最短路算法程序

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Floyd最短路径算法

在图论中经常会遇到这样的问题,在一个有向图里,求出任意两个节点之间的最短距离。我们在离散数学、数据结构课上都遇到过这个问题,在计算机网络里介绍网络层的时候好像也遇到过这个问题,记不请了... 但是书本上一律采取的是Dijkstra算法,通过Dijkstra算法可以求出单源最短路径,然后逐个节点利用Dijkstra算法就可以了。不过在这里想换换口味,采取Robert Floyd提出的算法来解决这个问题。下面让我们先把问题稍微的形式化一下:

如果有一个矩阵D=[d(ij)],其中d(ij)>0表示i城市到j城市的距离。若i与j之间无路可通,那么d(ij)就是无穷大。又有d(ii)=0。编写一个程序,通过这个距离矩阵D,把任意两个城市之间的最短与其行径的路径找出来。

我们可以将问题分解,先找出最短的距离,然后在考虑如何找出对应的行进路线。如何找出最短路径呢,这里还是用到动态规划的知识,对于任何一个城市而言,i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n 是城市的数目),在检查d(ij)与d(ik)+d(kj)的值;在此d(ik)与d(kj)分别是目前为止所知道的i到k与k到j的最短距离,因此d(ik)+d(kj)就是i到j经过k的最短距离。所以,若有d(ij)>d(ik)+d(kj),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i 到j的d(ij)重写为d(ik)+d(kj),每当一个k查完了,d(ij)就是目前的i到j的最短距离。重复这一过程,最后当查完所有的k时,d(ij)里面存放的就是i到j之间的最短距离了。所以我们就可以用三个for循环把问题搞定了,但是有一个问题需要注意,那就是for循环的嵌套的顺序:我们可能随手就会写出这样的程序,但是仔细考虑的话,会发现是有问题的。

for(int i=0; i

for(int j=0; j

for(int k=0; k

问题出在我们太早的把i-k-j的距离确定下来了,假设一旦找到了i-p-j最短的距离后,i到j就相当处理完了,以后不会在改变了,一旦以后有使i到j的更短的距离时也不能再去更新了,所以结果一定是不对的。所以应当象下面一样来写程序:

for(int k=0; k

for(int i=0; i

for(int j=0; j

这样作的意义在于固定了k,把所有i到j而经过k的距离找出来,然后象开头所提到的那样进行比较和重写,因为k是在最外层的,所以会把所有的i到j都处理完后,才会移动到下一个k,这样就不会有问题了,看来多层循环的时候,我们一定要当心,否则很容易就弄错了。

接下来就要看一看如何找出最短路径所行经的城市了,这里要用到另一个矩阵P,它的定义是这样的:p(ij)的值如果为p,就表示i到j的最短行经为i->...->p->j,也就是说p是i到j的最短行径中的j之前的最后一个城市。P矩阵的初值为p(ij)=i。有了这个矩阵之后,要找最短路径就轻而易举了。对于i到j而言找出p(ij),令为p,就知道了路径i->...->p->j;再去找p(ip),如果值为q,i到p的最短路径为i->...->q->p;再去找p(iq),如果值为r,i 到q的最短路径为i->...->r->q;所以一再反复,到了某个p(it)的值为i时,就表示i到t

的最短路径为i->t,就会的到答案了,i到j的最短行径为i->t->...->q->p->j。因为上述的算法是从终点到起点的顺序找出来的,所以输出的时候要把它倒过来。

但是,如何动态的回填P矩阵的值呢?回想一下,当d(ij)>d(ik)+d(kj)时,就要让i到j 的最短路径改为走i->...->k->...->j这一条路,但是d(kj)的值是已知的,换句话说,就是

k->...->j这条路是已知的,所以k->...->j这条路上j的上一个城市(即p(kj))也是已知的,

当然,因为要改走i->...->k->...->j这一条路,j的上一个城市正好是p(kj)。所以一旦发现d(ij)>d(ik)+d(kj),就把p(kj)存入p(ij)。

下面是具体的C代码:

#include

#include

#include

#define MAXSIZE 20

void floyd(int [][MAXSIZE], int [][MAXSIZE], int);

void display_path(int [][MAXSIZE], int [][MAXSIZE], int);

void reverse(int [], int);

void readin(int [][MAXSIZE], int *);

#define MAXSUM(a, b) (((a) != INT_MAX && (b) != INT_MAX) ? \

((a) + (b)) : INT_MAX)

void floyd(int dist[][MAXSIZE], int path[][MAXSIZE], int n)

{

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

path[j] = i;

for (k = 0; k < n; k++)

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

if (dist[j] > MAXSUM(dist[k], dist[k][j]))

{

path[j] = path[k][j];

dist[j] = MAXSUM(dist[k], dist[k][j]);

}

}

void display_path(int dist[][MAXSIZE], int path[][MAXSIZE], int n)

{

int *chain;

int count;

int i, j, k;

printf("\n\nOrigin->Dest Distath");

printf( "\n-----------------------------");

chain = (int *) malloc(sizeof(int)*n);

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

{

if (i != j)

{

printf("\n%6d->%d ", i+1, j+1);

if (dist[j] == INT_MAX)

printf(" NA ");

相关文档
最新文档