4.1.1-立体图形与平面图形(一)(练习题)

合集下载

4.1.1立体图形与平面图形(原卷版)

4.1.1立体图形与平面图形(原卷版)

4.1.1 立体图形与平面图形2.了解多面体可由平面图形围成,进一步认识立体图形与平面图形之间的关系3.通过丰富的实例,认识点、线、面、体,初步感受它们之间的关系.逐步由感性认识上升到对抽象的数学图形的认识,从而提高空间想象能力和几何直观能力知识点一立体图形的认识几何图形是从实物中抽象出的各种图形,分为立体图形和平面图形有些几何图形的各部分不都在同一平面内,它们是立体图形合并同类项解方程的方法与步骤几种常见的立体图形如下表:图例即学即练(2022上·广东河源·七年级校考期中)观察下列实物模型,其整体形状给我们以圆柱的形象的是()A.B.C .D.知识点二平面图形有些几何图形的各部分都在同一平面内,它们是平面图形名称图形名称图形直线射线线段三角形长方形正方形梯形平行四边形圆扇形一些简单的平面图形可以组合成许多优美的图案,如某些国家的国旗、各种银行标志、由各种形状的地砖铺成的漂亮的地面等。

即学即练(2023上·山东济南·七年级校考阶段练习)下列平面图形中,是棱柱的展开图的是()A.B.C.D.知识点三从不同方向看物体一般地,从立体图形的正面、左面、上面三个角度观察立体图形,往往会得到不同形状的平面图形看得见的轮廓线画实线,看不见的轮廓线画虚线.从不同方向看同一物体,所看到的平面图形可能不同,也可能相同。

2.分别从正面左面和上面看几种常见几何体得到的平面图形即学即练(2023上·山东青岛·七年级统考期中)如图所示的几何体是由5个大小相同的小正方体搭成的,从上面看到的几何体的形状图是()A.B.C.D.知识点四立体图形的展开图有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图。

对于同一个立体图形,展开图不是唯一的,按不同的方式展开,可以得到不同的平面图形,如正方体的展开图就有以下11种情况,可分为四类:(1)“二二二”型(2)“三三”型(3)“一三二”型(4)“一四一”型注意:不能作为正方体展开图的有以下几种常见情况:(1)“五子连”型,四个以上的正方形排成一排,如或等。

【湘教版数学(2024年)七年级上册同步练习题】 4.1立体图形与平面图形(含答案)

【湘教版数学(2024年)七年级上册同步练习题】 4.1立体图形与平面图形(含答案)

【湘教版数学(2024年)七年级上册同步练习】4.1立体图形与平面图形一、单选题1.观察下列实物模型,其整体形状给我们以圆柱的形象的是()A.B.C.D.2.如图是某个几何体的展开图,该几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥3.如图,在正方体的展开图中,与汉字“抗”相对的面上的汉字是()A.共B.同C.疫D.情4.如图,图、图、图均由四个全等的等边三角形组成,其中能够折叠围成一个立体图形的有()A.只有图①B.只有图①、图②C.图①、图②、图③D.只有图②、图③5.如图①所示的是一个正方体的表面展开图,将对应的正方体从如图②所示的位置依次翻过第1格、第2格,到第3格时正方体朝上的一面上的字是()A.亚B.欢C.迎D.您二、填空题6.一个正方体的每个面上都有一个汉字,其平面展开图如图所示,那么该正方体中与“爱”字相对的是.7.如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是底面直径的倍.8.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.9.如图是正方体的展开图,那么原正方体中,与“党”字所在面对面上的汉字是.10.圆锥有个面,有个顶点,它的侧面展开图是.11.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是.三、解答题12.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.答案解析部分1.【答案】D【知识点】立体图形的初步认识2.【答案】A【知识点】几何体的展开图3.【答案】D【知识点】几何体的展开图4.【答案】B【知识点】几何体的展开图5.【答案】B【知识点】几何体的展开图6.【答案】国【知识点】几何体的展开图7.【答案】【知识点】几何体的展开图8.【答案】①②⑤⑦⑧;④⑥;③④⑧【知识点】立体图形的初步认识9.【答案】年【知识点】几何体的展开图10.【答案】二;一;扇形【知识点】几何体的展开图11.【答案】自【知识点】几何体的展开图12.【答案】解:∵三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∴连接如图:【知识点】几何体的展开图。

人教版七年级数学4.1.1-立体图形与平面图形习题

人教版七年级数学4.1.1-立体图形与平面图形习题

•DCBAC BA5 题图4.1.1 立体图形和平面图形1.将下列各展开图与立体图形连线。

四棱锥 三棱柱 正方体 长方体 2.长方体共有( )个面.A .8B .6C .5D .4 3.六棱柱共有( )条棱.A .16B .17C .18D .20 4.下列说法,不正确的是( )A .圆锥和圆柱的底面都是圆B .棱锥底面边数与侧棱数相等C .棱柱的上、下底面是形状、大小相同的多边形D .长方体是四棱柱,四棱柱是长方体 5.物体的形状如图所示,则此物体的俯视图是( )6.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到 的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确 的是( )A .甲在丁的对面,乙在甲的左边,丙在丁的右边;B .丙在乙的对面,丙的左边是甲,右边是乙;C .甲在乙的对面,甲的右边是丙,左边是丁;D .甲在丁的对面,乙在甲的右边,丙在丁的右边。

7.由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是( )8.由若干个相同的小正方体搭成的几何体的俯视图如图,各小方格内的数字表示叠在该层位置的小正方体的个数,则这个几何体的左视图是( )9.将如图所示的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )A B C B''D 3 12A B C D10.如图,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()11.下列图形哪些是正方体的展开图()A.(1)(2)(3) B.(2)(3(4) C.(1)(3)(4) D.(1)(2)(4)12.如图所示,是正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C的三个数依次是()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,013.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?14.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和。

4[1]11立体图形与平面图形1

4[1]11立体图形与平面图形1

将下面的几何图形分为两组
学.科.网
有些几何图形的各部分不都在同一平面内,它们是立体图形. 如长方体、正方体、圆柱、圆锥、球等. 有些几何图形的各部分都在同一平面内,它们是平面图形. 如线段、角、三角形、长方形、圆等.
(打“√”或“×”) (1)球与圆都是平面图形.( × ) (2)如图所示的图形中有3个立体图形.( √ )
【解析】选B.圆柱从正面和左面看到的均是长方形,从上面看 到的是圆;长方体从三个方向看到的均是长方形;选项C从正 面和左面看到的均是梯形,从上面看到的是圆环;选项D从正 面和左面看到的均是三角形,从上面看到的是“ ”.
4.(2012·玉林中考)下列几何体中,从正面、左面、上面看到 的图形都相同的是( )
【解析】(1)观察可知共有5个正方体. (2)S表=5×6a2-10a2=20a2.
题组二:立体图形的展开图 1.(2012·天门中考)将如图所示表面带有图案的正方体沿某些 棱展开后,得到的图形是( )
【解析】选C.由正方体可知三种图案不能在一行或一列,故排 除A项、B项;若五角星在圆的下面,则正方形在圆的右面, 故D项不正确.
【总结提升】立体图形与展开图 同一个立体图形,按不同方式展开得到的展开图不一定一样,
因此,一个立体图形的展开图并不是唯一确定的.但是无论是哪 种方式的展开图将其围成的立体图形都是同一个.
5.(2012·吉林中考)如图,由5个完全相同的小正方体组合成 一个立体图形,从上面看到的图形是( )
【解析】选A.从上面看到的图形,共分两行两列四个正方形.
解:(1)按柱、锥、球来分:长方 体、正方体、圆柱、棱柱是柱体。圆锥 棱锥是锥体。球是球体。
(2) 按平面和曲面来分:长方体、
正方体、棱柱、棱锥只有平面。圆柱、 圆锥、球至少有一个曲面。

4.1.1(3) 立体图形与平面图形

4.1.1(3) 立体图形与平面图形

2、如图不是正方体的平面展开图是( A )
A
B
C

D
方法总结:①用方位拼凑法,B、C、D都能拼成正方体; ③正方体展开图,外周长必须是小正方形边 长的14倍,简称14个单位,因为正方体剪开 必须剪7刀,1刀两边,由此得出14。
②一般地有田字格的不是正方体的平面展开图;
3、把立方体的六个面分别涂上六种不同颜色,并 画上朵数不等的花,各面上的颜色与花的朵数情况 列表如下:
圆柱体展开会是 什么图形?
结论:圆柱的侧面展开图是 一个长方形,底面是两个圆。
圆锥体展开又会是什么图形呢?
结论:圆锥的侧面展开图是一个扇形, 底面是圆。
4.如图所示的四个平面图形,分别能折成什 么立体图形?
( 1)
( 2)
( 3)
( 4)
能将这个正方体 沿某根棱剪开, 展成一个平面图 形吗?再想想, 至少要剪开几条 棱?
.
B
在点B 发现食物
.
B1
.
A
B2
一只蚂蚁 在点A处
A
.
.
小结
1、立体图形 展开
折叠
平面图形
2、立体图形与平面图形相互变换的方法: (1)粘合拼凑法; (2)方位法。
沙漠中的树木渴望水,同学 们渴望更多的知识,以适应社会, 同学们努力吧!
颜色
花的朵数 红 1 黄 2 蓝 3 白 4 紫 5 绿 6
现将上述大小相同,颜色、花朵分布也完全相同的 四个立方体拼成一个水平放置的长方体,如图所示。 问长方体的下底面共有多少朵花?
3.如图:一只圆桶的下方有一只小壁虎,上方有一只蚊子, 小壁虎要想尽快吃到蚊子,应该走哪条路径?
第3题
如图,一只蚂蚁,在正方体箱子的一个顶 点A,它发现相距它最远的另一个顶点B处有 它感兴趣的食物,这只蚂蚁想尽快得到食物, 哪条路径最短?试在图中将路线画出来。

2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》03(含答案)

2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》03(含答案)

七年级数学上册第四章几何图形初步《4.1.1立体图形与平面图形》课时练1.如图所示的平面图形中,不可能围成圆锥的是()2.把图中的三棱柱展开,所得到的展开图是()第2题图3.一个几何体的表面展开图如图所示,则这个几何体是()第3题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.下列图形中,不可以作为一个正方体的展开图的是()5.如图四个图形是由立体图形展开得到的,相应的立体图形顺次是()第5题图A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥6.一个几何体的展开图如图所示,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥第6题图7.如图是一个长方体形状包装盒的表面展开图,折叠制作完成后得到长方体的容积是(包装材料厚度不计)()A.40×40×70B.70×70×80C.80×80×40D.40×70×80第7题图8.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦第8题图9.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)()A.1或2或3B.3或4或5C.4或5或6D.1或2或6 第9题图10.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.11.如图是正方体的展开图,则原正方体相对两个面上的数字积的最小值是____________.第11题图12.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等,求x的值.第12题图13.将一张长与宽的比为2∶1的长方形纸片按图1、图2所示的方式对折,然后沿图3中的虚线裁剪,得到图4,最后将图4的纸片再展开铺平,则所得到的图案是()第13题图14.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图形可以是()第14题图15.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,共有____________种添加方法.第15题图16.如图所示,在正方体各面上写上数1,2,3,而在展开图中也分别写上了两个或一个指定的数.请你在展开图的其他各面上写上适当的数,使得相对的面上两数的和等于7.第16题图17.如图所示,有分别写着a,b,c,d,e,f的六个小正方形.(1)这6个小正方形能否围成一个小正方体?(2)若把写有a的正方形分别移到c,d,e上面,其余不变,能否围成正方体?(3)如果把写有a的正方形分别移到b,c,d下面,其余不变,能否围成一个正方体?第17题图18.如图所示,有一放在桌面上的正方体的盒子ABCD-A1B1C1D1,在盒子外的顶点A处有一只蚂蚁,而在对角的顶点C1处有一滴蜜糖,蚂蚁应沿着什么路径爬,才能最快吃到蜜糖.请画出蚂蚁爬行的路线,共有几条路线并简要说明理由.第18题图参考答案1—5.DBACA6—9.CDDD10.四棱锥圆柱三棱柱11.-812.x=113—14.AC15.416.由正方体图形知1,2,3共用一个顶点,可在展开图中确定出这三个数,再找它们的相对面.如图(图2答案不唯一).第16题图17.(1)能(2)能(3)不能18.如图,共有6条路线.理由略第18题图。

4.1.1几何图形(1)--平面图形和立体图形

4.1.1几何图形(1)--平面图形和立体图形

像长方形、正方形、三角形、六边形、圆、线段、 角等那样各部分都在同一平面内的几何图形都是平 面图形。
1、常见的立体图形有:
长方体、正方体、球、圆柱、圆 锥、棱柱、棱锥等;
2、常见的平面图形有:
长方形、正方形、平行四边形、 三角形、五边形、六边形、圆、线段、 点等。
长方体、正方体是不是柱 体?
是 ? 不 是 ?
注意:长方体和正方体都是柱体, 属于棱柱!
柱体

棱柱
圆柱
三棱柱
四棱柱
锥体

五棱柱

棱锥
圆锥
三棱锥 四棱锥
六棱柱

五棱锥
六棱锥
1、下列各图形,都是柱体的是( C )
(A)
(B)
(C)
(D)
2、把图中的几何图形与它们相应的名 称连接起来。
圆锥
圆柱
棱柱
棱锥

1、下列物体中,形状是球体的是( C ) A、电视机 C、西瓜 B、啤酒瓶子 D、冰淇淋
2、冰箱是一个长方体,它的形状类似于( B ) A、圆锥 C、棱锥 B、棱柱 D、球
3、下列立体图形中,是四棱柱的是( C )
A
B
C
D
4、下列图形中,是六面体的有( A )
A
B
C
D
5、将下列物品按形状分类: ①笛子 ②骰子 ③电脑主机 ④圣诞帽 ⑤有棱铅笔 ⑥羽毛球 ⑦生日蛋糕 ⑧主楼天文台 ③ ; 类似于圆柱的有 ①⑦ ;类似于长方体的有 类似于正方体的有 ② ;类似于圆锥的有④⑥ ; 类似于棱柱的有 ⑤ ;类似于球体的有 ⑧ ; 6、写出下列各立体图形的名称
4.1.1 立体图形与平面图形
确认标识1

立体图形与平面图形练习题(含答案

立体图形与平面图形练习题(含答案

立体图形与平面图形
1.从下列物体抽象出来的几何图形可以看成圆柱的是( )
2.下列图形不是立体图形的是( )
A.球
B.圆柱
C.圆锥
D.圆
3.下列图形属于棱柱的有( )
A.2个
B.3个
C.4个
D.5个
4.将下列几何体分类:
其中柱体有,锥体有,球体有(填序号).
5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.
6.把下列图形与对应的名称用线连起来:
圆柱四棱锥正方体三角形圆
第1课时立体图形与平面图形
1.B
2.D
3.B
4.①①①①①①①
5.44
6.解:如图所示.
第2课时从不同的方向看立体图形和立体图形的展开图1.A 2.B 3.C 4.B 5.A
6.三棱柱五棱柱六棱柱长方体圆柱圆锥。

2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》01(含答案)

2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》01(含答案)

人教版七年级数学上册第四章几何图形初步《4.1.1立体图形与平面图形》课时练一、选择题1.下列说法错误的是()A.若棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形2.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.有两个面平行,其余各面都是四边形的几何体叫棱柱C.将直角三角形绕它的一边所在的直线旋转一周,形成的几何体一定是圆锥D.棱台的侧棱所在的直线交于一点3.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱4.对于棱锥,下列叙述正确的是()A.四棱锥共有四条棱B.五棱锥共有五个面C.六棱锥的顶点有六个D.任何棱锥都只有一个底面5.下列五种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;其中属于立体图形的是()A.①②③B.③④⑤C.③⑤D.④⑤6.如图(1)(2)是放置一个水管三叉接头,若从正面看这个接头时,看到图形如图(2),则从上面看这个接头时,看到的图形是()A.B.C.D.7.太阳、西瓜、易拉罐、篮球、书本中,形状类似圆柱的有()A.1个B.2个C.3个D.4个8.如图是正方体的平面展开图,在顶点处标有自然数1~11,折叠围绕成正方体后,与数字6重合的数字是()A.7,8B.7,9C.7,2D.7,49.很多立体图形都是由平面图形围成的,下面立体图形不都是由平面图形围成的是()A.长方体B.三棱锥C.圆锥D.六棱柱10.一个棱长为10分米的正方体,体积是()立方分米.A.109B.106C.103D.1027二、填空题11.如图,下图中是圆柱体的有________,是棱柱体的有_________.(只填图的标号)12.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图,则搭成这个几何体的小正方体的个数最多为___,最少为_____.13.如图,5个棱长为1 cm的正方体摆在桌子上,则露在外面的部分(不包括底面)的面积为______cm2.14.从正面和从左面看一个长方体得到的形状图如图所示(单位:cm),则其从上面看到的形状图的面积是______.15.如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为.三、解答题16.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)17.如图所示的五棱柱的底面边长都是5cm ,侧棱长12cm ,它有多少个面?它的所有侧面的面积之和是多少?18.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+ a 2b +3,B =﹣ a 2b +a 3,C =a 3﹣1,D =﹣ (a 2b +15),且相对两个512151面所表示的代数式的和都相等,求E、F代表的代数式.19.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.20.如图是一个正方体的平面展开图,标注了字母M的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和底面的数字和.21.如图,是一个直四棱柱及其主视图和俯视图(等腰梯形).(1)根据图中所给数据,可求出俯视图(等腰梯形)的高为________;(2)在虚线框内画出左视图,并标出各边的长.22.明明家打算在一块长为16m,宽为4m的矩形土地上搭建一个截面为半圆形的全封闭蔬菜棚,并全部盖上塑料薄膜(如图所示),则所需薄膜的面积至少为多少平方米?(结果可含π,不考虑埋入土中部分的面积)23.如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为40cm 的正方形,求这个长方体的体积.参考答案1.D 2.D 3.D 4.D 5.B 6.A 7.A 8.C 9.C 10.C11.③、④②、⑤、⑥12.9,713.1614.12cm215.7.16.略17.这个五棱柱共7个面,侧面的面积之和是300cm 2.18.(1)面F ,面E ;(2)F = a 2b ,E =1 19.(1)这个几何体是圆柱;(2)表面积为1000π. 20.(1)1.5;(2)-5.21.(1)4;(2)略22.36π(m 2).23.这个长方体的体积是 4000cm³ 21。

人教版七年级上册数学立体图形与平面图形同步训练

人教版七年级上册数学立体图形与平面图形同步训练

人教版七年级上册数学4.1.1立体图形与平面图形同步训练一、单选题1.如图所示,该正方体的展开图为()A.B.C.D.2.下列立体图形中,全部是由曲面围成的是()A.圆锥B.正方体C.圆柱D.球3.如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱4.如图,把图1中的七巧板,拼成图2的长方形,如果图1中阴影部分是边长为1的正方形,则图2中长方形的周长为()A.6B.8C.12D.165.如图是几何体的展开图,这个几何体是()A.圆柱B.三棱锥C.四棱柱D.三棱柱6.计算制作一个圆柱体需要多少铁皮,应该计算的是()A.侧面积+一个底面积B.侧面积C.底面积D.侧面积+两个底面积7.下面图形中为圆柱的是()A.①B.①C.①D.①8.如图为一个长方体的展开图,且长方体的底面为正方形.根据图中标示的长度,求此长方体的体积为何?()A.144B.224C.264D.300二、填空题9.如图是一个正方体的展开图,则原正方体中与“武”字所在的面相对的面上标的字是_____.10.如图是一个正方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数,则22+-+的值是________.a b c d11.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色12.如图是一个正方体的展开图,把它复原为正方体后,与平面B垂直的平面是_________.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为−4的面与它对面的数字之和是_______.14.密封的瓶子里装着一些水,如图(单位:cm).请你想办法计算出瓶子的容积是____mL.( 取3.14)15.如图,把一个高9dm的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了236dm.原来这个圆柱的体积是______3dm.16.如图所示是一个几何体的表面展开图,则该几何体的体积为_________.(结果用含π式子表示)三、解答题17.下面是一个正方体的平面展开图,请把10,23,-17,0.1,32,-7分别填入六个正方形中,使得折成正方体后,相对面上的数互为倒数.18.如图是一个正方体的平面展开图,标注了字母M的是正方体的前面,标注了﹣2的是正方体的底面,正方体的左面与右面标注的式子的和为21(1)求x的值;(2)求正方体的上面和后面的数字的积.19.如图,是一个几何体分别从正面、左面、上面看的形状图.(1)该几何体名称是;(2)根据图中给的信息,求该几何体的表面积和体积.20.已知一直棱柱共有11个面,且它的底面边长都相等,侧棱长是10厘米,侧面积是180平方厘米.(1)它是几棱柱?(2)它的底面边长是多少?参考答案:1.D2.D3.A4.C5.D6.D7.B8.B9.城10.-911.黄12.A、C、E、F13.-714.100.4815.3616.24π18.(1)x=3(2)-919.(1)长方体(2)表面积280cm2,体积300cm320.(1)9(2)2厘米答案第1页,共1页。

人教版初中数学七年级上册《4.1.1 立体图形与平面图形》同步练习卷

人教版初中数学七年级上册《4.1.1 立体图形与平面图形》同步练习卷

人教新版七年级上学期《4.1.1 立体图形与平面图形》同步练习卷一.选择题(共22小题)1.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.11个D.12个2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.3.下列几何图中,是棱锥的是()A.B.C.D.4.下列几何体中,是圆锥的为()A.B.C.D.5.下列所述物体中,是球体的是()A.铅笔B.打足气的自行车内胎C.乒乓球D.电视机6.下面几何体中,既不是柱体,又不是锥体的是()A.B.C.D.7.下列几何体中,面的个数最少的是()A.B.C.D.8.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.9.在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是以下哪些图形()A.锐角三角形B.钝角三角形C.等腰梯形D.五边形10.下列图形中,是棱柱的是()A.B.C.D.11.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.12.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体13.下列图形中,含有曲面的立体图形是()A.B.C.D.14.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥15.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个16.下列立体图形中,不属于多面体的是()A.四棱柱B.圆锥C.五棱柱D.长方体17.如图,下列图形全部属于柱体的是()A.B.C.D.18.下列几何体中,是柱体的是()A.B.C.D.19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个20.下列各图是立体图形的是()A.B.C.D.21.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个22.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的二.填空题(共8小题)23.一个棱柱共有21条棱,则这个棱柱共有个面.24.四棱柱有条侧棱.25.六棱柱有条棱,顶点,个面.26.六棱柱是一个立体图形,它是由个面,条棱,个顶点组成的.27.下面的几何体中,属于柱体的有个.28.正六棱柱有个顶点.29.若一个棱柱有7个面,则它是棱柱.30.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为.三.解答题(共2小题)31.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.32.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.人教新版七年级上学期《4.1.1 立体图形与平面图形》2019年同步练习卷参考答案与试题解析一.选择题(共22小题)1.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.11个D.12个【分析】按照每层的小正方体的个数,相加即可得到这个立体图形中小正方体的个数.【解答】解:由图可得,第一层有7个;第二层有5个;故这个立体图形中小正方体的个数是12个,故选:D.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:A.【点评】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.3.下列几何图中,是棱锥的是()A.B.C.D.【分析】根据棱锥的定义判断即可.【解答】解:A、是圆柱,B、是圆锥,C、是正方体,D、是三棱锥,故选:D.【点评】本题考查了认识立体几何,正确的认识几何体是解题的关键.4.下列几何体中,是圆锥的为()A.B.C.D.【分析】根据圆锥的定义解答.【解答】解:观察可知,C选项图形是圆锥.故选:C.【点评】本题考查了认识立体图形,熟悉常见的立体图形是解题的关键.5.下列所述物体中,是球体的是()A.铅笔B.打足气的自行车内胎C.乒乓球D.电视机【分析】结合实物进行解答.【解答】解:A、铅笔是圆柱体,故本选项错误;B、打足气的自行车内胎不是球体,故本选项错误;C、乒乓球是球体,故本选项正确;D、电视机不是球体,故本选项错误;故选:C.【点评】此题主要考查了认识立体图形,结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.6.下面几何体中,既不是柱体,又不是锥体的是()A.B.C.D.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:A、是三棱柱,是柱体,不符合题意;B、是圆柱,是柱体,不符合题意;C、是球,属球体,符号题意;D、是圆锥,是锥体,不符合题意;故选:C.【点评】本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.7.下列几何体中,面的个数最少的是()A.B.C.D.【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.【点评】考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.8.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【分析】观察所给图形,根据圆柱体的特点即可做出判断.【解答】解:最接近圆柱的是生日蛋糕.故选:A.【点评】本题考查了认识立体图形,比较简单,熟悉圆柱体是解题的关键.9.在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是以下哪些图形()A.锐角三角形B.钝角三角形C.等腰梯形D.五边形【分析】根据正方体的截面性质判断即可.【解答】解:在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是钝角三角形,故选:B.【点评】此题考查了认识立体图形,弄清正方体截面的特征是解本题的关键.10.下列图形中,是棱柱的是()A.B.C.D.【分析】根据棱柱与棱锥的区别进行判断.【解答】解:A、是三棱锥,故A错误;B、是圆柱,故B错误;C、是圆锥,故C错误;D、是三棱柱,故D正确;故选:D.【点评】本题考查了认识立体图形:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.11.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.【分析】根据圆柱体的截面图形可得.【解答】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到D选项的形状,不能得到三角形的形状,故选:C.【点评】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.12.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体【分析】根据平面图形定义:一个图形的各部分都在同一个平面内的图形是平面图形可得答案.【解答】解:A、球、圆锥是立体图形,错误;B、棱锥、棱柱是立体图形,错误;C、角、三角形、正方形、圆是平面图形,正确;D、长方体是立体图形,错误;故选:C.【点评】此题主要考查了平面图形,关键是掌握平面图形的定义.13.下列图形中,含有曲面的立体图形是()A.B.C.D.【分析】根据立体图形的特征,可得答案.【解答】解:A、角是平面图形,故A不符合题意;B、半圆环是平面图形,故B不符合题意;C、棱台不含曲面,故C不符合题意;D、侧面是曲面的立体图形,故D符合题意;故选:D.【点评】本题考查了认识立体图形,正确区分平面图形与立体图形是解题关键.14.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【分析】根据三棱锥的特点,可得答案.【解答】解:侧面是三角形,说明它是棱锥,底面是三角形,说明它是三棱锥,故选:C.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.15.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、二、四个几何体是棱柱,故选:B.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.16.下列立体图形中,不属于多面体的是()A.四棱柱B.圆锥C.五棱柱D.长方体【分析】根据由多个平面组成的几何体是多面体,可得答案.【解答】解:∵圆锥是旋转体,四棱柱、长方体、五棱柱都是多面体,∴圆锥不是多面体,故选:B.【点评】本题考查了认识立体图形,多面体是由多个平面组成的几何体,注意圆锥是旋转体.17.如图,下列图形全部属于柱体的是()A.B.C.D.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.18.下列几何体中,是柱体的是()A.B.C.D.【分析】根据柱体的概念和定义即可解.【解答】解:A、该图形是圆锥体,故本选项错误;B、该图形是三棱锥,故本选项错误;C、该图形上下两底面不全等,不是柱体,故本选项错误;D、该图形是正方体,属于柱体,故本选项正确.故选:D.【点评】本题考查的棱柱的定义,关键点在于:棱柱的侧面是几个长方形围成,且上下底面是相等的.19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个【分析】先根据图形得出最右边的正方体是:上蓝,下白,左绿,右红,前黄,后紫,即可推出其它正方形,代入朵数即可得出答案.【解答】解:∵大小颜色花朵分布完全一样,∴最左边的正方体告诉我们:黄色紧邻的面是白色;最右边的正方体告诉我们:黄色紧邻着红色和蓝色;∴可以推断出最右边的正方体的白色面是在它的左侧面或下底面;又∵右数第二个正方体告诉我们红色紧邻着白色;∴对于最右边的正方体,白色只可能在下底面(如果在左侧面就与红色是对立面了,不符题意);∵根据左数第二个正方体可知:红色紧邻着紫色;∴对于最右边的正方体,后侧面是紫色,左侧面是绿色.即最右边的正方体为例,它是:上蓝,下白,左绿,右红,前黄,后紫.也就是说:黄的对立面是紫;紫的对立面是黄;红的对立面是绿,蓝的对立面是白.依次对应从左至右的四个正方体,下底面分别是:紫,黄,绿,白.∴长方体的上面有花:2+5+1+3=11朵,前面有花:4+1+4+2=11朵,下面有花:5+2+6+4=17朵,后面有花:3+6+3+5=17朵,左面有花:1朵,右面有花:6朵,长方体的表面包括下底面共有:11+11+17+17+6+1=63朵.故选:D.【点评】考查了认识立体图形,注意正方体的空间图形,从相对面入手,分析及解答问题.20.下列各图是立体图形的是()A.B.C.D.【分析】根据立体图形的定义,可得答案.【解答】解:由题意,得三棱锥是立体图形,故选:D.【点评】本题考查了立体图形,每个面不在同一个平面内是解题关键.21.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、第三、第六个几何体是棱柱,共有3个.故选:A.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.22.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的【分析】根据棱柱的结构特征进行判断.【解答】解:A、棱柱的每一个侧面都是平行四边形,故本选项错误;B、棱柱的侧面展开图是长方形,故本选项正确;C、一个棱柱的底面是一个5边形,则它的侧面必须有5个长方形组成,故本选项正确;D、棱柱的上下底面是全等的多边形,则棱柱的上下底面是形状、大小相同的多边形.故本选项正确;故选:A.【点评】本题考查了立体图形的认识,熟记常见立体图形的结构特征是解题的关键.二.填空题(共8小题)23.一个棱柱共有21条棱,则这个棱柱共有9个面.【分析】根据棱柱的概念和定义,可知有21条棱的棱柱是七棱柱.【解答】解:21÷3=7,∴一个棱柱共有21条棱,那么它是七棱柱,∴这个棱柱共有9个面.故答案为:9.【点评】本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.24.四棱柱有4条侧棱.【分析】根据立体图形,即可解答.【解答】解:四棱柱有4条侧棱,故答案为:4.【点评】本题考查了棱柱的特征,解题时可以运用一般规律:n棱柱有(n+2)个面,2n 个顶点和3n条棱.25.六棱柱有18条棱,12顶点,8个面.【分析】根据六棱柱的概念和定义即可得出答案.【解答】解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有12个顶点;8个面;18条棱.故答案为18,12,8.【点评】此题主要考查了立体图形,解决本题的关键是掌握六棱柱的构造特点.26.六棱柱是一个立体图形,它是由8个面,18条棱,12个顶点组成的.【分析】根据长方体的特征,六棱柱有8个面,相对的面面积相等;有18条棱互相平行的一组4条棱的长度相等;有12个顶点.【解答】解:六棱柱有8个面,18条棱,12个顶点.故答案为:8,18,12.【点评】此题主要考查认识立体图形的知识,解题的关键是了解长方体的特征.27.下面的几何体中,属于柱体的有4个.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.【点评】本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.28.正六棱柱有12个顶点.【分析】根据正六棱柱上、下地面各有6个顶点,据此可得.【解答】解:正六棱柱有12个顶点.故答案为:12.【点评】本题主要考查认识立体图形,解题的关键是掌握常见几何体的形状和构成.29.若一个棱柱有7个面,则它是5棱柱.【分析】根据棱柱有两个底面求出侧面的面数,然后解答解答.【解答】解:∵棱柱有七个面,∴它有5个侧面,∴它是5棱柱,故答案为:5【点评】本题考查了认识立体图形,关键在于根据棱柱有两个底面确定出侧面的面数.30.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为51.【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,判断出6是最小的数,然后确定出这六个数,再相加即可得解.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴6若不是最小的数,则6与9是相对面,∵6与9相邻,∴6是最小的数,∴这6个整数的和为:6+7+8+9+10+11=51.故答案为:51.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.三.解答题(共2小题)31.如图所示为8个立体图形.其中,柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧.【分析】根据柱体的意义,椎体的意义,可得答案.【解答】解:柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧,故答案为:①②⑤⑦⑧;④⑥;③④⑧.【点评】本题考查了认识立体图形,正确区分柱体和锥体是解题关键.32.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.【分析】(1)针对立体图形的特征,直接填写它们的名称即可.(2)可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.【解答】解:(1)从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.【点评】本题考查了立体图形的认识和几何体的分类.熟记常见立体图形的特征是解决此类问题的关键.几何体的分类,从图形形状可以分为柱体、锥体和球三种,注意结合实际几何体的特征进行分类.。

RJ人教版 初一七年级数学 上册第一学期 同步课堂补习练习题作业 第四章 几何图形初步(全章 分课时)

RJ人教版  初一七年级数学 上册第一学期 同步课堂补习练习题作业 第四章 几何图形初步(全章 分课时)

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形和几何图形1、如图,左面是一些具体的物体,右面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).2、将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是( ).3、下列结论中正确的是( ).①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球仅由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.A.①②B.②③C.②④D.①④4、下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( ).A.③⑤⑥ B.①②③C.③⑥ D.④⑤5、将如图所示的几何体进行分类,并说明理由.6、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?多少个顶点?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?参考答案1、答案:如图所示:2、解析:答案:D3、解析:4、解析:三角形、长方形、正方形、圆是平面图形;正方体、圆锥、圆柱是立体图形. 答案:A5、分析:几何体的分类不是唯一的.我们应先观察各个几何体,努力发现其共同点,然后可根据其共同点来进行适当的分类.解:若按柱体、锥体、球体来分类:(2)(3)(5)(6)是柱体,(4)是锥体,(1)是球体; 若按几何体的面是否含有曲面来分类,则(1)(4)(6)是旋转体,(2)(3)(5)是多面体.6、解:(1)这个八棱柱一共有10个面,上下两个底面是八边形,八个侧面都是长方形;上下两个底面的形状、面积完全相同,八个侧面形状、面积完全相同.(2)这个八棱柱一共有24条棱,16个顶点.(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).第四章 几何图形初步4.1几何图形4.1.1 几何图形与平面图形第2课时 从不同的方向看立体图形和立体图形的展开图一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).2.如图所示的四种物体中,哪种物体最接近于圆柱( ).3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a在展开前所对的面上的数字是().A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是().5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是()6.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为()A.B.C.D.二、填空题7.五棱柱有________个顶点,________条棱,________个面.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形. 12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.如图所示是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面会在下面?(2)如果面F在多面体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件的体积(π取底面积×高).3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.参考答案一、选择题1.B;2.A;3.B;【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. C ;【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. D ;【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6. C;【解析】由正方体的表面展开图的特点再结合实际操作,便可得解.二、填空题7. 10, 15, 7 ;【解析】五棱柱上底面有5个顶点,下底面有5个顶点,共10个顶点;上、下底面各有5条棱,竖直有5条棱,共15条棱;7个面,其中5个侧面,2个底面.8. 圆柱,棱柱;圆锥,棱锥9. 自;【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.三棱柱(或填正三棱柱);【解析】考查空间想象能力.11.圆,曲,扇;【解析】动手操作或空间想象,便得答案.12.一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.解:(1)如果面A在多面体的上面,那么面C会在下面.(2)如果面,在多面体的后面,从左面看是面C,那么向外折时面C会在上面,向里折时面A会在上面.(3)从右面看是面A,从上面看是面E,那么向外折时从前面看是面B,向里折时从前面看是面D.14.解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).第四章几何图形初步4.1几何图形4.1.2 点、线、面、体1.下面几何体中,全是由曲面围成的是()A.圆锥B.正方体C.圆柱D.球2.下列立体图形中面数相同的是()①圆柱;②圆锥;③正方体;④四棱柱A.①④B.①②C.②③D.③④3.观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面? (3)图中有哪些平面图形?4.如图,把长方形纸片沿图中虚线剪开得两个形状、大小相同的三角形,将这两个三角形拼在一起,使得有一条相等的边是共有的,能拼出多少种不同的几何图形(平面)?请你尝试画出来.(不包括原长方形的拼法)5. 图绕虚线旋转得到的实物图是()6. 如图,右边的几何体是由左边的哪个图形绕虚线旋转一周形成的( )7. 如图,长方形绕它的一条边MN 所在的直线旋转一周形成的几何体是( )8.下列有六个面的几何体的个数是()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱A.1个B.2个C.3个D.4个9.天空中的流星划过后留下的光线,给我们以什么样的形象()A.点B.线C.面D.体10.在以下四个几何体中,其侧面展开图不是平面图形的是()A.圆柱B.棱柱C.球D.圆锥11.将如图所示放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体从正面看是()12.(8分)如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A ~F 的某个几何体,请找出来.参考答案 1、D 2、D3、解:(1)立体图形 (2)图中有5个顶点,8条线段,5个平面 (3)平面图形有:点、线段、角、三角形、长方形 4、解:五种,分别是:5、D6、A7、C8、C9、B 10、C 11、B12、解:(1)~(6)分别对应C ,D ,B ,A ,F ,E第四章 几何图形初步 4.2 直线、射线、线段 第1课时 直线、射线、线段1.手电筒射出的光线,给我们的形象是( ). A .直线 B .射线 C .线段 D .折线2.下列各图中直线的表示法正确的是( ).3.点P 在线段EF 上,现有四个等式①PE=PF;②PE=12EF;③12EF=PE;④2PE=EF;其中能表示点P 是EF 中点的有( )A .4个B .3个C .2个D .1个 4.如图中分别有直线、射线、线段,能相交的是( ).5.如图所示,点C 、B 在线段AD 上,且AB =CD ,则AC 与BD 的大小关系是A .AC >BDB .AC =BD C .AC <BD D .不能确定6.小红家分了一套新住房,她想在自己房间里的墙上钉上一根细木条,挂上自己喜欢的装饰物,那么小红至少需要钉几根钉子使细木条固定 ( )A .1个B .2个C .3个D .4个 7. 下图中,有 条直线, 条射线, 条线段,这些线段的名称分别是: .8.(广西崇左)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是 . 9. 如图所示,数一数,图中共有________条线段,________条射线,________条直线,其中以B 为端点的线段是________;经过点D 的直线是________,可以表示出来的射线有________条.参考答案1.B【解析】手电筒本身看作射线的端点,射出的光线看作向前方无限延伸. 2.C【解析】要牢记直线、射线、线段的表示方法.3.A【解析】点P是线段AB的中点,表示方法不唯一.4.B5.B【解析】由AB=CD,得AB+BC=CD+BC,故有AC=BD.6.B【解析】两点确定一条直线.7. 1,8,6,线段AC、线段AD、线段AB、线段CD、线段CB、线段DB【解析】一条直线上有n个点,则射线有:2n条;线段有:(1)2n n条.8. 两点之间线段最短.【解析】线段的性质:两点之间线段最短.9. 6 ,18,4,线段AB、线段BC、线段BD;直线AD、直线BD、直线CD,10【解析】注意利用线段、射线、直线的表示法进行区别.第四章几何图形初步4.2 直线、射线、线段第2课时线段长短的比较与运算一、选择题1.下列说法中正确的是( )A.直线BA与直线AB是同一条直线 B.延长直线ABC.经过三点可作一条直线 D.直线AB的长为2cm2.在同一平面内有四个点,过其中任意两点画直线,仅能画出四条直线,则这四点的位置关系是()A.任意三点都不共线 B.有且仅有三点共线C.有两点在另外两点确定的直线外 D.以上答案都不对3.A、B是平面上两点,AB=10cm,P为平面上一点,若PA+PB=20cm,则P点A.只能在直线AB外B.只能在直线AB上C.不能在直线AB上D.不能在线段AB上.4.根据语句“点M在直线a外,过M有一直线b交直线a于点N、直线b上另一点Q位于M 、N 之间”画图,正确的是( ).5.已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( ).A .8 cmB .9 cmC .10 cmD .8cm 或10cm6.如图所示,把一根绳子折成3折,用剪刀从中剪断,得到绳子的条数为( ).A .3B .4C .5D .67.如图所示,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不到B 地而直接到C 地,则从A 地到C 地可供选择的方案有( ).A .20种B .8种C .5种D .13种 8.如图所示,“回”字形的道路宽为1米,整个“回”字形的道路构成了一个长为8米,宽为7米的长方形,一个人从入口点A 沿着道路中央走到终点B ,他共走了( ).A .55米B .55.5米C .56米D .56.6米二、填空题9.班长小明在墙上钉木条挂报夹,钉一颗钉时,木条还任意转动,钉两颗钉时,木条再也不动了,用数学知识解释这种现象为: .10.如图所示,OD 、OE 是两条射线,A 在射线OD 上,B 、C 在射线OE 上,则图有共有线段________条,分别是________;共有________条射线,分别是________.11.如图,AB=6,BC=4,D 、E 分别是AB 、BC 的中点,则BD+BE= , 根据公理: ,可知BD+BE DE. 12.经过平面上三点可以画 条直线第2题第3题 第6题13.同一平面内三条线直线两两相交,最少有 个交点,最多有 个交点.14. (嵊州)如图所示,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17”在射线________上;“2007”在射线________上.三、解答题15.如图所示一只蚂蚁在A 处,想到C 处的最短路线,请画出简图,并说明理由.16.小明发现这样一个问题:“在一次聚会中,共有6人参加,如果每两人都握一次手,共握几次手?”通过思考,小明得出了答案, 那请问同学们:如果有n 个人参加聚会,每两人都握一次手,一共要握多少次手呢?17.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点. (1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+ CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.参考答案一、选择题 1.A 2.B3.D 【解析】若点P 在线段AB 上,则有PA +PB =10.cm ,故这种情况不可能. 4. D 【解析】逐依排除.5. D 【解析】分两种情况讨论:(1)点C 在线段AB 上,AC=AB-BC=9-1=8(cm );(2)点C 在线段AB 的延长线上,AC=AB+BC=9+1=10(cm ). 6.B7.D 【解析】从A 地直接到C 地只有1种方案;先从A 到B ,再到C 地有4×3=12种方案,所以共有12+1=13种方案可供选择.8.C 【解析】他走的路程分别为7.5米、6米、7米、5米、6米、4米、5米、3米、4米、2米、3米、1米、2.5米,其和为56米. 二、填空题9. 过一点可以作无数条直线,经过两点只能作一条直线.【解析】本题是直线的性质在生产生活中的应用.10.6,线段OA 、OB 、OC 、BC 、AC 、AB ; 5,射线OD 、O E 、BE 、AD 、CE . 11.5,两点之间线段最短,> 12.1 或3.【解析】三点在一条直线时,只能确定一条直线;当三点不共线线上,可确定三条直线 13.1, 3.【解析】如下图,三条直线两两相交有两种情况:14.OE 、OC . 【解析】当数字为6n+1(n ≥0)时在射线O A 上;当数字为6n+2时在射线OB 上;当数字为6n+3时在射线OC 上;当数字为6n+4时在射线OD 上;当数字为6n+5时在射线OE 上;当数字为6n 时在射线OF 上. 三、解答题15.解:如图所示一只蚂蚁在A 处,想到C 处的最短路线如图所示,理由是:两点之间,线段最短.(圆柱的侧面展开图是长方形,是一个平面)16.解:若6人,共握手:5+4+3+2+1=15(次)若有n 个人,一共要握(n -1)+(n -2)+…+4+3+2+1(1)2n n -=次手. 17.解:(1)如下图,∵AC = 8 cm ,CB = 6 cm∴8614AB AC CB cm =+=+= 又∵点M 、N 分别是AC 、BC 的中点 ∴11,22MC AC CN BC == ∴1111()72222MN AC CB AC CB AB cm =+=+==答:MN 的长为7cm.(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,则12MN acm =理由是:∵点M 、N 分别是AC 、BC 的中点 ∴11,22MC AC CN BC == ∵AC+ CB=a cm ∴1111()2222MN AC CB AC CB acm =+=+=(3)如图,∵点M 、N 分别是AC 、B C 的中点 ∴11,22MC AC NC BC == ∵AC CB bcm -= ∴1111()2222MN MC NC AC CB AC CB bcm =-=-=-=第四章 几何图形初步4.3 角 4.3.1 角1.下图中表示∠ABC 的图是( ).2.下列关于角的说法正确的是( ).A .两条射线组成的图形叫做角;B .延长一个角的两边;C .角的两边是射线,所以角不可以度量;D .角的大小与这个角的两边长短无关 3.下列语句正确的是( ).A .由两条射线组成的图形叫做角B .如图,∠A 就是∠BACC .在∠BAC 的边AB 延长线上取一点D ; D .对一个角的表示没有要求,可任意书定4.如图所示,能用∠AOB ,∠O ,∠1三种方法表示同一个角的图形是( ).5.如图所示,图中能用一个大写字母表示的角是______;以A•为顶点的角有_______个,它们分别是________________. 6.从一个钝角的顶点,在它的内部引5条互不相同的射线,•则该图中共有角的个数是( ).A .28B .21C .15D .6 7.下列各角中,是钝角的是( ). A .14周角 B .23周角 C .23平角 D .14平角 8.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角9.一天24小时中,时钟的分针和时针共组合成_____次平角,______次周角.10.(1)用10倍放大镜看30°的角,你观察到的角是_______.(2)用10倍放大镜看50°的角,60°的角,你观察到的角是______,______.由(1),(2),你能得到什么结论?请把你的结论让同学们进行验证,看是否正确.11.(北京)在图中一共有几个角?它们应如何表示?参考答案:1.C (解析:用三个大写字母表示角,表示角顶点的字母在中间)2.D3.B (解析:根据定义知A,C不正确,根据角的表示方法知D不正确)4.D (解析:∠O是一个单独的大写英文字母,它只能表示独立的一个角,•而∠O还可用∠1或∠AOB表示)5.∠B,∠C 6个∠CAD,∠CAE,∠CAB,∠DAE,∠DAB,∠EAB6.B [解析:有公共顶点的n条射线,所构成的角的个数,一共是12n(n-1)个]7.C (解析:平角=180°,钝角大于90°而小于180°,23平角=23×180°=120°,•故选C)8.C (解析:根据定义可知A,B不正确;锐角大于0°而小于90°,•所以两个锐角的和小于180°,D不正确;反向延长射线OA,O成为角的顶点,故选C)9.24 24 (点拨:分针每小时转动一周与时针形成一次平角,一次周角)10.(1)30°(2)50° 60°角度不变.(解析:放大镜只有把图形放大,但不能把角度放大)11.3个角,∠ABC,∠1,∠2.第四章几何图形初步4.3 角4.3.2 角的比较与运算一、选择题1.(福建福州)下面四个图形中,能判断∠1>∠2的是()图3DC B AO2.如图,点A 位于点O 的 方向上( ). A .南偏东35° B . 北偏西65° C .南偏东65° D . 南偏西65°3.钟表上2时25分时,时针与分针所成的角是 ( ) .A . 77.5 °B . 77 °5′C . 75°D .以上答案都不对4.如图,∠AOB 是直角,∠COD 也是直角,若∠AOC =α, 则∠BOD 等于 ( )A .90°+αB .90°-αC .180°+αD .180°-α5. 如图,点A 、O 、E 在同一直线上, ∠AOB=40°,∠EOD=28°46’,OD 平分 ∠COE ,则∠COB 的度数为( ).A . 68°46′ B.82°32′C. 82°28′D.82°46′二、填空题6.已知∠α的余角是35°45′20″,则∠α的度数是_____ °___ ′ ″ . 7.已知∠α与∠β互补,且∠α=35º18′,则∠β=________8. 如图3,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为_________,∠COD 的度数为___________.9.钟表8时30分时,时针与分针所成的角为 度°的射线与西南方向的射线组成的角 O A D B E C12.如图所示,将一平行四边形纸片ABCD 沿AE ,EF 折叠,使点E ,B 1,C 1在同一条直线上,则∠AEF =________.三、解答题13.如图,已知点C 、点D 分别在AOB ∠的边上,请根据下列语句画出图形: (1)作AOB ∠的余角AOE ∠;(2)作射线DC 与OE 相交于点F ; (3)取OD 的中点M ,连接CM .14. 如图所示,直线AB 、CD 相交于点O ,且∠BOC =80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.15.如图所示,五条射线OA 、OB 、OC 、O D 、OE 组成的图形中共有几个角?如果从O 点引出n 条射线,能有多少个角?你能找出规律吗?16. 如图,∠AO B=90º,∠AOC=30º,且OM 平分∠BOC , ON 平分∠AOC , (1)求∠MON 的度数.O DB A(2)若∠AOB=α其他条件不变,求∠MON 的度数.(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON 的度数 (4)从上面结果中看出有什么规律?参考答案一、选择题3.D 【解析】A 中∠1=∠2,B 中∠1<∠2,C 中∠1<∠2. 5. B6. A 【解析】所求夹角为: 6°×25-1()2︒×25-30°×2=77.5°7. D 【解析】如图,∠BOD=90°+90°-α=180°-α8.C 【解析】如图,∠BOC=180°-40°-2×28º46′=82º28′. 二、填空题 9. 54°14′40″ 10.144°42′ 11.60°,20°【解析】∠AOC=2×∠AOB=60°,∠DOC=∠AOD -∠AOC=20° 12.75°【解析】1()2︒×30+30°×2=75°13.125°【解析】45°+80°=125° 14.44°43′【解析】∠DAE=∠BAE -∠BAD=135 °17′-90°= 45°17′, ∠CAD=90°-45°17′=44°43′16.90°【解析】由折线知∠A ′BC =∠ABC ,∠EBD =∠DBE ′. 三、解答题 17.解:如图所示:18.解:因为∠BOC =80°,OE 平分∠BOC所以∠1=12∠BOC =12×80°=40° 又因为CD 是直线,所以∠2+∠BOC =180°, 所以∠2=180°-80°=100°同理∠2+∠AOD =180°,∠1+∠2+∠3=180° 所以∠AOD =80°,∠3=40° 所以∠3=12∠AOD ,所以OF 是∠AOD 的平分线 ++3+2+1=20.解:(1)∵∠AOB=90°,∠AOC=30°, ∴∠BOC=120°∵OM 平分∠BOC ,ON 平分∠AOC ∴∠COM=60°,∠CON=15° ∴∠MON=∠COM-∠CON=45°. (2)∵∠AOB=α,∠AOC=30°, ∴∠BOC=α+30°∵OM 平分∠BOC ,ON 平分∠AOC∴∠COM=2α+15°,∠CON=15° ∴∠MON=∠COM-∠CON=2α.(3)∵∠AOB=90°,∠AOC=β, ∴∠BOC=90°+β∵OM 平分∠BOC ,ON 平分∠AOC ∴∠COM=45°+2β ,∠CON= 2β. ∴∠MON=∠COM -∠CON=45°.(4)从上面的结果中,发现:∠MO N 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.南西第四章 几何图形初步4.3 角4.3.3 余角和补角1.如图所示,∠1是锐角,则∠1的余角是( ). A .1212∠-∠ B .132122∠-∠ C .1(21)2∠-∠ D .1(21)3∠+∠2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°(2)如图,下列说法中错误的是( )A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )A:100° B:70° C:180° D:140°3、若一个角的补角等于它的余角4倍,求这个角的度数。

人教版数学七年级上册:4.1.1 立体图形与平面图形 同步练习(附答案)

人教版数学七年级上册:4.1.1 立体图形与平面图形  同步练习(附答案)

9.如图是一座房子的平面图,组成这幅图的几何图形有( )
A.三角形、长方形
B.三角形、正方形、长方形
C.三角形、正方形、长方形、梯形
D.正方形、长方形、梯形
10.如图是由平面图形

构成的.
11.说出下列图形的名称.
12.下列简单几何体中,属于柱体的个数是(
)
A.5
B.4
C.3
D.2
13.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中立体图形 有 m 个,平面图形有 n 个,则 m-n 的值为( )
A.厉
B.害
C.了
10.如图,有三张硬纸片,用它们围成一个立体图形叫
D.我 .
11.如图所示几何体是由五个小正方体搭建而成的.从它的正面看到的是( ) 12.下列四个几何体中,从正面看到的图形与从左面的图形相同的几何体有( )
A.1 个
B.2 个
C.3 个
D.4 个
13.如图所示的各图中,不是正方体表面展开图的是( )
解:如图. 6.C 7.C 8.C 9.C
10.正方形和半圆. 11.解:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形. 12.B
13.D
14.D 15.共有三角形 4 个,圆 6 个. 16.三角形、长方形、半圆等. 17.解:图中包含圆、正方形、长方形、三角形、平行四边形. 18.解:(1)由正方体、圆柱、圆锥组成. (2)由圆柱、长方体、三棱柱组成. (3)由五棱柱、球组成. 19.
4.1.1 立体图形与平面图形
第 1 课时 认识立体图形与平面图形
1.下列几何图形中属于立体图形的是(
)
A
B

人教版数学七年级上学期4.1.1 立体图形与平面图形(原卷+解析版)

人教版数学七年级上学期4.1.1 立体图形与平面图形(原卷+解析版)

第四章几何图形初步4.1.1立体图形与平面图形一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列几何体中,是圆柱的为A.B.C.D.2.下面的几何体是棱柱的为A.B.C.D.3.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是A.正方体B.球C.圆锥D.圆柱体4.如图所示的四种物体中,哪种物体最接近于圆柱A.B.C.D.生日蛋糕弯管烟囱酒瓶5.下列图形中,含有曲面的立体图形是A.B.C.D.二、填空题:请将答案填在题中横线上.6.若一个棱柱有7个面,则它是__________棱柱.7.正方体有__________个面,__________个顶点,经过每个顶点有__________条棱.8.下列图形中,表示平面图形的是__________;表示立体图形的是__________.(填入序号)三、解答题:解答应写出文字说明、证明过程或演算步骤.9.将下列几何体与它的名称连接起来.10.如图所示的正方体的六个面分别标着连续的整数,求这六个整数的和.11.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是__________.第四章几何图形初步4.1.1立体图形与平面图形一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列几何体中,是圆柱的为A.B.C.D.【答案】A2.下面的几何体是棱柱的为A.B.C.D.【答案】C【解析】A、是棱台,不是棱柱;B、是圆台,不是棱柱;C、符合棱柱的概念,是棱柱;D、是棱锥,不是棱柱.故选C.3.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是A.正方体B.球C.圆锥D.圆柱体【答案】D【解析】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.4.如图所示的四种物体中,哪种物体最接近于圆柱A.B.C.D.生日蛋糕弯管烟囱酒瓶【答案】A【解析】最接近圆柱的是生日蛋糕.故选A.5.下列图形中,含有曲面的立体图形是A.B.C.D.【答案】D二、填空题:请将答案填在题中横线上.6.若一个棱柱有7个面,则它是__________棱柱.【答案】57.正方体有__________个面,__________个顶点,经过每个顶点有__________条棱.【答案】6,8,3【解析】正方体有6个面,8个顶点,经过每个顶点有3条棱,故答案为:6,8,3.8.下列图形中,表示平面图形的是__________;表示立体图形的是__________.(填入序号)【答案】①③;②④【解析】表示平面图形的是①③;表示立体图形的是②④.故答案为:①③;②④.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.将下列几何体与它的名称连接起来.【解析】如图:10.如图所示的正方体的六个面分别标着连续的整数,求这六个整数的和.11.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是__________.【解析】(1)体积为a⋅b⋅6=6ab,表面积为2(ab+6a+6b)=2ab+12a+12b.(2)当a=10,b=8时,原式=2×10×8+12×10+12×8=376,故答案为376.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.1立体图形与平面图形(一)
基础练习
1.下列图形不是立体图形的是 ( )A .球
B .圆柱
C .圆锥
D .圆2.圆柱的侧面是 面,上、下两个底面都是 。

3.有一个面是曲面的立体图形有 (列举出三个)。

4.三棱柱的侧面有 个长方形,上、下两个底面是两个 都一样的三角形。

5.由点动成 ,由线动成 ,由 动成体。

6.长方体ABCD -A ′B ′C ′D ′有 个面, 条棱, 个顶点。

与棱AB 垂直相交的棱有 条,与棱AB 平行的棱有 条。

7.若一个棱柱的底面是一个七边形,则它的侧面必须有 个长方形,它一共有 个面。

拓展提高
8.苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是__________
__________________________________。

9.长方体属于( )B
A.棱锥
B.棱柱
C.圆柱
D.以上都不对
10.下列几何体中(如图1)属于棱锥的是( )B
(1) (2) (3) (4) (5) (6)
A.①⑤
B.①
C.①⑤⑥
D.⑤⑥
11.月球、西瓜、易拉罐、篮球、热水瓶胆、书本等物体中,形状类似圆柱的有(
) A .1个 B .2个 C .3个 D .4个
12.用一个平面去截一个长方体.截面的边数可能会出现的情况有( )
A .3种
B .4种
C .5种
D .6种
13.在下列立体图形中,不属于多面体的是( )
A .四棱台
B .圆锥体
C .五棱柱
D .长方体
14.下图中是四棱台的侧面展开图的是( )
15.如图所示,该物体的俯视图是( )
16.直角三角形绕它最长边(即斜边)旋转一周得到的几何体为( )
① ② ③ ④ ⑤ ⑥
图1。

相关文档
最新文档