高考数学高考必备知识点总结精华版(精选课件)

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高考数学必会知识点总结(20200616214321)

高考数学必会知识点总结(20200616214321)

( 2n - 1),
所有非空真子集的个数是 ( 2n - 2) 。
所有真子集的个数是
【 2019 年河南理科高考选择题第一题 ,
考的是集合的运用 , 2019 年河南文科数学考的是集合
的运算】
二、常用逻辑用语:
1、四种命题:
⑴原命题:若 p 则 q;⑵逆命题:若 q 则 p;⑶否命题:若 p 则 q;⑷逆否命题:若
②如果函数 y f ( x) 对于一切 x R, 都有 f ( a x) f (a x) ,
那么 y
直线 x a 对称;如果函数 y f ( x) 对于一切 x R, 都有 f ( a x) f ( a x) 2b ,
的图象关于点 (a, b) 对称。
f ( x) 的图象关于 那么 y f ( x)
你是否注
意到必须 a 0 ;当 a =0 时 ,
“方程有解”不能转化为
b 2 4ac 0 。若原题中没有指出是“二
次”方程、函数或不等式 ,
你是否考虑到二次项系数可能为零的情形?
2、利用二次函数的图象和性质 ,
讨论一元二次方程实根的分布。
设 x1, x2 为方程 f ( x) 0, (a 0) 的两个实根。
条件是结论成立的充分条件;由结论可推出条件 ,
要条件。 5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体 ,
逻辑中通常叫做全称量词 ,
1
则条件是结论成立的必 并用符号 表示。 含
有全体量词的命题 ,
叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分
f ( x1 ) f (x2) 0 x1 x2
f ( x)在 a,b 上是减函数 .

2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总高中数学重点知识点全总结1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。

)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

3、向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

4、并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

1、三类角的求法:①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

高中数学知识梳理PPT课件

高中数学知识梳理PPT课件

(’2001 全国)如图,小圆圈表示网络的结
点,结点之间的连线表承它们有网线相联.连
线标注的数字表示该段网线单位时间内可以通
过的最大信息量.现从结点A向结点B传递信息,
信息可以分开沿不同的路线同时传递.则单位
时间内传递的最大信息量为( D )
A. C.
26 B. 24
20 D. 19 B°
3+4+6+6=19 第6页/共58页
x
1

y=logax的图象和性质进行研究。 x
第31页/共58页
广:天高任鸟飞 ①全面复习,知识和能力并重 ②学会学习
新:万变不离其宗
①“旧题”新解,追求优美
例如:过抛物线y2=x上一点(4,2),作 倾
角 互 补 的 两 条 直 线 AB 、 AC 交 抛 物 线 思考:B、C,求证:直线BC的斜率为定值。
XC
= 4k 2
4k k2
1
,YC=
1 2k k
可求得KBC=
YB YC 1 XB XC 4
第33页/共58页
再思考:在解题过程中,求B点坐标的计算量比较 大,应该想办法改进。
我们还再回顾一下原来的解题程序。
设KAB→写直线AB、AC的方程→解出B、C→表示KBC
y
改进:先设B、C坐标。
⑤理解对数的概念,掌握对数的运算性质, 掌握对数函数的概念、图像和性质。
⑥能够运用函数的性质、指数函数和对数函 数的性质解决某些简单的实际问题。
第13页/共58页
不等式
①理解不等式的性质及其证明。 ②掌握两个(不扩展到三个)正数的算术
平均数不小于它们的几何平均数的定 理,并会简单的应用。 ③掌握分析法、综合法、比较法证明简单 的不等式。 ④掌握简单不等式的解法。 ⑤理解不等式 ∣a∣- ∣ b∣≤∣a+b∣≤∣a∣+∣b∣

高考数学知识点总结PPT

高考数学知识点总结PPT
掌握平面与平面平行、垂直判定定理,理解其证 明方法和应用。
空间中角距离计算方法
空间中异面直线所成角
01
理解异面直线所成角概念,掌握其计算方法。
直线与平面所成角
02
理解直线与平面所成角概念,掌握其计算方法。
二面角及其平面角
03
理解二面角及其平面角概念,掌握其计算方法。
平面直角坐标系下直线方程
直线方程一般式
解三角形应用举例
测量问题
能运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关 的实际问题。
最值问题
三角函数的图像和性质
理解正弦函数、余弦函数、正切函数 的图像和性质,并能运用这些性质解 决一些问题。
能运用三角函数性质及均值不等式解 决一些与最值有关的问题。
03
数列与数学归纳法
数列基本概念及分类
指数函数与对数函数
指数函数
理解指数函数的概念,掌握其图像和性质,并能进行简单应用。
对数函数
理解对数函数的定义,掌握其图像和性质,包括与指数函数的互为反函数关系 。
导数概念及运算规则
导数定义
理解导数的概念,掌握导数的几何意义和物理意义。
导数运算规则
掌握基本初等函数的导数公式和求导法则,包括和差、积、商的求导法则及复合 函数的求导法则。
一次函数和反比例函数
一次函数
理解一次函数的概念,掌握其图像和性质,并能解决相关问 题。
反比例函数
理解反比例函数的概念,掌握其图像和性质,并能进行简单 应用。
二次函数及图像变换
二次函数
掌握二次函数的图像和性质,包括顶 点、对称轴、最值等,并能解决相关 问题。
图像变换
理解平移、伸缩、对称等图像变换对 二次函数图像的影响。

高三数学知识点归纳PPT

高三数学知识点归纳PPT

高三数学知识点归纳PPT一、引言数学作为一门重要的学科,对于学生的综合素质发展具有重要的影响。

在高中数学的学习中,高三学生需要综合掌握各个知识点,并运用于解题中。

本文将对高三数学知识点进行归纳总结,并探讨如何制作一份高质量的知识点归纳PPT。

二、必修知识点1.函数与导数- 函数的概念与性质- 导数与函数的关系- 导数的计算法则- 导数的应用:极值与曲线的凹凸性2.三角函数- 弧度制与角度制的转换- 三角函数的周期性与奇偶性- 三角函数的图像与性质- 三角函数的基本关系式与恒等变换3.概率与统计- 事件与概率- 随机变量与分布律- 数学期望与方差- 正态分布与中心极限定理三、选修知识点1.数列与数学归纳法- 数列与数列的通项公式- 等差数列与等比数列- 递归数列与递推公式- 数学归纳法的应用2.平面向量与立体几何- 向量的基本运算- 向量的数量积与向量积- 立体几何中的投影与距离- 平面与直线的位置关系3.平面解析几何- 平面直角坐标系与点、直线的位置关系- 直线的方程与性质- 圆与椭圆的方程与性质- 图形的对称性与性质四、PPT制作要点1.清晰明了的页面布局- 使用统一的字体,字号和颜色- 突出重点知识点,并配以示意图或实例- 尽量避免过多文字,以点式叙述为主2.精选知识点的归纳总结- 确定哪些知识点是关键和容易混淆的- 将知识点按照逻辑顺序进行组织和归纳- 提供知识点之间的联系和应用示例3.动态展示与互动设计- 使用动画效果和转场方式增加视觉效果- 设置问题和演示步骤,引导学生思考与参与- 适当使用配乐和背景图片,提升PPT的整体感受五、结语通过对高三数学知识点的归纳总结,学生可以更好地理解和掌握数学的基础知识,提高解题的能力。

制作一份高质量的知识点归纳PPT可以让学生更加直观地了解数学的内涵,并通过互动设计增加学习的趣味性。

希望本文的内容对您的PPT制作有所帮助,祝愿您在高三数学学习中取得优异的成绩!。

高考数学知识点总复习pppt课件

高考数学知识点总复习pppt课件

• ak+2+(a+1)2k+1
• =(a+1)2[ak+1+(a+1)2k-1]+ak+2-ak+1(a
+1)2
27
=(a+1)2[ak+1+(a+1)2k-1]-ak+1(a2+a+1)能被 a2+a+1 整除.
即当 n=k+1 时命题也成立. 根据(1)(2)可知,对于任意 n∈N+,an+1+(a+1)2n-1 能被 a2 +a+1 整除.

1 2k+1-1

1 2k+1
=k+1 1+k+1 2+…+21k+2k+1 1-2k+1 1
=k+1 2+k+1 3+…+21k+2k+1 1+k+1 1-2k+1 1

k+11+1+
k+11+2+…
+k+11+k+
1 k+1+k+1
=右边,
13
• 所以当n=k+1时等式也成立.
• 综合(1)(2)知对一切n∈N* ,等式都成立.
• (2)(n归=k纳+1递推)假设当n=k(k∈N*,k≥n0)时 命题成立,推出当__________时命题也成 立.
3
• 只要完成这两个步骤,就可以断定命题对n取 第一个值后面的所有正整数都成立.上述证 明方法叫做数学归纳法.
• 质疑探究:数学归纳法两个步骤有什么关系?
• 提示:数学归纳法证明中的两个步骤体现了 递推思想,第一步是递推的基础,第二步是 递推的依据,两个步骤缺一不可,否则就会 导致错误.
第十一章 复数、算法、推理与 证明
第5节 数学归纳法
1
• 1.了解数学归纳法的原理. • 2.能用数学归纳法证明一些简单的数学命
题.
2
• [要点梳理]
• 数学归纳法
• 一般地,证明一个与正整数n有关的命题,可 按下列步骤进行:

高三数学知识点归纳PPT

高三数学知识点归纳PPT

高三数学知识点归纳PPT一、导言高三是每个学生的重要阶段,尤其是对于学习数学的学生而言。

在高三数学学习过程中,我们需要掌握并复习许多重要的数学知识点。

为了帮助同学们更好地备考,本文将根据高三数学知识点归纳,提供一份PPT展示文档,以便同学们进行深入学习和复习。

二、数学知识点归纳PPT结构1. 代数代数是高中数学中的一个重要分支,包含了许多基本概念和技巧。

在代数部分的PPT中,我们将呈现以下内容: - 线性方程与不等式 - 二次方程与不等式 - 函数及其图像 - 指数与对数 - 三角函数与解三角形2. 几何几何是数学中具有直观性和形象性的一个部分,也是高三数学考试中的一大重点。

在几何部分的PPT中,我们将呈现以下内容: - 直线与平面 - 三角形 - 四边形与多边形 - 圆与圆锥曲线 - 空间几何与立体几何3. 概率与统计概率与统计是数学中实际应用较多的一个领域,在高考中也经常出现。

在概率与统计部分的PPT中,我们将呈现以下内容: - 随机事件与概率 - 事件的独立性与相关性 - 统计与统计图表 - 抽样调查与样本误差 - 参数估计与假设检验三、使用PPT进行学习与复习的优势使用PPT进行数学学习与复习有许多优势,主要包括以下几点: 1. 图文并茂:PPT可以同时呈现文字和图像,使得学习内容更加直观、易于理解。

2. 结构清晰:PPT以幻灯片的形式展示,每一页内容都有明确的标题和内容,使得整个学习过程更加有条理。

3. 知识点归纳:通过PPT的制作,可以将各个知识点进行整理和归纳,便于学生进行系统性的学习和复习。

4. 知识点链接:PPT可以通过链接的方式将相关的知识点进行连接,使得学习过程更加连贯和完整。

四、如何利用PPT进行高三数学学习与复习1. 充分利用PPT上的文字和图像在学习PPT时,应充分利用PPT上的文字和图像,通过阅读文字和观察图像,理解和记忆每个知识点的要点和关键概念。

可以使用荧光笔或红笔,在PPT上做一些标记,以便于回顾时更容易记忆。

2024年高三数学高考知识点总结

2024年高三数学高考知识点总结

2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。

(完整word版)高考数学知识点归纳总结,推荐文档

(完整word版)高考数学知识点归纳总结,推荐文档

高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。

2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。

且:有假为假,全真为真。

非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。

常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。

高中数学知识点总结(新高考地区)精选全文完整版

高中数学知识点总结(新高考地区)精选全文完整版

一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。

高考数学知识点全解析PPT

高考数学知识点全解析PPT

06. 高考数学备考策略
制定复习计划:根据自身的学习情况,制定合理的复习计划
制定合理的复习计划
个人学习情况 合理规划时间 提高复习效率
关键词 输出
掌握高考数学知识点
系统学习 高考数学 核心知识点 解题技巧 练习掌握
提高应试能力
模拟考试 错题分析 提高应试能力 应对压力 能力提升
做模拟试题:通过做模拟试题,了解自身的学习情况和弱点
几何运算:图形的面积和体积 计算
三角形面积公式的运用 在高考数学试题中,三角形面积的计算是常见的题型,其公式为底乘 以高再除以2,例如:一个直角三角形的底边长为3,高为4,那么其面 积为6。 矩形体积的计算方法 矩形的体积计算公式为长乘以宽再乘以高,如:一个长方体的长为5, 宽为4,高为3,那么它的体积为60。 圆面积和体积公式的理解 圆的面积计算公式为π乘以半径的平方,而其体积计算公式为π乘以半 径的立方乘以高度的一半。这两个公式在高考中的应用广泛。
利用已知条件求解未知量:通 过已知条件推导出未知量
数学公式 数学公式是高考数学知识点的核心,通过已知条件推导出未知量的过 程就是运用数学公式解决问题的过程。例如,求解二次方程的根,可 以通过求导数和代入法来得到解。 逻辑思维 逻辑思维是解题的关键,通过已知条件推导出未知量的过程需要运用 逻辑思维进行推理和判断。例如,求解三角形的面积,可以通过海伦 公式和勾股定理来进行计算。
04
高考数学应用题解答策略
06
高考数学备考策略
01. 高考数学基础知识点
数与式子:实数,复数,代数式
实数的广泛应用 实数在工程、科学计算中占据主导地位,如π的精确计算需要用到实数。 复数的数学价值 复数是解决一些实际问题的重要工具,如电子工程中的交流电路分析。 代数式的运算法则 掌握代数式的运算法则对于解决复杂的数学问题至关重要。

高考数学知识点总结精华版

高考数学知识点总结精华版

高考数学知识点总结精华版一、函数函数是高考数学中的重点和难点,贯穿整个数学学习的始终。

1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。

2、函数的性质(1)单调性:如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

(2)奇偶性:如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),那么函数 f(x)就叫做偶函数;如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数。

3、常见函数(1)一次函数:y = kx + b(k≠0)(2)二次函数:y = ax²+ bx + c(a≠0),其图像是一条抛物线,对称轴为 x = b /(2a) ,顶点坐标为(b /(2a),(4ac b²) /(4a))。

(3)反比例函数:y = k / x(k≠0)4、函数的图像变换(1)平移变换:向左平移 h 个单位,将 x 变为 x + h;向右平移 h 个单位,将 x 变为 x h;向上平移 k 个单位,将 y 变为 y k;向下平移k 个单位,将 y 变为 y + k 。

(2)对称变换:关于 x 轴对称,将 y 变为 y;关于 y 轴对称,将 x 变为 x;关于原点对称,将 x 变为 x,y 变为 y 。

二、三角函数1、任意角和弧度制(1)角的概念的推广:正角、负角、零角。

(2)弧度制:弧长公式 l =|α|r ,扇形面积公式 S = 1/2 lr =1/2 |α|r² 。

2、三角函数的定义在平面直角坐标系中,设角α的终边上任意一点 P 的坐标为(x,y),它与原点的距离为 r(r =√(x²+ y²) > 0) ,则sinα = y/r ,cosα = x/r ,tanα = y/x 。

高考数学必备知识点总结

高考数学必备知识点总结

高考数学必备知识点总结1、混杂命题的否认与否命题命题的〝否认〞与命题的〝否命题〞是两个不同的概念,命题p的否认能否认命题所作的判别,而〝否命题〞是对〝假定p,那么q〞方式的命题而言,既要否认条件也要否认结论。

2、无视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实践上就隐含着对字母参数的一些要求。

3、判别函数奇偶性疏忽定义域致误判别函数的奇偶性,首先要思索函数的定义域,一个函数具有奇偶性的必要条件是这个函数的定义域关于原点对称,假设不具有这个条件,函数一定是非奇非偶函数。

4、函数零点定理运用不当致误假设函数y=f〔x〕在区间[a,b]上的图像是一条延续的曲线,并且有f〔a〕f〔b〕0,那么,函数y=f〔x〕在区间〔a,b〕内有零点,但f〔a〕f〔b〕0时,不能否认函数y=f〔x〕在〔a,b〕内有零点。

函数的零点有〝变号零点〞和〝不变号零点〞,关于〝不变号零点〞函数的零点定理是〝无能为力〞的,在处置函数的零点效果时要留意这个效果。

5、函数的单调区间了解不准致误在研讨函数效果时要时时辰刻想到〝函数的图像〞,学会从函数图像上去剖析效果、寻觅处置效果的方法。

关于函数的几个不同的单调递增〔减〕区间,切忌运用并集,只需指明这几个区间是该函数的单调递增〔减〕区间即可。

6、三角函数的单调性判别致误关于函数y=Asin〔ωx+φ〕的单调性,当ω0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相反,故可完全依照函数y=sin x的单调区间处置;但当ω0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再依照函数y=sinx的单调性处置,普通是依据三角函数的奇偶性将内层函数的系数变为正数后再加以处置。

关于带有相对值的三角函数应该依据图像,从直观上停止判别。

7、向量夹角范围不清致误解题时要片面思索效果。

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结一、集合与常用逻辑用语。

1. 集合。

- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。

- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。

- 集合的运算:交集、并集、补集的定义、性质和运算规则。

例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。

2. 常用逻辑用语。

- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。

- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。

- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。

- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。

例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。

二、函数。

1. 函数的概念。

- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应关系。

定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。

2. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。

《高考数学知识总结》课件

《高考数学知识总结》课件

数列求解:利用数列 的性质和公式进行求

向量求解:利用向量 的性质和公式进行求

矩阵求解:利用矩阵 的性质和公式进行求

利用图形的性质和定理进行推理 运用相似三角形、全等三角形等几何知识进行解题 利用辅助线进行解题,如添加平行线、垂线等 运用几何公式进行解题,如面积公式、周长公式等
理解概率与统计的基本概念和公式 掌握概率与统计的解题步骤和方法 学会运用概率与统计的解题技巧解决实际问题 提高概率与统计的解题速度和准确性
几何证明:利用已知条件,通过逻辑推理和数学运算,证 明几何命题
几何应用:解决实际问题,如测量、设计、建筑等
概率的基本概念:理解概率的定义、性质和计算方法
概率分布:掌握常见的概率分布,如正态分布、二项分布等
统计推断:理解参数估计和假设检验的基本原理和方法 统计图表:掌握常见的统计图表,如直方图、箱线图等,并能够进行数据 分析和可视化展示
正弦定理 和余弦定 理:解决 三角形边 角关系问 题
诱导公式: 解决三角 函数值域 问题
两角和与 差的正弦、 余弦公式: 解决三角 函数和差Байду номын сангаас问题
倍角公式: 解决三角 函数倍角 问题
辅助角公 式:解决 三角函数 化简问题
正切定理: 解决三角 形面积问 题
例题1:求三角函 数的值域
例题2:求三角函 数的最大值和最 小值
例题3:求三角函 数的周期
例题4:求三角函 数的对称轴和顶 点
方程求解:利用方程 的性质和公式进行求

代数变形:通过代数 变形简化问题
因式分解:利用因式 分解法求解
方程组求解:利用消 元法、代入法等求解
函数求解:利用函数 的性质和公式进行求

完整版)高考数学高考必备知识点总结精华版

完整版)高考数学高考必备知识点总结精华版

完整版)高考数学高考必备知识点总结精华版高考前重点知识回顾第一章-集合集合是由确定性、互异性和无序性的元素组成的。

集合的性质包括:任何一个集合都是它本身的子集,空集是任何集合的子集,空集是任何非空集合的真子集。

n个元素的子集有2n个,n个元素的真子集有2n-1个,n个元素的非空真子集有2n-2个。

集合运算包括交、并和补。

简易逻辑中,构成复合命题的形式包括p或q(记作“p∨q”)、p且q(记作“p∧q”)和非p(记作“┑q”)。

四种命题的形式及相互关系包括原命题、逆命题、否命题和逆否命题。

原命题为真,它的逆命题不一定为真;原命题为真,它的否命题不一定为真;原命题为真,它的逆否命题一定为真。

如果已知p q,那么我们说p是q的充分条件,q是p的必要条件。

若p q且q p,则称p是q的充要条件,记为p⇔q。

第二章-函数函数的性质包括定义域、值域、奇偶性和单调性。

偶函数满足f(x)f(x),奇函数满足f(x)f(x)。

函数的单调性分为增函数和减函数。

指数函数和对数函数是常用的函数类型。

指数函数的图像是对称的,而对数函数的图像则是关于x=1对称的。

指数函数的定义域为R,值域为(,+∞),对数函数的定义域为x>0,值域为R。

在R上,对数函数y=logax(a>0且a1)是一个增函数当x>0时,01.该函数的图像和性质如下:1)定义域为(0,+∞);2)值域为R;3)过点(1,0),即当x=1时,y=0;4)当x在(0,1)范围内时,y随x的增加而减小;当x在(1,+∞)范围内时,y随x的增加而增大;5)在(0,+∞)范围内是一个增函数,在(0,+∞)范围外是一个减函数。

⑴对于对数和指数运算,有以下公式:logaM N) = logaM + logaNaras = ar+sar)s = arslogaM/N) = logaM - logaNlogaMn = nlogaMab) = abxy = a⑵对于y=logax(a,a1)和其反函数,有以下性质:它们互为反函数。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结第一章 集合与函数概念 【1.1.1】集合的含义与表示〔1〕集合的概念集合中的元素具有确定性、互异性和无序性. 〔2〕常用数集及其记法N 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.N *N +Z Q R〔3〕集合与元素间的关系对象与集合的关系是,或者,两者必居其一.a M a M ∈a M ∉ 〔4〕集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素.x x x ④图示法:用数轴或韦恩图来表示集合. 〔5〕集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集〔〕.【1.1.2】集合间的基本关系名称 记号 意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于BA ⊆(1)A A∅⊆(2) A C ⊆,则B C ⊆且B A ⊆若(3) A B =,则B A ⊆且B A ⊆若(4)A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆中至B ,且少有一元素不属于A为非空子集)A (A ≠∅⊂)1( A C≠⊂,则B C ≠⊂且A B ≠⊂若(2) B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于AB ⊆(1)A A⊆(2)B A(B)【1.1.3】集合的基本运算〔8名称记号 意义 性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集UA {|,}x x U x A ∈∉且()U A A U =2 ()U A A =∅1()()()UU U A B A B =()()()U U U A B A B =【补充知识】含绝对值的不等式与一元二次不等式的解法〔1〕含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>,||x a <看成一个整体,化成ax b +把型不等式来求解||(0)x a a >> 〔2判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x > {|x }2b x a≠-R 20(0)ax bx c a ++<>的解集12{|}x x x x <<∅∅〖1.2 【1.2.1】函数的概念〔1〕函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应〔包括集合,以及到的对应法则〕叫做集合到的一个函数,记作. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 〔2〕区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞注意:对于集合与区间,前者可以大于或等于,而后者必须{|}x a x b <<(,)a b a b a b <.〔3〕求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.()f x②是分式函数时,定义域是使分母不为零的一切实数.()f x③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.()f x④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤中,.tan y x =()2x k k Z ππ≠+∈⑥零〔负〕指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.()f x⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.()f x[,]a b[()]f g x()a g x b≤≤⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.〔4〕求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.()y f x=y x2()()()0a y xb y xc y++=()0a y≠,x y2()4()()0b y a yc y∆=-⋅≥④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法〔5〕函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.〔6〕映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应〔包括集合,以及到的对应法则〕叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.A B,a Ab B∈∈a b b a a b〖1.3〗函数的基本性质【1.3.1】单调性与最大〔小〕值〔1〕函数的单调性增减.[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =〔2〕打“√”函数的图象与性质()f x 分别在、上为增函数,分别在、上为减函数.(,]a -∞-[,)a +∞[,0)a -(0,]a〔3〕最大〔小〕值定义①一般地,设函数的定义域为,如果存在实数满足:〔1〕对于任意的,都有; 〔2〕存在,使得.那么,我们称是函数 的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:〔1〕对于任意的,都有;〔2〕存在,使得.那么,我们称是函数的最小值,记作.【1.3.2】奇偶性〔4〕函数的奇偶性函数的性 质定义图象 判定方法函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.y y④在公共定义域内,两个偶函数〔或奇函数〕的和〔或差〕仍是偶函数〔或奇函数〕,两个偶函数〔或奇函数〕的积〔或商〕是偶函数,一个偶函数与一个奇函数的积〔或商〕是奇函数.〖补充知识〗函数的图象〔1〕作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质〔奇偶性、单调性〕; ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去〔2〕识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. 〔3〕用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数〔Ⅰ〕〖2.1〗指数函数【2.1.1】指数与指数幂的运算〔1〕根式的概念①如果,且,那么叫做的次方根.当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根.,,,1nxa a R x R n =∈∈>n N +∈x a n n ann ann n a n②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.n a n a n 0a ≥③根式的性质:;当为奇数时,;当为偶数时,.n a =na =n(0)|| (0)a a a a a ≥⎧==⎨-<⎩ 〔2〕分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.0,,,m naa m n N +=>∈1)n >②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 1()0,,,m m nn aa m n N a -+==>∈1)n >〔3〕分数指数幂的运算性质① ②(0,,)rs r s a a a a r s R +⋅=>∈()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质〔4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(0,1)xaN a a =>≠且x a N log a x N =a N②负数和零没有对数. ③对数式与指数式的互化:.log (0,1,0)x a x N a N a a N =⇔=>≠>〔2〕几个重要的对数恒等式log 10a =,,.log 1a a =log b a a b =〔3〕常用对数与自然对数常用对数:,即;自然对数:,即〔其中…〕. 〔4〕对数的运算性质 如果,那么①加法: ②减法:log log log ()aa a M N MN +=log log log a a aM M N N-=③数乘: ④log log ()n aa n M M n R =∈log a N a N =⑤ ⑥换底公式:log log (0,)b na an M M b n R b=≠∈log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质〔6设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=〔7〕反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;()y f x =1()x f y -=③将改写成,并注明反函数的定义域.1()x f y -=1()y f x -=〔8〕反函数的性质①原函数与反函数的图象关于直线对称.()y f x =1()y f x -=y x =②函数的定义域、值域分别是其反函数的值域、定义域.()y f x =1()y f x -=③若在原函数的图象上,则在反函数的图象上.(,)P a b ()y f x ='(,)P b a 1()y f x -= ④一般地,函数要有反函数则它必须为单调函数.()y f x =〖2.3〗幂函数〔1〕幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.y x α=x α 〔2〕幂函数的图象〔3〕幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限〔图象关于轴对称〕;是奇函数时,图象分布在第一、三象限〔图象关于原点对称〕;是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点. (0,)+∞(1,1)③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.0α>[0,)+∞0α<(0,)+∞x y④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当〔其中互质,和〕,若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =〖补充知识〗二次函数〔1〕二次函数解析式的三种形式①一般式:②顶点式:③两根式:〔2〕求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大〔小〕值有关时,常使用顶点式. ③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.x()f x〔3〕二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.2()(0)f x ax bx c a =++≠,2bx a=-24(,)24b ac b a a --②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.0a >(,]2b a -∞-[,)2b a -+∞2b x a =-2min 4()4ac b f x a -=0a <(,]2b a -∞-[,)2b a-+∞2bx a =-2max 4()4ac b f x a-=③二次函数当时,图象与轴有两个交点.2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||||M x M x M M x x a =-=〔4〕一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理〔韦达定理〕的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向: ②对称轴位置: ③判别式: ④端点函数值符号. 20(0)axbx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2b x a=-∆ ①k <②x1≤x2<k③x1④k1<x1≤x2<k2 ⇔⑤有且仅有一个根x1〔或x2〕满足k1<x1〔或x2〕<k2 f 〔k1〕f 〔k2〕0,并同时考虑f 〔k1〕=0或f 〔k2〕=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 ⇔ 此结论可直接由⑤推出. 〔5〕二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.()f x [,]p q M m 01()2x p q =+〔Ⅰ〕当时〔开口向上〕①若,则 ②若,则 ③若,则2b p a -<()m f p =2b p q a ≤-≤()2b m f a=-2bq a ->()m f q =0x)<()2b f a =-2b q a ->()M f q =0x ) xxx0x (q)0x x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点. 2.即:方程有实数根函数的图象与轴有交点函数有零点.0)(=x f ⇔)(x f y =x ⇔)(x f y =3、函数零点的求法: 求函数的零点:)(x f y =〔代数法〕求方程的实数根;〔几何法〕对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数.)0(2≠++=a c bx ax y1〕△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2〕△=0,方程有两相等实根〔二重根〕,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3〕△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高中数学 必修2知识点第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:〔1〕.平行于坐标轴的线依然平行于坐标轴;〔2〕.平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; 〔3〕.画法要写好.5 用斜二测画法画出长方体的步骤:〔1〕画轴〔2〕画底面〔3〕画侧棱〔4〕成图1.3 空间几何体的表面积与体积〔一 〕空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积5 球的表面积22R Rl r rl S ππππ+++=24R S π=〔二〕空间几何体的体积1柱体的体积 2锥体的体积 h S V ⨯=底h S V ⨯=底313台体的体积 4球体的体积 h S S S S V⨯++=)31下下上上(334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的x<O-=f (p)f (q) ()2b f a-x x<O-=f (p)f (q)()2b f a-x 222r rl S ππ+= D Cα2 平面的画法及表示〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕〔2〕平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等. 3 三个公理:〔1〕公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L αA ∈αB ∈α公理1作用:判断直线是否在平面内〔2〕公理2:过不在一条直线上的三点,有且只有一个平面. 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α.公理2作用:确定一个平面的依据.〔3〕公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点. 2 公理4:平行于同一条直线的两条直线互相平行. 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4作用:判断空间两条直线平行的依据.3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈〔0, 〕;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:〔1〕直线在平面内 —— 有无数个公共点〔2〕直线与平面相交 —— 有且只有一个公共点 〔3〕直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a ∩α=A a ∥α2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 简记为:线线平行,则线面平行. 符号表示:a αb β => a ∥α共面直线 LA · α P ·αLβ=>a ∥c2a∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行.符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:〔1〕用定义;〔2〕判定定理;〔3〕垂直于同一条直线的两个平面平行.2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.简记为:线面平行则线线平行.符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题.2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行.符号表示:α∥βα∩γ= a a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面.如图,直线与平面垂直时,它们唯一公共点P叫做垂足.Lpα2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.注意点: a〕定理中的“两条相交直线”这一条件不可忽视;b〕定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行.2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.本章知识结构框图第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α〔α≠90°〕的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1〔x1,y1〕,P2〔x2,y2〕,x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k=y2-y1/x2-x13.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、直线的点斜式方程:直线经过点,且斜率为l),(yxP k)(xxkyy-=-平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系平面与平面的位置关系直线与平面的位置关系2、、直线的斜截式方程:已知直线的斜率为,且与轴的交点为 l k y ),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点其中 y-y1/y-y2=x-x1/x-x2),(),,(222211y x P x x P ),(2121y y x x ≠≠2、直线的截距式方程:已知直线与轴的交点为A ,与轴的交点为B ,其中lx )0,(a y ),0(b 0,0≠≠b a3.2.3 直线的一般式方程1、直线的一般式方程:关于的二元一次方程〔A ,B 不同时为0〕2、各种直线方程之间的互化.3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0 L1:2x+y +2=0解:解方程组 得 x=-2,y=234202220x y x y +-=⎧⎨++=⎩所以L1与L2的交点坐标为M 〔-2,2〕3.3.2 两点间距离 两点间的距离公式 3.3.3点到直线的距离公式1.点到直线距离公式: 点到直线的距离为:),(00y x P 0:=++C By Ax l 2200BA CBy Ax d +++=2、两平行线间的距离公式:已知两条平行线直线和的一般式方程为:,1l 2l 1l 01=++C By Ax2l :,则与的距离为02=++C By Ax 1l 2l 2221BA C C d +-=第四章 圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A〔a,b 〕,半径为r 的圆的方程00(,)M x y 222()()x a y b r -+-=2、点与圆的关系的判断方法:〔1〕>,点在圆外 〔2〕=,点在圆上〔3〕<,点在圆内4.1.2 圆的一般方程1、圆的一般方程: 022=++++F Ey Dx y x2、圆的一般方程的特点:〔1〕①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.〔2〕圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.〔3〕、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.12PP =4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:l 0=++c by ax C 022=++++F Ey Dx y x r )2,2(E D --d 〔1〕当时,直线与圆相离;〔2〕当时,直线与圆相切; 〔3〕当时,直线与圆相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:l 〔1〕当时,圆与圆相离;〔2〕当时,圆与圆外切; 〔3〕当时,圆与圆相交;〔4〕当时,圆与圆内切;〔5〕当时,圆与圆内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组,、、分别是P 、Q 、R 在、、轴上的坐标),,(z y x x y z x y z2、有序实数组,对应着空间直角坐标系中的一点),,(z y x3、空间中任意点M 的坐标都可以用有序实数组来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ,叫做点M 的横坐标,叫做点M 的纵坐标,叫做点M 的竖坐标.4.3.2空间两点间的距离公式1、空间中任意一点到点之间的距离公式),,(1111z y x P ),,(2222z y x P22122122121)()()(z z y y x x P P -+-+-=y高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:〔1〕有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.〔2〕确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.〔3〕顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.〔4〕不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.〔5〕普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:〔一〕程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形. 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.〔二〕构成程序框的图形符号及其作用和一个退出点.判断框具有超过一个退出点的唯一符号.4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.5、在图形符号内描述的语言要非常简练清楚.〔三〕、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构.1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构.顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.。

高考数学高考必备知识点总结精华版

高考数学高考必备知识点总结精华版

高考前重点知识回顾第一章-集合(一)、集合:集合元素的特征:确定性、互异性、无序性。

1、集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;①n个元素的子集有2n个。

n个元素的真子集有2n-1个。

n个元素的非空真子集有2n-2个。

[注]①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题。

②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题。

2、集合运算:交、并、补.(三)简易逻辑构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p ∧q”);非p(记作“┑q”) .1、“或”、“且”、“非”的真假判断4、四种命题的形式及相互关系:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p。

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。

若pq且qp,则称p是q的充要条件,记为p⇔q。

第二章-函数一、函数的性质(1)定义域:(2)值域:(3)奇偶性:(在整个定义域内考虑)①定义:①偶函数:,②奇函数:②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求;d。

比较或的关系。

(4)函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,⑴若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数;⑵若当x1<x2时,都有f(x1)〉f(x2),则说f(x) 在这个区间上是减函数.二、指数函数与对数函数指数函数的图象和性质对数函数y=log a x(a>0且a1)的图象和性质:⑴对数、指数运算:⑵()与()互为反函数。

第三章数列1。

⑴等差、等比数列:(2)数列{}的前项和与通项的关系:第四章-三角函数一.三角函数1、角度与弧度的互换关系:360°=2 ;180°= ;1rad=°≈57。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学高考必备知识点总结精华版高考前重点知识回顾第一章-集合(一)、集合:集合元素的特征:确定性、互异性、无序性。

1、集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n个。

n 个元素的真子集有2n -1个。

n 个元素的非空真子集有2n-2个.[注]①一个命题的否命题为真,它的逆命题一定为真.否命题⇔逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题.2、集合运算:交、并、补.{|,}{|}{,}AB x x A x B AB x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C(三)简易逻辑构成复合命题的形式:p或q(记作“p∨q ” );p 且q (记作“p ∧q ” );非p(记作“┑q” ) 。

...文档交流 仅供参考... 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系:原命题:若P 则q; 逆命题:若q 则p ; 否命题:若┑P 则┑q;逆否命题:若┑q 则┑p 。

①、原命题为真,它的逆命题不一定为真. ②、原命题为真,它的否命题不一定为真. ③、原命题为真,它的逆否命题一定为真。

6、如果已知p⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ⇒q 且q ⇒p ,则称p 是q 的充要条件,记为p ⇔q 。

第二章-函数一、函数的性质(1)定义域: (2)值域:(3)奇偶性:(在整个定义域内考虑)①定义:偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。

(4)函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x2,⑴若当x 1〈x 2时,都有f(x 1)<f(x2),则说f(x)在这个区间上是增函数;⑵若当x 1〈x2时,都有f (x 1)〉f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数指数函数)10(≠>=a a a y x且的图象和性质a 〉10<a <1图 象性 质(1)定义域:R (2)值域:(0,+∞)(3)过定点(0,1),即x=0时,y=1(4)x>0时,y>1;x 〈0时,0<y <1(4)x>0时,0<y <1;x<0时,y >1.(5)在 R上是增函数 (5)在R 上是减函数 对数函数y=log a x(a 〉0且a ≠1)的图象和性质:图象y=log a xOyxa>1a<1x=1⑴对数、指数运算:log ()log log log log log log log a a a a a a n a a M N M N MM N N M n M⋅=+=-=()()r s r sr s rs rrra a aa a ab a b+===⑵xa y =(1,0≠a a )与x y a log =(1,0≠a a )互为反函数。

第三章 数列1。

⑴等差、等比数列:性 质(1)定义域:(0,+∞) (2)值域:R(3)过点(1,0),即当x=1时,y=0(4))1,0(∈x 时 0<y ),1(+∞∈x 时 y>0)1,0(∈x 时0>y),1(+∞∈x 时0<y(5)在(0,+∞)上是增函数 在(0,+∞)上是减函数等差数列 等比数列定义 d a a n n =-+1 )0(1≠=+q q a a nn 递推公式 d a a n n +=-1; md a a n m n +=- q a a n n 1-=;m n m n q a a -=通项公式d n a a n )1(1-+= 11-=n n q a a (0,1≠q a )(2)数列{n a }的前n 项和n S 与通项na 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n第四章-三角函数一.三角函数1、角度与弧度的互换关系:360°=2π ;180°=π ; 1rad =π180°≈57。

30°=57°18ˊ;1°=180π≈0.01745(ra d)注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 2、弧长公式:r l⋅=||α。

扇形面积公式:211||22s lr r α==⋅扇形3、三角函数: r y =αsin ; r x =αcos ; xy=αtan ;4、三角函数在各象限的符号:(一全二正弦,三切四余弦)中项公式 2ba A +=ab G =2前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+= ()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质 q p m n +=+则q p m n a a a a +=+),,,,(*q p n m N q p n m a a a a q p n m +=+∈⋅=⋅正切、余切余弦、正割-----+++++-+正弦、余割o o oxyx yxy5、同角三角函数的基本关系式:αααtan cos sin =1cos sin 22=+αα6、诱导公式:x x k x x k x x k xx k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ7、两角和与差公式=±)sin(βαβαβαsin cos cos sin ± =±)cos(βαβαβαsin sin cos cosβαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-8、二倍角公式是:s in2α=ααcos sin 2⋅c os2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-。

辅助角公式asi nθ+b co sθ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定....文档交流 仅供参考...9、特殊角的三角函数值:α6π4π 3π 2ππ23πsin α 0 21 22 23 1 01-cos α 1 23 22 21 0 1-0 tanα33 1 3 不存在 0 不存在 co tα不存在 3133 0不存在10、正弦定理 R C cB b A a 2sin sin sin ===(R 为外接圆半径).余弦定理 c 2 = a2+b2—2bccosC, b2 = a 2+c 2-2accos B,a2 = b 2+c 2-2bcco sA 。

面积公式:A bcB acC ab ch bh ah S c b a sin 21sin 21sin 21212121======∆11。

)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T 。

12.)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk )。

第五章-平面向量(1)向量的基本要素:大小和方向.(2)向量的长度:即向量的大小,记作|a |.22a x y =+(),a x y =(3)特殊的向量:零向量a =O ⇔|a |=O 。

单位向量a 为单位向量⇔|a |=1. (4)相等的向量:大小相等,方向相同(x 1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x (5) 相反向量:a =-b ⇔b =-a ⇔a +b =0(6)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b.平行向量也称为共线向量. (7)。

向量的运算运算类型 几何方法 坐标方法 运算性质向量的 加1.平行四边形法则 2.三角形法则1212(,)a b x x y y +=++a b b a +=+()(a b c a b c++=++AC BC AB =+法向量的减法三角形法则1212(,)a b x x y y-=--()a b a b-=+-AB BA=-,ABOAOB=-数乘向量1.aλ是一个向量,满足:||||||a aλλ=2.λ>0时,a aλ与同向;λ<0时,a aλ与异向;λ=0时,aλ=。

(,)a x yλλλ=()()a aλμλμ=()a a aλμλμ+=+()a b a bλλλ+=+//a b a bλ⇔=向量的数量积a b•是一个数1.00a b==或时,0a b•=00||||cos(,)a ba b a b a b≠≠=且时,1212a b x x y y•=+()cos0,0,0180a b a b a bθθ⋅=≠≠≤≤a b b a•=•()()(a b a b aλλλ•=•=•()a b c a c b+•=•+•222||||=a a a x y=+即||||||a b a b•≤(8)两个向量平行的充要条件a ∥b (b0)01221=-=⇔y x y x ba 或λ(9)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔x 1·x2+y1·y2=0(10)两向量的夹角公式:cos θ=||·||·b a ba =222221212121y x y x y y x x +•++0≤θ≤180°,附:三角形的四个“心”;1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 (11)△AB C的判定:⇔+=222b ac △A BC为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B<2π2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B>2π(11)平行四边形对角线定理:对角线的平方和等于四边的平方和.第六章-不等式1.几个重要不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a ,(a -b)2≥0(a 、b ∈R)(2)ab b a R b a 2,,22≥+∈则(3)+∈R b a ,,则ab b a 2≥+;(4)222)2(2b a b a +≥+;⑸若a 、b ∈R+,,则),()2(222R b a b a b a ∈+≥+),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ; 2、解不等式(1)一元一次不等式 )0(≠>a b ax①⎭⎬⎫⎩⎨⎧>>a b x x a ,0 ②⎭⎬⎫⎩⎨⎧<<a b x x a ,0 (2)一元二次不等式 )0(,02>>++a c bx ax第七章—直线和圆的方程一、解析几何中的基本公式1。

相关文档
最新文档