人教版八年级数学上册 《等腰三角形》教案

合集下载

人教版八年级数学上册《等腰三角形(第4课时)》示范教学设计

人教版八年级数学上册《等腰三角形(第4课时)》示范教学设计

等腰三角形(第4课时)教学目标1.通过探索、发现、证明,得到含30°角的直角三角形的性质. 2.能够利用含30°角的直角三角形的性质进行简单的证明和计算.教学重点含30°角的直角三角形的性质.教学难点含30°角的直角三角形的性质.教学准备两个大小一样的含30°角的三角尺.教学过程知识回顾1.等边三角形的性质.2.等边三角形的判定.【师生活动】教师提出问题,学生作答.【设计意图】复习已学过的等边三角形知识,检查学生对已学知识的掌握程度.新知探究一、探究学习【问题】如图,将两个含有30°角的三角尺摆放在一起.你能借助这个图形,找到Rt△ABC的直角边BC与斜边AB之间的数量关系吗?【师生活动】教师提示:将两个含30°角的三角尺拼在一起,能得到一个怎样的三角形?学生思考并回答:得到一个等边三角形ABD.教师提示:结合等边三角形的性质,你能得出什么结论?学生回答:BC=CD=12 AB.教师提问:你是怎样得到的?试着写出证明过程.学生在教师的提示下,独立思考并尝试证明.一名学生板书,其他学生在练习本上书写解题过程.学生交流,教师反馈.证明:∵△ADC是△ABC的轴对称图形,∴AB=AD,∠BAD=2×30°=60°.∴△ABD是等边三角形.∵AC⊥BD,∴BC=CD=12 AB.教师追问:你还能用其他方法证明吗?学生思考并尝试证明.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°.求证:BC=12 AB.证法一:∵在△ABC中,∠C=90°,∠A=30°,∴∠B=60°.延长BC到D,使BD=AB,连接AD,则△ABD是等边三角形.所以AC也是BD边上的中线,∴BC=CD=12 AB.证法二:作∠BCE=60°,交AB于E,连接CE,则∠ACE=90°-60°=30°.在△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=60°.在△BCE中,∵∠BCE=60°,∠B=60°,∴△BCE是等边三角形.∴BC=BE=CE.在△ACE中,∵∠A=30°,∠ACE=30°,∴△AEC是等腰三角形.∴CE=AE.∴BC=BE=CE=AE.∴BC=BE=AE=12 AB.教师提问:观看动图,尝试总结含30°角的直角三角形的性质.小组交流,一名学生代表发言,教师总结.【新知】含30°角的直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵在Rt△ABC中,∠C=90°,∠A=30°,∴BC=12 AB.【设计意图】让学生经历含30°角的直角三角形的性质的探索过程,加深对知识的理解.二、典例精讲【例1】如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=7.4 m,∠A=30°.立柱BC,DE要多长?【师生活动】教师提问,学生思考并尝试解答.【答案】解:∵DE⊥AC,BC⊥AC,∠A=30°,∴BC=12AB,DE=12AD.∴BC=12×7.4=3.7(m).又AD=12 AB,∴DE=12AD=12×3.7=1.85(m).答:立柱BC的长是3.7 m,DE的长是1.85 m.【例2】已知等腰三角形的底角为15°,腰长为2a.求腰上的高.【师生活动】教师提示:可以先根据题意写出已知和所求.学生在教师的提示下,独立思考并尝试解答.已知:如图,在等腰△ABC中,∠B=∠C=15°,AB=2a.过C作腰BA延长线的垂线CD,垂足为D.求:CD的长.解:在等腰△ABC中,∵∠B=∠ACB=15°,AB=2a,∴∠DAC=∠B+∠ACB=15°+15°=30°,AC=AB=2a.∴CD=12AC=12×2a=a.【设计意图】通过例题的讲解学习,加深学生对已学知识的理解,让学生能够运用含30°角的直角三角形的性质进行简单的证明和计算.课堂小结板书设计一、含30°角的直角三角形的性质二、含30°角的直角三角形性质的应用课后任务完成教材第81页练习.。

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。

等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。

)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。

问题4给学生留下悬念。

)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。

〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

八年级数学上册《等腰三角形的判定》教案、教学设计

八年级数学上册《等腰三角形的判定》教案、教学设计
二、学情分析
八年级的学生已经具备了一定的几何图形认知基础,对三角形的性质有了初步的了解。在此基础上,学生对等腰三角形的判定这一章节内容的学习将更为顺利。然而,学生在几何证明和逻辑推理方面仍存在一定困难,需要教师在教学过程中给予关注和引导。此外,学生对数学学习的兴趣和积极性存在差异,部分学生对几何学习缺乏自信,教师应关注这一现象,采取差异化教学策略,激发学生的学习兴趣和自信心。通过对本章节的学习,使学生能够更好地理解和运用等腰三角形的判定方法,提高几何图形的解题能力,为后续学习打下坚实基础。
4.教学拓展:
-结合实际生活中的等腰三角形实例,让学生体会数学与生活的联系,提高学生的应用意识。
-引导学生探索等腰三角形与其他几何图形之间的关系,如等腰三角形与圆、正方形等,拓展学生的知识视野。
-组织课后研究性学习活动,鼓励学生自主探究等腰三角形的更多性质和应用,培养学生的探究精神。
四、教学内容与过程
3.生活实践题:让学生观察生活中的等腰三角形,并记录下来,分析它们的特点和应用。例如,观察三角尺、衣架、桥梁等,将观察结果以文字或图片形式进行展示。
4.小组合作研究:以小组为单位,选择以下课题进行研究,并在下一节课上进行汇报。
a.等腰三角形与等边三角形的关系。
b.等腰三角形在生活中的应用。
c.等腰三角形的判定方法在解决实际问题时的重要性。
讨论结束后,各小组汇报讨论成果,教师点评并给予指导。
(四)课堂练习
设计以下练习题,检验学生对等腰三角形判定方法的理解和应用:
1.判断以下三角形是否为等腰三角形,并说明理由。
2.已知等腰三角形的底和腰长,求底角和顶角的度数。
3.已知等腰三角形的底角,求顶角的度数。
学生在练习过程中,教师巡回指导,解答学生疑问,帮助学生掌握解题方法。

人教版数学八年级上册13.3.1.1 等腰三角形的性质教案

人教版数学八年级上册13.3.1.1 等腰三角形的性质教案

13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质●悬念激趣(1)如图是一组含有等腰三角形的生活图片,这些图片有哪些共同点?(2)将一把等腰三角尺和一个铅锤按图放置,就能检查一根横梁是否水平,你知道为什么吗?要想解决这个问题我们需要先研究等腰三角形具有哪些性质.【教学与建议】教学:活跃课堂气氛,让学生带着问题进入学习,也为后面的学习打下基础.建议:尽量给学生制造疑问,如怎样检查一根横梁是否水平;测平仪能测平的道理是什么等.●归纳导入问题1:如图①,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?你能画出具有这种特点的三角形吗?图①图②学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=__AC__.归纳:有两边相等的三角形是__等腰三角形__,相等的两边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,底边和腰的夹角叫做__底角__(如图②).问题2:把问题1中剪下的△ABC沿折痕AD对折,找出其中重合的线段和角,你能填好下表吗?重合的线段重合的角AB=AC∠B=∠CBD=CD∠BAD=∠CADAD=AD∠ADB=∠ADC从上表中你能发现等腰三角形具有什么性质吗?(引入课题)【教学与建议】教学:创设问题情境,激发学生的学习兴趣,归纳等腰三角形的性质.建议:教师引导学生归纳.性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).命题角度1利用等腰三角形的定义(两边相等)解决问题当已知边没有确定为底边或腰时,要分情况讨论求解,并注意三角形的三边关系这一隐含条件.【例1】一个等腰三角形的一边长为2 cm,另一边长为5 cm,那么这个等腰三角形的周长是(B)A.9 cm B.12 cmC.9 cm或12 cm D.以上都不对【例2】等腰三角形的底边长为8 cm,一腰上的中线把这个三角形分成周长差为2 cm的两部分,则腰长为__6__cm或10__cm__.命题角度2利用等腰三角形的性质进行角度计算(1)在等腰三角形中,当已知锐角不能确定是顶角还是底角时,需分类讨论;(2)在等腰三角形中,已知的直角或钝角只能是顶角,不需分类讨论.【例3】如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D 等于(B)A.40°B.50°C.60°D.80°【例4】等腰三角形的一个角是30°,则这个等腰三角形的底角为(C)A.75°B.30°C.75°或30°D.不能确定【例5】等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为__60°或120°__.命题角度3利用等腰三角形的性质证明有关结论(1)等腰三角形“等边对等角”的性质在证全等三角形时可以得到等角.(2)等腰三角形“三线合一”的性质可以用来证明角相等、线段相等和线段垂直.【例6】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.证明:过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC于点D,∴∠BDC=90°.∴∠2+∠C=∠C+∠DBC=90°.∴∠DBC=∠2.∴∠BAD=2∠DBC.【例7】如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.证明:如图,过点A作AP⊥BC于点P.∵AB=AC,∴BP=PC.∵AD=AE,∴DP=PE.∴BP-DP=PC-PE.∴BD=CE.高效课堂教学设计1.探索并证明等腰三角形的性质.2.运用等腰三角形的性质证明两个角相等或两条线段相等.3.体会轴对称在研究几何问题中的作用.▲重点理解和掌握等腰三角形的性质.▲难点等腰三角形性质证明中辅助线的添加和对性质2的理解.◆活动1新课导入提出问题:(1)把一张长方形的纸片对折,并剪下阴影部分(教材P75图13.3-1),再把它展开,得到一个什么图形?(2)上述过程中得到的△ABC有什么特点?(3)除了剪纸的方法,还可以怎样作出一个等腰三角形?学生动手剪纸、观察,教师在学生观察的同时提出问题.学生讨论问题(3),教师在学生充分发表自己想法的基础上给出画图的方法,并画出图形.◆活动2探究新知1.如图,将一张长方形纸片对折,沿图中虚线剪下一个三角形,把得到的三角形记为△ABC,并将折线的另一端记为D.提出问题:(1)△ABC是什么特殊三角形?为什么?(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:重合的线段 重合的角__AB __与__AC __ __∠B __与__∠C __ __BD __与__CD __ __∠BAD __与__∠CAD ____AD __与__AD __ __∠ADB __与__∠ADC __(3)图中有哪些相等的角?有哪些相等的线段? (4)△ABC 是不是轴对称图形?对称轴是什么?(5)等腰三角形ABC 除两腰相等外,角有什么性质? (6)在等腰三角形ABC 中,AD 有几种角色?各是什么? (7)等腰三角形具有哪些性质? 学生完成并交流展示. ◆活动3 知识归纳1.性质1:等腰三角形的两个__底角__相等(简写成“等边对__等角__”).2.性质2:等腰三角形的__顶角平分线____底边上的高____底边上的中线__互相重合(简写成“__三线合一__”).◆活动4 例题与练习 例1 教材P 76 例1.例2 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.求证:BE =CE .证明:∵AB =AC ,点D 是BC 的中点,∴AD ⊥BC ,∴AD 是BC 的垂直平分线.又∵点E 在AD 上,∴BE =CE .例3 如图,在△ABC 中,AB =AC ,点E 在CA 的延长线上,且∠AEF =∠AFE ,试问直线EF 和BC 有何位置关系?并说明理由.解:EF ⊥BC .理由如下:过点A 作AD ⊥BC 于点D .∵AB =AC ,∴∠BAD =12∠BAC .∵∠BAC =∠AEF +∠AFE ,∠AEF =∠AFE ,∴∠AFE =12∠BAC =∠BAD ,∴EF ∥AD .又∵AD ⊥BC ,∴EF ⊥BC .练习1.教材P 77 练习第1,2,3题.2.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为(B ) A .30° B .45° C .50° D .75°(第2题图) (第3题图)3.如图,在△ABC 中,点D 在边BC 上,BD =AD =AC ,E 为CD 的中点.若∠CAE =16°,则∠B =__37°__.4.如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE .求证:BD =CE .证明:过点A 作AF ⊥BC 于点F ,则AF ⊥DE .∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF -DF =CF -EF ,即BD =CE .◆活动5 课堂小结 1.等腰三角形的性质. 2.等腰三角形性质的运用.1.作业布置(1)教材P81~82习题13.3第1,3,4,6,7,9题;(2)对应课时练习.2.教学反思。

人教版初中八年级上册数学《等腰三角形的判定》精品教案

人教版初中八年级上册数学《等腰三角形的判定》精品教案

第2课时等腰三角形的判定【知识与技能】1.理解掌握等腰三角形的判定.2.运用等腰三角形判定进行证明和计算.【过程与方法】通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力.【情感态度】引导学生观察,发现等腰三角形的判定方法,获得成功的感受,并在这个过程中体验学习的乐趣.【教学重点】等腰三角形的判定定理.【教学难点】等腰三角形判定定理的证明.一、情境导入,初步认识先请学生回忆等腰三角形的性质,再向学生提出下列问题.问题1 如图,位于海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素).引导学生作如下思考:(1)应该能同时赶到出事地点,因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.(2)能同时赶到O点位置的一个很重要的因素是∠A=∠B,也就是说如果∠A不等于∠B,那么同时以同样的速度出发就不能同时赶到出事地点.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 根据上述探究,考虑:“在一个三角形中,如果两个角相等,那么它们所对的边也相等”,并证明这个结论.1.指导学生表述结论并写出证明过程.2.指出表述要严谨,如不能说成:“如果一个三角形的两个底角相等,那么它是等腰三角形”.二、思考探究,获取新知例1 求证:如果一个三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.【教学说明】本题是文字叙述的证明题,先应将文字语言转化为相应的数学语言,再根据题意画出相应的几何图形.要证明这个问题,由特征结论联想“等角对等边”,而等角由已知的平行线和角平分线可推得.例2 如图,标杆AB高5m,为了将它固定,需要由它的中点C向地面上与点B距离相等的D,E两点拉两条绳子,使得D,B,E在一条直线上,量得DE=4m,绳子CD和CE要多长?【教学说明】这是一个与实际生活相关的问题,要解决这类问题,需要将实际问题抽象为数学模型.本题的实质是已知等腰三角形的底边和底边上的高,求腰长的问题.解:如图(2),选取比例尺为1∶100.①作线段DE=4cm.②作线段DE的垂直平分线MN,与DE交于点B.③在MN上截取BC=2.5cm.④连接CD,CE,△CDE就是所求的等腰三角形,量出CD的长,就可以计算出要求的绳长.例3 如图,已知△ABC中,AB=AC,BD,CE分别是两腰上的中线.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵CD=21AC,BE=21AB, ∴CD=BE.在△BEC 和△CDB 中,∵BE=CD,∠ABC=∠ACB,BC=CB, ∴△BEC ≌△CDB(SAS).∴BD=CE.三、运用新知,深化理解1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1,∠2的度数,并说明图中有哪些等腰三角形.2.如图,把一张矩形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?3.如图,AC 和BD 相交于点O,AB ∥DC,OA=OB.求证:OC=OD.4.如图,在△ABD 中,C 是BD 上的一点,且AC ⊥BD,AC=BC=CD.(1)求证:△ABD 是等腰三角形.(2)求∠BAD 的度数.【教学说明】上述习题要引导学生边做题边总结,熟悉等腰三角形的性质与判定常与哪些知识在一起应用,等腰三角形性质与判定间有什么区别与联系,并鼓励学生探究一题多解的方法.【答案】1.∠1=72°,∠2=36°;等腰三角形有:△ABC、△ABD、△BCD2.是等腰三角形,可证得∠1=∠23.∵OA=OB,∴∠A=∠B.又∵AB∥DC,∴∠A=∠C,∠B=∠D.∴∠C=∠D,∴OC=OD(等角对等边).4.(1)证明:∵AC⊥BD,∴∠ACB=∠ACD=90°.又∵AC=AC,BC=CD,∴△ACB≌△ACD(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等腰三角形.(2)由(1)可知AB=AD,∴∠B=∠D.又∵AC=BC,∴∠B=∠BAC,∴AC=CD.∴∠D=∠DAC.在△ABD中,∠B+∠D+∠BAC+∠DAC=180°.∴2(∠BAC+∠DAC)=180°,∴∠BAC+∠DAC=90°,即∠BAD=90°.四、师生互动,课堂小结利用问题指导学生总结:问题1 你学会了几种判定等腰三角形的方法?问题2 等腰三角形性质与判定有哪些联系和区别?【总结】本节课主要探究了等腰三角形判定定理,并对判定定理的简单应用有了一定的认识,在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中养成一定的逻辑推理能力.1.布置作业:从教材“习题13.3”中选取.2.完成练习册中本课时的练习.利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识时会反复用到这种方法.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。

以下是我为大家整理的,感谢您的欣赏。

八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。

人教版八年级数学上册13.3等腰三角形(教案)

人教版八年级数学上册13.3等腰三角形(教案)
在课程总结环节,我发现有些学生对等腰三角形的理解仍不够深入。为了帮助学生巩固知识点,我计划在下一节课开始时,进行一个小测验,以检验他们对等腰三角形知识点的掌握程度。
3.等腰三角形的面积
-底和腰的关系
-利用海伦公式计算等腰三角形的面积
4.等腰三角形的综合应用
-解决实际问题时,运用等腰三角形的性质和判定
-在几何图形中,运用等腰三角形的性质进行证明和计算
二、核心素养目标
1.掌握等腰三角形的定义、性质及判定方法,提高学生的几何直观和逻辑推理能力。
2.培养学生运用等腰三角形相关知识解决实际问题的能力,增强数学应用意识。
-等腰三角形面积计算的应用:将等腰三角形的面积计算应用于实际问题,学生需要掌握如何将实际问题转化为数学模型,并进行计算。
-难点举例:当等腰三角形的底和腰的长度给出时,学生需要能够熟练地应用公式计算出面积,对于一些不规则的等腰三角形,如何使用海伦公式进行计算是学生需要克服的难点。
在教学过程中,教师应通过直观的图形演示、实际操作、例题讲解和练习题巩固等方式,帮助学生抓住重点,突破难点,确保学生对等腰三角形的理解透彻。
-难点举例:等腰三角形的底边上的中线、高和顶角的平分线互相重合,学生需要通过实际作图和观察来理解这一性质。
-等腰三角形的判定:在实际应用中,学生需要能够准确判定一个三角形是否为等腰三角形,包括在复杂图形中发现等腰三角形。
-难点举例:在一个复杂的几何图形中,学生需要能够识别哪些角或边是相等的,从而判定出等腰三角形。
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版八年级数学上册等腰三角形教学设计

人教版八年级数学上册等腰三角形教学设计
作业布置要求:
1.作业量适中,旨在帮助学生巩固所学知识,提高解题能力。
2.鼓励学生在完成作业过程中,积极思考、主动探究,培养自主学习能力。
3.教师应及时批改作业,给予反馈,针对学生的错误进行纠正,帮助学生提高。
4.鼓励学生在作业中发挥创造力,将所学知识应用到实际生活中。
4.利用几何画板等工具软件,辅助教学,让学生在观察、实践、探索中掌握等腰三角形的性质。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生主动探索数学知识的热情。
2.培养学生团队合作意识,使学生学会在合作中学习、成长。
3.培养学生面对问题时的耐心和毅力,使学生认识到解决问题需要不断尝试、总结、反思。
3.小组合作,利用几何画板软件绘制一个等腰三角形,并探究其性质。将探究过程和发现总结成文字报告,下节课分享。
4.针对本节课学习的等腰三角形性质,设计一道具有挑战性的问题,要求问题能够涵盖等腰三角形的判定、性质和应用。将设计的问题及解答过程写在作业本上,下节课讨论。
5.家长参与作业:请同学们向家长介绍等腰三角形及其性质,并与家长一起寻找生活中的等腰三角形实例,共同完成一份家庭作业报告。
人教版八年级数学上册等腰三角形教学设计
一、教学目标
(一)知识与技能
1.让学生理解等腰三角形的定义,掌握等腰三角形的性质及其应用。
2.培养学生运用等腰三角形相关知识解决实际问题的能力,如计算等腰三角形的面积、周长等。
3.使学生掌握等腰三角形与其他三角形(如等边三角形、直角三角形等)之间的关系,并能灵活运用。
1.教师出示准备好的等腰三角形教具,引导学生观察并提问:“同学们,你们知道这是什么图形吗?它有什么特点?”
2.学生回答后,教师总结:“是的,这就是我们今天要学习的等腰三角形。它有两条边相等,两个角也相等。那么,等腰三角形还有哪些性质呢?我们来一起探究一下。”

人教版八年级上册数学第十三章等腰三角形的判定优秀教学案例

人教版八年级上册数学第十三章等腰三角形的判定优秀教学案例
(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定方法,能够准确识别等腰三角形。
2.学会运用等腰三角形的性质解决相关问题,如计算底角、底边长度等。
3.掌握等腰三角形在实际问题中的应用,如测量距离、计算面积等。
4.能够运用等腰三角形的判定方法,分析解决几何图形的题目,提高解题能力。
(二)过程与方法
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中常见的等腰三角形实例,如等腰三角形的交通标志、建筑结构等,引导学生关注等腰三角形的特点。
2.提问:“同学们,你们在生活中还见过哪些等腰三角形?它们有什么特点?”让学生思考并回答,激发学生的学习兴趣。
3.结合上一章学习的三角形知识,引导学生回顾等边三角形的概念,为新课学习等腰三角形打下基础。
2.教师应采用多元化的评价方式,如小组互评、自我评价、教师评价等,全面评估学生在知识与技能、过程与方法、情感态度与价值观等方面的表现。
3.针对学生的评价,教师要给予积极的反馈,鼓励学生发挥优点,改进不足,激发学生的学习积极性。
4.教师要关注学生的成长过程,定期与学生交流,了解他们的学习需求,调整教学策略,以提高教学效果。
(三)情感态度与价值观
1.激发学生对几何学习的兴趣,培养学生主动探索、积极思考的学习态度。
2.通过解决实际问题,培养学生将所学知识应用于生活的意识,提高学生的实践能力。
3.培养学生勇于挑战、克服困难的精神,增强自信心。
4.引导学生认识到数学与实际生活的紧密联系,培养学生的数学素养和审美观念。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性与主动性。通过多样化的教学手段,使学生在掌握知识与技能的同时,培养良好的学习方法和情感态度,全面提升学生的数学素节课学习的等腰三角形的定义、性质、判定方法等知识。

人教版八年级数学上册13.3.1《等腰三角形》教学设计

人教版八年级数学上册13.3.1《等腰三角形》教学设计
(三)情感态度与价值观
1.培养学生对数学几何知识的兴趣,激发学生学习数学的热情,使学生乐于探索几何图形的奥秘。
2.培养学生的团队协作意识,引导学生相互交流、讨论,共同解决问题,体验合作学习的快乐。
3.培养学生严谨、细致的学习态度,使学生认识到数学知识在解决实际问题中的重要作用,增强学生的数学自信心。
4.鼓励学生分享解题心得,培养学生的反思能力和自主学习能力。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结等腰三角形的性质、判定方法及其应用。
2.让学生谈谈自己在学习过程中的收获和困惑,教师给予解答和指导。
3.强调等腰三角形在几何学习中的重要性,鼓励学生继续探索几何图形的奥秘。
4.布置课后作业,巩固学生对等腰三角形性质和判定方法的理解,为下一节课的学习做好准备。
(二)讲授新知,500字
1.教师利用多媒体展示等腰三角形的图形,并结合定义,详细讲解等腰三角形的性质。
2.对等腰三角形的基本性质进行分类讲解,如等腰三角形的两腰相等、底角相等、底边中线等于高线等。
3.通过实际操作,让学生验证等腰三角形的性质,加深学生对性质的理解。
4.讲解等腰三角形的判定方法,如两边相等的三角形是等腰三角形、两角相等的三角形是等腰三角形等。
五、作业布置
为了巩固学生对等腰三角形性质和判定方法的理解,提高学生的几何图形分析能力和逻辑思维能力,特布置以下作业:
1.完成课本第125页的习题1、2、3,要求学生在解题过程中注意以下方面:
-理解题目要求,准确把握等腰三角形的性质和判定方法。
-仔细审题,避免因粗心大意而导致的错误。
-书写工整,保持解答过程的清晰、简洁。
(二)过程与方法
1.通过观察、分析、操作等教学活动,引导学生发现等腰三角形比、演绎等思维方式,探索等腰三角形的判定方法,提高学生的逻辑思维能力和解决问题的能力。

人教版八年级数学上册《等腰三角形的性质》教学教案

人教版八年级数学上册《等腰三角形的性质》教学教案

《等腰三角形的性质》教学教案教学目标:掌握等腰三角形的性质,并能运用等腰三角形的性质进行证明和计算.重点:等腰三角形的性质及应用.难点:等腰三角形的性质及应用.教学流程:一、知识回顾问题:什么是等腰三角形?答案:有两边相等的三角形,叫做等腰三角形.相等的两边都叫做腰,另一边叫做底边.两腰的夹角叫做顶角,腰和底边的夹角叫做底角.二、探究操作1:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?答案:AB=AC,是等腰三角形.操作2:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.答案:重合的线段:AB=AC;BD=CD;AD=AD重合的角:∠B=∠C;∠BAD=∠CAD;∠ADB=∠ADC思考:由这些重合的线段和角,你能发现等腰三角形的性质吗?归纳:等腰三角形的性质:性质1:等腰三角形的两个底角相等;(简写成“等边对等角”)符号语言:∵AB=AC,∴∠B=∠C.性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)符号语言:∵AB=AC,∠BAD=∠CAD,∴BD=CD,AD⊥BC.或∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠CAD.或∵AB=AC,BD=CD,∴∠BAD=∠CAD,AD⊥BC.追问:如何证明第一个性质呢?已知:如图,△ABC中,AB =AC.求证:∠B =∠C.证明:作底边的中线AD.∵AB AC BD CD AD AD=⎧⎪=⎨⎪=⎩,,,∴△ABD≌△ACD(SSS).∴∠B =∠C.∴等腰三角形的两个底角相等.追问2:你还有其他的辅助线作法吗?你能用同样的方法证明性质2吗?练习:1.若等腰三角形的顶角为50°,则它的底角度数为( )A.50°B.55°C.65°D.70°答案:C2.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为( )A.25°B.65°C.70°D.75°答案:B3.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边的垂线C.顶角的角平分线所在的直线D.腰上的高所在的直线答案:C归纳:等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、应用提高如图,在△ABC中,AB=AC,点D在AC,且BD=BC=AD,求△ABC各角的度数.解:∵AB=AC,AD=BD=BC,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角),设∠A=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,∴△ABC中,∠A=36 °,∠ABC=∠C=72 °.四、体验收获今天我们学习了哪些知识?1.等腰三角形有哪些性质的?2.本节课你学到了哪些证明线段相等或角相等的方法?五、达标测评1.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35°B.40°C.45°D.50°答案:A2.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为( )A.35°B.45°C.55°D.60°答案:C3.如图,△ABC的周长为32,且AB=AC,AD⊥BC于点D,△ACD的周长为24,则AD 的长为____.答案:84.如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,求∠BAC的度数.解:∵AD=BD,∴∠B=∠BAD,∵AB=AC=CD,∴∠B=∠C,∠ADC=∠DAC.设∠B=∠BAD=∠C=x,则∠ADC=∠DAC=2x,在△ACD中,有∠ADC +∠DAC+∠C=2x+2x+x=180 °,解得x=36 °,∴∠BAC=3x=108°.六、布置作业教材81页习题13.3第1、2题.。

人教版八年级数学上册13.3《等腰三角形》教学设计(第1课时)

人教版八年级数学上册13.3《等腰三角形》教学设计(第1课时)
(三)情感态度与价值观
1.培养学生对数学几何知识的兴趣和爱好,激发学生学习数学的热情。
2.引导学生认识到数学在生活中的广泛应用,增强学生运用数学知识解决实际问题的意识。
3.培养学生严谨、细致的学习态度,提高学生克服困难的勇气和自信心。
4.通过等腰三角形的学习,引导学生体会几何图形的对称美,培养学生对美的鉴赏能力。
2.提出问题:这些图形有什么共同特征?它们在生活中的应用有哪些?通过问题引导学生发现等腰三角形的特点。
3.引入新课:根据学生的回答,引出等腰三角形的定义,激发学生对新课的学习兴趣。
(二)讲授新知
1.等腰三角形的定义:讲解等腰三角形的定义,即有两条边相等的三角形。
2.等腰三角形的性质:
(1)两个底角相等:通过几何画板演示,引导学生观察并证明等腰三角形的两个底角相等。
2.分步教学,循序渐进:将等腰三角形的教学分为定义、性质、判定定理和应用四个环节,逐步深入,让学生在掌握基础知识的基础上,逐步提高解决问题的能力。
3.注重直观,培养空间想象力:运用几何画板等教学工具,直观展示等腰三角形的性质,帮助学生建立空间观念,提高几何直观能力。
4.合作学习,促进交流:采用小组合作、讨论交流的形式,让学生在合作中学习,提高学生的沟通能力和团队协作能力。
1.导入:通过展示生活中常见的等腰三角形实物,如等腰三角形的台布、等腰三角形的剪纸等,引导学生发现等腰三角形的特点,引出本节课的学习内容。
2.新课:讲解等腰三角形的定义、性质和判定定理。结合具体实例,让学生直观感受等腰三角形的特点,引导学生通过几何画板验证等腰三角形的性质。
3.例题讲解:选取典型例题,讲解解题思路和方法,引导学生运用等腰三角形的性质解决问题。
1.学生对几何图形的直观认识较强,但抽象思维能力尚需培养。教学中,应注重引导学生从具体实例中抽象出等腰三角形的性质,提高学生的抽象思维能力。

八年级等腰三角形数学教案5篇

八年级等腰三角形数学教案5篇

八年级等腰三角形数学教案5篇初中数学等腰三角形的性质教案篇一一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

人教版数学八年级上册《 等腰三角形的性质》教学设计

人教版数学八年级上册《 等腰三角形的性质》教学设计

人教版数学八年级上册《等腰三角形的性质》教学设计一. 教材分析等腰三角形的性质是初中数学中的重要内容,人教版八年级上册《几何》第三单元“三角形”的第二节。

本节课的主要内容是让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。

教材通过实例引入等腰三角形的性质,然后通过学生自主探究活动,让学生总结出等腰三角形的性质,最后通过巩固练习,让学生加深对等腰三角形性质的理解。

二. 学情分析学生在七年级已经学习了三角形的有关知识,对三角形的基本概念、性质有一定的了解。

但等腰三角形的性质较为抽象,需要学生通过动手操作、观察、推理等方法,自主探究并掌握。

此外,学生可能对等腰三角形的判定和性质容易混淆,需要老师在教学中进行区分和引导。

三. 教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。

2.过程与方法目标:通过学生自主探究活动,培养学生的观察能力、推理能力、动手操作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的运用。

四. 教学重难点1.重点:等腰三角形的性质。

2.难点:等腰三角形性质的推导和运用。

五. 教学方法1.情境教学法:通过实例引入等腰三角形的性质,让学生在实际问题中感受数学的价值。

2.自主探究法:让学生通过动手操作、观察、推理等方法,自主探究等腰三角形的性质。

3.合作学习法:学生在小组内进行讨论、交流,共同完成学习任务。

4.讲解法:老师对等腰三角形性质进行讲解,引导学生理解并掌握。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、剪刀、彩纸等。

2.学具:学生手册、练习册、彩笔、剪刀、彩纸等。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的等腰三角形图片,如:金字塔、蜡烛等,引导学生观察并提问:“这些图形有什么共同的特点?”学生通过观察,发现这些图形都是等腰三角形。

教师总结等腰三角形的定义,并提问:“等腰三角形有哪些性质呢?”从而引出本节课的主题。

人教版八年级数学上册《等腰三角形的判定》精品教案

人教版八年级数学上册《等腰三角形的判定》精品教案

第2课时等腰三角形的判定教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V布置作业:---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

初中数学初二数学上册《等腰三角形》教案、教学设计

初中数学初二数学上册《等腰三角形》教案、教学设计
(三)学生小组讨论,500字
1.教师将学生分成小组,每组发放一张含有等腰三角形的图形,要求学生找出图形中的等腰三角形,并讨论其性质。
2.各小组汇报讨论成果,教师点评并给予鼓励。
3.教师提出问题:“等腰三角形性质在解题过程中有什么作用?”引导学生进一步探讨。
(四)课堂练习,500字
1.教师发放练习题,题目涵盖等腰三角形的性质、判定以及运用等方面。
初中数学初二数学上册《等腰三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握等腰三角形的定义及性质,能够识别并运用等腰三角形的性质解决问题。
2.培养学生运用几何图形、符号、文字等多种表达方式描述等腰三角形的特征,提高学生的数学表达能力。
3.通过对等腰三角形性质的学习,使学生能够运用这些性质进行简单的几何证明,培养逻辑思维能力。
作业要求:
1.学生独立完成作业,确保作业质量,书写规范,答案准确。
2.家长协助监督,关注学生的学习进度,鼓励学生主动思考和解决问题。
3.教师在批改作业时,注意学生的解题思路和方法,及时发现问题,有针对性地进行辅导。
4.学生完成作业后,进行自我检查,确保作业无误,养成良好的学习习惯。
3.结合等腰三角形的性质,思考并完成以下问题:若已知等腰三角形的一腰和底边,如何求解该等腰三角形的面积?请给出解题步骤和答案。
4.小组合作,探讨等腰三角形在生活中的应用,并以图文并茂的形式展示成果,提高学生的合作意识和实践能力。
5.完成课后拓展题:已知等腰三角形ABC,AB=AC,D、E分别是BC、AC上的点,且BD=CE。求证:AD垂直平分CE。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的解答进行展示和点评,强调解题过程中的注意事项,如证明步骤、逻辑关系等。

人教版八年级数学上册:133等腰三角形优秀教学案例(4课时)

人教版八年级数学上册:133等腰三角形优秀教学案例(4课时)
4.利用多媒体教学手段,如图片、动画、实物模型等,营造生动活泼的学习氛围,激发学生的学习兴趣和好奇心。
(二)问题导向
1.提出引导性问题,引导学生思考等腰三角形的性质和判定方法,激发学生的思维活动。
2.引导学生通过观察、分析和归纳等腰三角形的性质,培养学生的观察能力和逻辑思维能力。
3.鼓励学生提出问题,引导学生通过讨论和探究解决问题,培养学生的独立思考和问题解决能力。
(二)过程与方法
1.学生通过观察和分析等腰三角形的特征,学会发现和总结等腰三角形的性质,培养自主学习和探究能力。
2.学生通过小组合作探究,学会分享和交流自己的思路和方法,培养团队协作和沟通能力。
3.学生通过解决实际问题,学会将数学知识运用到生活中,提高问题解决和应用能力。
4.学生通过多媒体教学手段,如图片、动画、实物模型等,直观地理解等腰三角形的性质和应用,提高信息技术应用能力。
4.结合学生的学习情况和表现,给予积极的反馈和鼓励,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示等腰三角形的图片,让学生观察和描述等腰三角形的特征。
2.向学生提出问题,如“你们在生活中曾经见过哪些形状为等腰三角形的物体?”让学生思考和回忆。
3.引导学生回顾之前学过的三角形知识,如三角形的定义、性质等,为新课的学习做好铺垫。
4.结合学生的作业表现,教师进行课堂小结,对学生的学习情况进行评价和鼓励。
五、案例亮点
1.生活实例引入:通过展示等腰三角形的图片和生活实例,让学生直观地感受到等腰三角形的存在和应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向:教师提出引导性问题,引导学生思考和探索等腰三角形的性质和判定方法,激发学生的思维活动,培养学生的观察能力和逻辑思维能力。

人教版八年级上册 13.3《等腰三角形》 教学设计

人教版八年级上册 13.3《等腰三角形》 教学设计

人教版八年级上册13.3《等腰三角形》教学设计一、教学目标1. 知识与技能目标- 学生能够准确理解等腰三角形的概念,包括等腰三角形的腰、底、顶角、底角等基本元素。

- 熟练掌握等腰三角形的性质,如等腰三角形的两腰相等、两底角相等,并且能运用这些性质进行简单的计算和证明。

- 学会等腰三角形的判定方法,能根据已知条件准确判定一个三角形是否为等腰三角形。

2. 过程与方法目标- 通过观察等腰三角形的实物模型或者多媒体展示的图形,培养学生的观察能力和空间想象能力。

- 经历探究等腰三角形性质和判定的过程,采用小组合作探究的方式,提高学生的逻辑推理能力和自主学习能力。

3. 情感态度与价值观目标- 让学生在探究等腰三角形性质和判定的过程中,体验成功的喜悦,增强学习数学的自信心。

- 感受几何图形的对称美,激发学生对数学的热爱之情。

二、教学重点与难点1. 教学重点- 等腰三角形的性质和判定。

这是等腰三角形这一章节的核心内容,是后续学习等腰三角形相关证明题和计算题的基础。

- 等腰三角形性质和判定的应用。

学生需要学会如何在具体的题目中识别等腰三角形,并且正确运用其性质和判定来解题。

2. 教学难点- 等腰三角形性质和判定的证明过程。

对于八年级的学生来说,逻辑推理能力还在发展阶段,理解和书写等腰三角形性质和判定的证明过程有一定难度。

- 等腰三角形性质和判定在实际问题中的灵活运用。

实际问题往往比较复杂,需要学生能够准确分析题意,找出等腰三角形的相关元素,再运用知识解决问题。

三、教学方法1. 多媒体辅助教学法- 利用多媒体展示各种等腰三角形的图片、动画,如等腰三角形的折叠动画,直观地展示等腰三角形的性质,像两底角相等的动态演示。

这样可以让学生更形象地理解抽象的几何概念和性质。

2. 探究式学习法- 提出一些关于等腰三角形的问题,如等腰三角形的角平分线有什么特殊性质等。

让学生分组进行探究,通过测量、推理等方式得出结论。

在这个过程中,学生可以自主地发现问题、分析问题和解决问题,提高他们的学习积极性和学习能力。

人教版初中八年级上册数学《等腰三角形的性质》精品教案

人教版初中八年级上册数学《等腰三角形的性质》精品教案

两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
找一找: 剪出的等腰三角形是轴对称图形吗?把剪出的
等腰三角形ABC沿折痕对折,找出其中重合的线段和角.
等腰三角形是轴对称图形.
A
重合的线段
重合的角
AB与AC
∠B 与∠C.
BD与CD
∠BAD 与∠CAD
AD与AD
∠ADB 与∠ADC
B
D
C
猜一猜: 由这些重合的线段和角,你能发现等腰三角形的性质 吗?说一说你的猜想.
2x
∠A+∠ABC+∠C=x+2x+2x=180 ° ,
B
C
解得x=36 ° ,在△ABC中, ∠A=36°,
∠ABC=∠C=72°.
当堂练习
1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.
A
A
120° 36°
B
C
B
C
∠B=∠C = 72°
∠B=∠C = 30°
2.(1)等腰三角形一个底角为75°,它的另外两个角为7_5_°__, 30°__; (2)等腰三角形一个角为36°,它的另外两个角为 __7_2_°__,7_2_°__或__3_6_°__,_1_0_8_°; (3)等腰三角形一个角为120°,它的另外两个角为_ 3_0_°_ ,3_0_°.
2.师生共同总结反思学习情况。
课堂小结
1.同桌之间相互交流本课学习收获。 2.老师引导学生总结归纳本课学习知识点,并 总结交流本课学习心得
教学研讨:
说课与反思
1.上课教师说课。 2.上课教师做教学反思。
教学研讨
感谢你的参与 期待下次再见
∠ABC、∠C呢? ∠BDC= ∠A+ ∠ABD=2 ∠A=2 ∠ABD, ∠ABC= ∠BDC=2 ∠A, ∠C= ∠BDC=2 ∠A.

人教版八年级上册13.3《等腰三角形》优秀教学案例

人教版八年级上册13.3《等腰三角形》优秀教学案例
(五)作业小结
1.设计具有针对性的作业,让学生巩固所学知识。
2.鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。
3.对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。
在作业小结环节,我会设计具有针对性的作业,让学生巩固所学知识。同时,我会鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。最后,我会对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。通过这些措施,帮助学生更好地理解和掌握等腰三角形的性质。
五、案例亮点
1.情景创设贴近生活:通过实物模型、图片等直观教具,以及生动的生活实例,我成功吸引了学生的注意力,让他们在轻松愉快的氛围中学习等腰三角形的性质。这种情景创设的方式不仅提高了学生的学习兴趣,还使他们更加深刻地理解了数学在实际生活中的运用。
2.问题导向激发学生思考:我设计了一系列具有启发性的问题,引导学生独立思考、主动探究。这种问题导向的教学策略,使学生在思考和解决问题的过程中,提高了自己的逻辑思维和问题解决能力。
三、教学策略
(一)情景创设
1.利用实物模型、图片等直观教具,为学生创设生动、具体的主动探究等腰三角形的性质。
3.通过数学软件(如几何画板)动态演示等腰三角形的性质,让学生在直观感受中理解知识。
在教学过程中,我会充分利用实物模型、图片等直观教具,为学生创设生动、具体的学习情境。例如,我可以让学生观察一些生活中的等腰三角形物体,如金字塔、腰带等,从而引出等腰三角形的概念。同时,我会设计一些有趣的问题,如“等腰三角形为什么叫等腰三角形?”“等腰三角形的底角是否相等?”等,引导学生主动探究等腰三角形的性质。此外,我还会利用几何画板等数学软件,动态演示等腰三角形的性质,让学生在直观感受中理解知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档