量超过一定量时,会使钢材具有热脆性。

②对铸造生铁,会降低铁水的流动性,阻止Fe3C分解,使铸件产生气孔、难于切削并降低其韧性。

③硫会显著地降低钢材的焊接性,抗腐蚀性和耐磨性。

矿石中的含硫质量分数必须小于0.3%。

◆磷磷以Fe2P、Fe3P形态溶于铁水。

磷会造成钢的冷脆现象。

由于磷在选矿和烧结过程中不易除去,在高炉冶炼中又几乎全部还原进入生铁。

所以控制生铁含磷的惟一途径就是控制原料的含磷量。

◆铅和锌铅和锌常以方铅矿(PbS)和闪锌矿(ZnS)的形式存在于矿石中。

铅易渗入砖缝破坏炉底砌砖,甚至使炉底砌砖浮起。

铅又极易挥发,在高炉上部被氧化成PbO,粘附于炉墙上,易引起结瘤。

一般要求矿石中的含铅质量分数低于0.1%。

锌在炉内被氧化成ZnO,部分ZnO沉积在炉身上部炉墙上,形成炉瘤,部分渗入炉衬的孔隙和砖缝中,引起炉衬膨胀而破坏炉衬。

矿石中的含锌质量分数应小于0.1%。

◆砷砷会使钢材产生“冷脆”现象,并降低钢材焊接性能。

要求矿石中的含砷质量分数小于0.07%。

◆碱金属碱金属主要指钾和钠。

一般以硅酸盐形式存在于矿石中。

其危害主要为:①与炉衬作用生成钾霞石(K2O²A12O3²2SiO2),体积膨胀40%而损坏炉衬。

②与炉衬作用生成低熔点化合物,粘结在炉墙上,易导致结瘤。

③与焦炭中的碳作用生成插入式化合物(CK8、CNa8)体积膨胀很大,破坏焦炭高温强度,从而影响高炉下部料柱透气性。

相关文档
最新文档