(完整word)任意角和弧度制知识点与同步练习,推荐文档

合集下载

(word完整版)必修四_任意角与弧度制__知识点汇总(教师版),推荐文档

(word完整版)必修四_任意角与弧度制__知识点汇总(教师版),推荐文档

美博教育任意角与弧度制知识梳理:一、任意角和弧度制1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

4、常用的角的集合表示方法1、终边相同的角:(1)终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和。

(2)所有与α终边相同的角连同α在内可以构成一个集合{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。

终边相同的角有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。

例1、(1)若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 。

若θ角的终边与8π/5的终边相同则有:θ=2kπ+8π/5 (k 为整数)所以有:θ/4=(2kπ+8π/5)/4=kπ/2+2π/5当:0≤kπ/2+2π/5≤2π有:k=0 时,有2π/5 与θ/4角的终边相同的角k=1 时,有9π/10 与θ/4角的终边相同的角(2)若βα和是终边相同的角。

那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1)ο210-; (2)731484'-ο.例3、求θ,使θ与ο900-角的终边相同,且[]οο1260180,-∈θ.2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk例1、若θα+⋅=ο360k ,),(360Z m k m ∈-⋅=θβο则角α与角β的中变得位置关系是( )。

人教A版高中数学必修四任意角和弧度制任意角和弧度制知识梳理文字素材

人教A版高中数学必修四任意角和弧度制任意角和弧度制知识梳理文字素材

《任意角和弧度制》知识梳理一、要点知识精析1.任意角是由角的终边按照一定方向旋转而定义的,由于旋转有逆时针和顺时针两个方向,因此旋转所得到的角也有正负之分.如果角的终边没有作任何旋转,则称该角为零角.注意:一般情况下,角的始边与x 轴的正半轴重合,定点在坐标原点.2.正确理解直角坐标系中的几种角象限角:是指始边与x 轴的正半轴重合,顶点在坐标原点,而终边落在某个象限内的角(注意:终边落在坐标轴上的角不属于任何象限的角);如:α是第一象限角,则2k πα<22k ππ<+()k Z ∈.轴线角:终边落在坐标轴上的角.如α的终边在x 轴的正半轴,则2k απ=;α的终边在x 轴,则k απ=;α的终边在坐标轴上,则2k πα=;(以上)k Z ∈. 区间角:是指介于两个角之间的角的集合,如030150x <≤;区域角:是介于某两条终边之间的角集,如0030360k α+∙<0090360k <+∙k Z ∈,显然区域角是无数个区间角的集合,而且象限角可以用区域角来表示.终边相同的角:具有同一终边的角的集合,与角α终边相同的角可用集合表示为{β∣0360,k k Z βα=+∙∈}或{β∣2,k k Z βαπ=+∈}.在写与角α终边相同的角的集合时要注意单位统一,避免出现“0302()k k Z π+∈或0360,6k k Z π∙+∈” 之类的错误;3.等于半径长的圆弧所对的圆心角叫1弧度的角.这一定义与圆的半径大小无关.由弧度制的定义,衍生出两个公式:弧长公式(l r α=)和扇形面积公式(212S r α=),应用这两个公式时,角的单位都必须用弧度制,这两个公式都比用角度制下的弧长公式和扇形面积公式简单.无论是角度制或是弧度制,都能在角的集合与实数集R之间建立一种一、一对应关系.4.弧度制和角度制可以相互转化:00/1801()5718rad π=≈,010.01745180rad rad π=≈.用弧度制表示角时,“弧度”二字可以省略不写,但用角度表225图2 图3示时,“度”(或“0”)不能省略.在同一个式子中,两种单位不能混用.二、解题方法指津1.判断角终边所在象限的方法角所在的象限的确定,是三角函数求值问题的关键环节,为此,要利用题中的若干条件准确地对角所在的象限进行判断. (1)利用终边相同的角的表示法判断判断一个角的终边所在位置,可先将此角化为α+∙0360k 003600(<≤α,Z k ∈)或),20(2Z k k ∈<≤+πααπ的形式,找出与此角终边相同的角α,再由角α的象限来判断此角的位置. (2)确定角的范围判断 已知单角α的象限,求2α、3α、2α等角的范围问题,通常先把α角的范围用不等式表示出来,再利用不等式的性质得出所讨论的角的范围,对k 的取值进行讨论,确定出所在象限.(3).由α所在象限,确定nα所在象限的方法 求nα所在象限,可先将各个象限n 等分,从第一象限离x 轴最近的区域开始逆时针方向依次重复标注数码1,2,3,4,直到将所有区域标完为止.如果α在第几象限,则nα就在图中标号为几的区域内.如图2所示,将各象限2等分,若α在第一象限,则2α就在图中标号为1的区域内,即一、三象限的前半区域.如图3,若α在第三象限,则3α就在图中标号为3的区域内,即一、三、四象限.依次类推.。

高中数学《7、1角与弧度》知识点+教案课件+习题

高中数学《7、1角与弧度》知识点+教案课件+习题

知识点:1.弧度制(1)弧度制的定义长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.(2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是零.(3)角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是2.角度制与弧度制的换算(1)(2)一些特殊角的度数与弧度数的对应关系视频教学:练习:1.将表的分针拨慢20分钟,则分针转过的角的弧度是( )A. B. C. D.2.集合,,则有( )A. B. C. D.3.与角的终边相同的角的表达式中,正确的是( )A. B. C. D.4.若扇形的半径为2,面积为,则它的圆心角为( )A. B. C. D.5.已知扇形的圆心角为,半径为,则此扇形的面积为( )A. B. C. D.课件:教案:教材分析前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、情景导入度量单位可以用米、英尺、码等不同的单位制,度量质量可以用千克、磅等不同的单位制,不同的单位制能给解决问题带来方便.角的度量是否也可以用不同的单位制呢?能否像度量长度那样,用十进制的实数来度量角的大小呢?要求:让学生自由发言,教师不做判断。

任意角的概念与弧度制知识点习题附答案

任意角的概念与弧度制知识点习题附答案

典型题一 有关角的概念的问题
1.下列命题正确的是: ( )
A.终边相同的角一定相等。
B.第一象限的角都是锐角。
C.锐角都是第一象限的角。
D.小于 900 的角都是锐角。
2.下列结论:①第一象限角都是锐角
②锐角都是第一象限角
③第一象限角一定不是负角
④第二象限角是钝角
⑤小于 180°的角是钝角、直角、或锐角。
4.与角 终边相同的角的集合为 k 360 , k k 180 45, k
1)终边落在 y=x 上:
45 +k 360, k
2)终边落在第一象限角平分线上:
5.弧度制:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。 以弧度为单位来度量角的单位制度叫弧度制。
C.3 个
D.4 个
2.[四川遂宁 2019 高一测试]将表的分针拨慢 20 分钟,则分针转过的角的弧度是(

A. 2 3
B. 3
C. 2 3
D.
3
3.已知扇形的周长为 6cm,半径是 2cm,则扇形的圆心角的弧度数是( )
A.4
B.1
C.1 或 4
D.2
4.若角α是第二象限角,则 是(
)
2
D. α-β=90°+ k 360 (k∈Z)
12.已知角α与β的终边关于 y 轴对称,则α与β的关系为( )
A. α-β=π+2kπ B. α-β=π +2kπ
2
13.若α=2kπ+π (k∈Z),则α的终边在(
3
3
2
C. α+β=2kπ )
A.第一象限
B.第四象限

任意角和弧度制+同步练习- 高一上学期数学人教A版(2019)必修第一册

任意角和弧度制+同步练习- 高一上学期数学人教A版(2019)必修第一册

5.1任意角与弧度制一、单选题1.某班级举行“变废为宝”手工活动,某学生用扇形纸壳裁成扇环(如图1)后,制成了简易笔筒(如图2)的侧面,在它的轴截面ABCD 中 ,10cm AB AD ==,15cm CD =,则原扇形纸壳中扇形的圆心角为( )A.π3 B .π2 C .π4D .π62.已知扇形的周长为8cm ,圆心角为2rad ,则此扇形的面积是( ) A .22cmB .24cmC .26cmD .28cm3.半径为2的圆上长度为4的圆弧所对的圆心角是( ) A .1B .2C .4D .84.中国传统折扇可看作是从一个圆面中剪下的扇形环(扇形环是一个圆环被扇形截得的一部分)制作而成.若一把折扇完全打开时,其扇形环扇面尺寸(单位:cm )如图所示,则该扇面的面积为( )A .22700cmB .23500cm C .24300cmD .24800cm5.我国古代数学著作《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”译成现代汉语其意思为:有一块扇形田,弧长30步,其所在圆的直径是16步,问这块田的面积为多少?( )A .240平方步B .120平方步C .80平方步D .60平方步6.已知A = {第二象限角},B ={钝角},C ={大于90°的角},那么,,A B C 关系是( )A .B AC =⋂ B . C C =B ∪ C . A C ⊆D . A B C ==7.已知扇形的周长是6cm ,则扇形面积最大时,扇形的中心角的弧度数是( ) A .2B .1C .12D .38.在[0,2π]上,与π5-终边相同的角是( )A .π5B .4π5C .6π5D .9π5二、多选题9.已知某扇形的弧长为3π,圆心角为12,则( )A .该扇形的半径为6πB .该扇形的周长为9πC .该扇形的面积为9πD .该扇形的面积为29π10.下列说法正确的有( )A .若一个扇形弧长的值与面积的值都是5,则这个扇形圆心角的大小是52B .已知346x y ==,则212+=x yC .函数1()x f x x在其定义域上单调递减 D .若幂函数()21()1kf x k k x +=+-的图象过点12,2⎛⎫ ⎪⎝⎭,则1k =11.下列说法中正确的是( )A .π180-=-︒B .第一象限角都是锐角C .在半径为2的圆中,π6弧度的圆心角所对的弧长为π3D .终边在直线y x =-上的角的集合是π2,Z 4k k ααπ⎧⎫=-∈⎨⎬⎩⎭三、填空题12.已知圆心角为32的扇形,其周长为21,则该扇形的半径为 ,该扇形的面积为 .13.半径为2的圆中,π7的圆心角所对的弧的长度是 .14.若扇形的周长为40cm ,面积为2100cm ,则它的圆心角的弧度数为 .四、解答题15.已知角α的终边在第四象限,确定下列各角终边所在的象限:(1)2α; (2)3α;16.某农户计划围建一块扇形的菜地,已知该农户围建菜地的篱笆的长度为24米. (1)若该扇形菜地的圆心角为4弧度,求该扇形菜地的面积;(2)当该扇形菜地的圆心角为何值时,菜地的面积最大,最大值是多少?17.已知扇形的半径2r cm =,周长为π43C cm ⎛⎫=+ ⎪⎝⎭,(1)求扇形的面积;(2)在区间[]0,4π上求出与此扇形的圆心角α终边相同的角.18.已知一扇形的圆心角为()02παα<<,所在圆的半径R . (1)当π,43R α==,求其弧所在弓形的面积. (2)若该扇形的面积为4S =,当它的圆心角和半径取何值时,该扇形的周长C 最小?最小值是多少?19.用弧度制分别表示每个图中顶点在原点、始边重合于x 轴的非负半轴、终边落在阴影部分内(包括边界)的角的集合.。

(完整版)任意角和弧度制知识点和练习

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角知识点二:象限角的范围2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o知识点三:终边角的范围3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.知识点四:弧度制的转换5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=o ,1180π=o ,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 知识点五:扇形8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例题分析【例1】如果α角是第二象限的角,那么2α角是第几象限的角?说说你的理由。

任意角和弧度制(基础知识+基本题型)(含解析)

任意角和弧度制(基础知识+基本题型)(含解析)

5.1 任意角和弧度制(基础知识+基本题型)知识点一 任意角 1.角的概念(1)角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

(2)角的表示:如图射线OA 为始边,射线OB 为终边,点O 为角的顶点,图中角α可记为“角α”或“α∠”,也可简记为“α”。

2.角的分类 名称定义 图形正角一条射线按逆时针方向旋转形成的角负角一条射线按顺时针方向旋转形成的角零角 一条射线没有做任何旋转形成的角拓展:(1)角的概念的推广重在“旋转”,理解“旋转”二字应明确以下三个方面: ①旋转的方向;②旋转角的大小;③射线未作任何旋转时的位置。

(2)角的范围不再限于0360.BOAOABOABA(BO知识点二 象限角与终边相同的角 1.象限角(1)象限角的概念:当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合时,角的终边在第几象限,我们就说这个角是第几象限角。

(2)象限角的集合表示}36090360,x k k Z <<+⋅∈}90360180360,k x k k Z +⋅<<+⋅∈ }180360270360,k x k k Z +⋅<<+⋅∈}270360360360,k x k k Z ⋅<<+⋅∈2.终边相同的角(1)所有与角α终边相同的角,连同角α在内,可构成一个集合{S ββα==+}360,k k Z ⋅∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

(2)角的终边在坐标轴上的角的集合表示,k Z ∈}360,k k Z +⋅∈}180,k k Z ⋅∈}90360,k k Z +⋅∈}90360,k k Z +⋅∈终边落在y 轴上的角{}90180,x x k k Z =+⋅∈终边落在坐标轴上的角{}90,x x k k Z =⋅∈注意:(1)相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数个,它们相差360的整数倍。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

人教A版必修四高一数学《11任意角和弧度制》复习资料.docx

人教A版必修四高一数学《11任意角和弧度制》复习资料.docx

本节知识导引主要内容:任意角的概念,象限角的概念,终边相同的角的概念;弧度制,弧度数的绝对值公式,弧度与角度的换算。

重点难点:重点:将︒︒360~0范围内的角推广到任意角,了解弧度制,并能进行弧度与度之间的换算。

难点:弧度的概念,用集合来表示终边相同的角。

应注意的问题:1)由于过去接触的角都在︒︒360~0,在对角的认识上已形成一定的思维定势,所以对角的概念推广存在一定的困难。

可以根据自己的实际,结合一些生活中的实际例子,深刻体会角概念推广的必要性和实际意义。

利用几何直观有利于抽象概念的理解,那么在理解任意角概念时,要充分利用好单位圆这一几何图形。

2)在学习象限角时,应注意角与平面直角坐标系的关系——角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

在这个统一前提下,才能对象限角进行定义。

3)我们是用集合和符号来表示终边相同的角,涉及到任意角、象限角、终边相同的角等新概念,所以确实难度较大。

学习时应先结合直角坐标系,体会由具体数值到一般k 值的抽象的过程,最终形成“终边相同的角相差︒360的整数倍”的直观感知。

这样遵循“特殊到一般”的认知过程,并利用了数形结合的思想方法,易于理解和掌握。

几种终边在特殊位置时对应角的集合为:角的终边所在位置角的集合 X 轴正半轴{}Z k k ∈︒⋅=,360|αα Y 轴正半轴{}Z k k ∈︒+︒⋅=,90360|αα X 轴负半轴{}Z k k ∈︒+︒⋅=,180360|αα Y 轴负半轴 {}Z k k ∈︒+︒⋅=,270360|ααX 轴 {}Z k k ∈︒⋅=,180|αα Y 轴{}Z k k ∈︒+︒⋅=,90180|αα 坐标轴 {}Z k k ∈︒⋅=,90|αα4)弧度制,弄清1弧度的角的含义,是了解弧度制,并能进行弧度与角度换算的关键。

随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角和弧的度数都有正数、0、负数。

(完整word版)高一三角函数知识点加练习题

(完整word版)高一三角函数知识点加练习题

《三角函数》一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g 锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π8、角度与弧度对应表: 角度 0︒ 30︒ 45︒ 60︒ 90o 120︒ 135︒ 150︒ 180︒ 360︒弧度6π 4π 3π 2π 23π 34π 56π π2π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制. 二、任意角的三角函数ry)(x,P1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα= 其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)例题:1.已知α∠为第二象限角,135sin =α求αcos 、αtan 、αcot 的值2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值方法:①画直角三角形 ②利用勾股定理先算大小后看正负4、同角三角函数基本关系式22sin cos 1αα+= sin tan tan cot 1cos ααααα=⇒=g ααααcos sin 21)cos (sin 2+=+ ααααcos sin 21)cos (sin 2-=-(ααcos sin +,ααcos sin -,ααcos sin •,三式之间可以互相表示)例题:1.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为_____________.度 0o30o 45o 60o 90o 120o 135o 150o 180o︒270360o弧度 0 6π4π 3π 2π 23π 34π 56π π32π 2π sin α 0 12 22 32 1 32 2212 01cos α 1 32 22 12 0 12- 22- 32-1- 0 1tan α 0 33 1 3 无 3- 1- 33-无已知2tan =α,则1.ααααcos sin cos sin -+=_____________.2.αααα22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)2.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍)例题:已知πα<∠<0,αsin +αcos =21,求①αsin .αcos ②αcos -αsin6、诱导公式口诀:奇变偶不变,符号看象限(所谓奇偶指的是απ+2n 中整数n 的奇偶性,把α看作锐角)212(1)sin ,sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数;212(1)s ,s()2(1)sin ,nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数. ①.公式(一):α与()2,k k Z απ+∈απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k②.公式(二):α与α-()sin sin αα-=-;()cos cos αα-=;()tan tan αα-=-③.公式(三):α与πα+()sin sin παα+=-;()cos cos παα+=-;()tan tan παα+=④.公式(四):α与πα-()sin sin παα-=;()cos cos παα-=-;()tan tan παα-=-⑤.公式(五):α与2πα+sin cos 2παα⎛⎫+= ⎪⎝⎭;cos sin 2παα⎛⎫+=- ⎪⎝⎭; ⑥.公式(六):α与2πα-sin cos 2παα⎛⎫-= ⎪⎝⎭;cos sin 2παα⎛⎫-= ⎪⎝⎭; ⑦.公式(七):α与32πα+ 3sin cos 2παα⎛⎫+=- ⎪⎝⎭;3cos sin 2παα⎛⎫+= ⎪⎝⎭;⑧.公式(八):α与32πα- 3sin cos 2παα⎛⎫-=- ⎪⎝⎭;3cos sin 2παα⎛⎫-=- ⎪⎝⎭; 例题1.)619sin(π-的值等于( )A. 21B. 21-C. 23D.23-2. 若⎭⎬⎫⎩⎨⎧∈-==z k k M ,52ππαα,{}παπα<<-=N 则N M I 等于( )A. ⎭⎬⎫⎩⎨⎧-ππ103,5B. ⎭⎬⎫⎩⎨⎧-ππ54,107C. ⎭⎬⎫⎩⎨⎧--ππππ107,54,103,5D. ⎭⎬⎫⎩⎨⎧-ππ107,103 3. 已知33)6cos(=-απ求)6(sin )65cos(2πααπ+-+的值。

第1节 任意角和弧度制及任意角的三角函数(经典练习及答案详解)

第1节 任意角和弧度制及任意角的三角函数(经典练习及答案详解)

第1节 任意角和弧度制及任意角的三角函数知识梳理1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所形成的图形. (2)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角W.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad. (2)公式3.任意角的三角函数 (1)定义(2)定义的推广设P(x,y)是角α终边上异于原点的任一点,它到原点的距离为r(r>0),那么sin α=yr;cos α=xr,tan α=yx(x≠0).1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用.3.象限角4.轴线角诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.( ) (4)若α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)锐角的取值范围是⎝ ⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角.2.已知角θ的终边过点P (-12,m ),cos θ=-1213,则m 的值为( ) A.-5 B.5C.±5D.±8答案 C解析 由三角函数的定义可知cos θ=-12(-12)2+m2=-1213,解得m =±5. 3.在-720°~0°范围内,所有与角α=45°终边相同的角β构成的集合为________. 答案 {-675°,-315°}解析 所有与角α终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ). 解得k =-2或k =-1,∴β=-675°或β=-315°.4.(2020·全国Ⅱ卷)若α为第四象限角,则( ) A.cos 2α>0 B.cos 2α<0 C.sin 2α>0D.sin 2α<0答案 D解析 ∵α是第四象限角,∴sin α<0,cos α>0,∴sin 2α=2sin αcos α<0,故选D. 5.(多选题)(2021·武汉调研)下列说法正确的是( ) A.时钟经过两个小时,时针转过的角度是60° B.钝角大于锐角C.三角形的内角必是第一或第二象限角D.若α是第二象限角,则α2是第一或第三象限角 答案 BD解析 对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,∵角α的终边在第二象限, ∴2k π+π2<α<2k π+π,k ∈Z , ∴k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角;当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三象限角,故正确.6.(2021·菏泽质检)密位广泛用于航海和军事,我国采取的“密位制”是6 000密位制,即将一个圆周分成6 000等份,每一等份是一个密位,那么60密位等于________rad. 答案 π50解析 ∵周角为2π rad , ∴1密位=2π6 000=π3 000(rad), ∴60密位=π3 000·60=π50(rad).考点一 角的概念及其表示1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,排除A 、B ,易知D 错误,C 正确.2.(多选题)(2021·海南调研)已知α为第三象限角,则α2的终边所在的象限可能是( ) A.第一象限 B.第二象限 C.第三象限D.第四象限答案 BD解析 ∵α为第三象限角, ∴π+2k π<α<3π2+2k π,k ∈Z , ∴π2+k π<α2<3π4+k π,k ∈Z ,当k =2m ,m ∈Z 时,π2+2m π<α2<3π4+2m π,m ∈Z ,此时α2在第二象限, 当k =2m +1,m ∈Z 时,3π2+2m π<α2<7π4+2m π,m ∈Z , 此时α2在第四象限.综上,α2的终边在第二或第四象限.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________. 答案⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3解析 终边在直线y =3x 上的角α的集合为⎩⎨⎧⎭⎬⎫α|α=π3+k π,又由α∈[-2π,2π),即-2π≤π3+k π<2π,k ∈Z , 解得k =-2,-1,0,1,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.感悟升华 1.确定nα,αn (n ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出nα或αn 的范围,然后根据n 的可能取值讨论确定nα或αn 的终边所在位置(也可采用等分象限角的方法). 2.利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. 考点二 弧度制及其应用【例1】已知一扇形的圆心角为α,半径为R ,弧长为l ,若α=π3,R =10 cm ,求:(1)扇形的面积;(2)扇形的弧长及该弧所在弓形的面积. 解 (1)由已知得α=π3,R =10, ∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2). (2)l =α·R =π3·10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3 =12×10π3·10-12×102×32=50π-7533(cm 2).感悟升华 应用弧度制解决问题时应注意:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 【训练1】 (1)(多选题)(2020·青岛质检)已知扇形的周长是6,面积是2,下列选项可能正确的有( ) A.圆的半径为2 B.圆的半径为1 C.圆心角的弧度数是1 D.圆心角的弧度数是2(2)已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2. 答案 (1)ABC (2)4解析 (1)设扇形半径为r ,圆心角弧度数为α,则由题意得⎩⎨⎧2r +αr =6,12αr 2=2,解得⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1,可得圆心角的弧度数是4或1. (2)设扇形半径为r cm ,弧长为l cm , 则2r +l =8,S =12rl =12r ×(8-2r ) =-r 2+4r =-(r -2)2+4, 所以S max =4(cm 2).考点三 三角函数的定义及应用角度1 求三角函数值【例2】已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α等于( )A.-33 B.±33C.-32D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32. 综上sin α·tan α=-32. 角度2 由三角函数值求参数【例3】已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32 C.12D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,所以m >0,解得m =12.角度3 三角函数值的符号【例4】 (多选题)(2021·重庆调研)已知|cos θ|=cos θ,|tan θ|=-tan θ,则角θ2的终边可能在( ) A.第二、四象限 B.第一、三象限 C.y 轴上D.x 轴上答案 AD解析∵|cos θ|=cos θ,|tan θ|=-tan θ,∴cos θ≥0,tan θ≤0,∴角θ的终边在第四象限或x轴正半轴上,∴角θ2的终边在第二、四象限或x轴上.故选AD.感悟升华 1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.【训练2】(1)若sin θ·cos θ<0,tan θsin θ>0,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上的一点,且sin θ=-31010,则y=________.答案(1)D(2)-3解析(1)由tan θsin θ>0,得1cos θ>0,所以cos θ>0.又sin θ·cos θ<0,所以sin θ<0,所以θ为第四象限角.故选D.(2)因为sin θ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010.解得y =-3.A 级 基础巩固一、选择题1.小明出国旅游,当地时间比北京时间晚一个小时,他需要调整手表的时间,则时针转过的角的弧度数为( ) A.π3 B.π6C.-π3D.-π6答案 B解析 因为当地时间比北京时间晚一个小时,所以时针应该是逆时针方向旋转,故时针转过的角的弧度数为π6.故选B.2.(多选题)(2021·淄博调研)下列四个命题正确的是( ) A.-3π4是第二象限角B.4π3是第三象限角C.-400°是第四象限角D.-315°是第一象限角答案 BCD解析 -3π4是第三象限角,故A 错误;4π3=π+π3,从而4π3是第三象限角,B 正确;-400°=-360°-40°,是第四象限角,从而C 正确;-315°=-360°+45°,是第一象限角,从而D 正确.3.(2020·天津期末)在平面直角坐标系中,若角α以x 轴的非负半轴为始边,且终边过点⎝ ⎛⎭⎪⎫-32,12,则sin α=( )A.-32B.-12C.32D.12答案 D解析 由任意角三角函数的定义得sin α=12⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫122=12.故选D.4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2B.4C.6D.8答案 C解析 设扇形的半径为r ,弧长为l ,则由扇形面积公式可得2=12|α|r 2=12×4×r 2,解得r =1,l =αr =4,所以所求扇形的周长为2r +l =6.5.若角α的终边在直线y =-x 上,则角α的取值集合为( )A.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·2π-π4,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·2π+3π4,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·π-3π4,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·π-π4,k ∈Z 答案 D解析 由图知,角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π+3π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=(2n +1)π-π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π-π4,k ∈Z . 6.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角, 又⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,所以cos θ2<0, 综上可知,θ2为第二象限角.7.(2020·长沙模拟)已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B.-12C.32D.-32答案 A解析 由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.8.(多选题)(2021·山东新高考模拟)如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°,质点A 以1 rad/s 的角速度按逆时针方向在单位圆上运动,质点B 以2 rad/s 的角速度按顺时针方向在单位圆上运动,则( )A.经过1 s 后,∠BOA 的弧度数为π3+3B.经过π12 s 后,扇形AOB 的弧长为7π12C.经过π6 s 后,扇形AOB 的面积为π3D.经过5π9 s 后,A ,B 在单位圆上第一次相遇答案 ABD解析 经过1 s 后,质点A 运动1 rad ,质点B 运动2 rad ,此时∠BOA 的弧度数为π3+3,故A 正确;经过π12 s 后,∠AOB =π12+π3+2×π12=7π12,故扇形AOB 的弧长为7π12×1=7π12,故B 正确;经过π6 s 后,∠AOB =π6+π3+2×π6=5π6,故扇形AOB 的面积为S =12×5π6×12=5π12,故C 不正确;设经过t s 后,A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9(s),故D 正确.二、填空题9.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎨⎧l =π3,r =2. 10.在平面直角坐标系xOy 中,点P 在角2π3的终边上,且|OP |=2,则点P 的坐标为________.答案 (-1,3)解析设点P 的坐标为(x ,y ),由三角函数定义得⎩⎪⎨⎪⎧x =|OP |cos 2π3,y =|OP |sin 2π3,所以⎩⎪⎨⎪⎧x =-1,y =3,所以点P 的坐标为(-1,3).11.(2021·河北九校联考)已知点P (sin 35°,cos 35°)为角α终边上一点,若0°≤α<360°,则α=________.答案 55°解析 由题意知cos α=sin 35°=cos 55°,sin α=cos 35°=sin 55°,P 在第一象限,所以α=55°.12.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=________.答案 55解析 由O ,A ,B 三点共线,从而得到b =2a ,因为cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫1a 2+12-1=23,解得a 2=15, 即|a |=55,所以|a -b |=|a -2a |=|a |=55.B 级 能力提升13.设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N ={x |x =k 4·180°+45°,k ∈Z },那么( )A.M =NB.M ⊆NC.N ⊆MD.M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .14.(2019·北京卷)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β 答案 B解析 如图,设点O 为圆心,连接PO ,OA ,OB ,AB ,在劣弧上取一点C ,则阴影部分面积为△ABP 和弓形ACB 的面积和.因为A ,B 是圆周上的定点,所以弓形ACB 的面积为定值,故当△ABP 的面积最大时,阴影部分的面积最大.又AB 的长为定值,故当点P 为优弧的中点时,点P 到弦AB 的距离最大,此时△ABP 面积最大,即当P 为优弧的中点时,阴影部分面积最大.下面计算当P 为优弧的中点时阴影部分的面积.因为∠APB 为锐角,且∠APB =β,所以∠AOB =2β,∠AOP =∠BOP =180°-β,则阴影部分的面积S =S △AOP +S △BOP +S 扇形OAB =2×12×2×2sin(180°-β)+12×22×2β=4β+4sin β.故选B.15.一扇形的圆心角为2π3,则此扇形的面积与其内切圆的面积的比值为________.答案 7+439解析 设扇形半径为R ,内切圆半径为r .则(R -r )sin π3=r ,即R =⎝⎛⎭⎪⎫1+233r . 又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,所以S 扇πr 2=7+439.16.在平面直角坐标系中,劣弧,,,是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段弧上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是________.答案解析 因为tan α<cos α,所以P 所在的圆弧不是,因为tan α<sin α,所以P 所在的圆弧不是,又cos α<sin α,所以P 所在的圆弧不是,所以P 所在的圆弧是.。

(完整版)任意角和弧度制练习题(含答案)

(完整版)任意角和弧度制练习题(含答案)

§1.1 任意角和弧度制班级 姓名 学号 得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( )(A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( )(A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z}(C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z} 3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( )(A) α+β=π (B) α-β=2π (C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( ) (A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( )(A)0个 (B)2个 (C)3个 (D)4个二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 .8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 .三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x |x =k ·3600+1800, k ∈Z }, {x |x =k ·1800+450,k ∈Z } ; 8.-345°; 9. 31; 10.第二或第四象限, 第一或第二象限或终边在y 轴的正半轴上三、11.{ α|α=k ·3600+1200或α=k ·3600+3000, k ∈Z } -60° 120°12.由7θ=θ+k ·360°,得θ=k ·60°(k ∈Z )∴θ=60°,120°,180°,240°,300°13.∵l =20-2r ,∴S =21lr =21(20-2r )·r =-r 2+10r =-(r -5)2+25∴当半径r =5 cm 时,扇形的面积最大为25 cm 2,此时,α=r l =55220⨯-=2(rad) 14.A 点2分钟转过2θ,且π<2θ<23π,14分钟后回到原位,∴14θ=2k π,θ=72πk ,且2π<θ<43π,∴ θ=74π或75π。

任意角的概念及弧度制基础知识与练习

任意角的概念及弧度制基础知识与练习

任意角的概念及弧度制基础知识一、角的定义:1、小学和初中对角的定义:2、高中对角的定义:3、正角、负角、零角的定义:4、角的加减法的几何意义:5、终边与某一角相同的角的表示法:6、象限角的定义:7、轴线角的定义:8、若角α是某一象限的角,则α2、α3分别是什么象限的角:二、弧度制、弧度制与角度制的换算1、角度值的定义:2、弧度制的定义:3、弧度制与角度制的换算4、 特殊角的弧度:5、 弧度、弧长、半径之间的关系:6、 扇形的面积的计算公式:任意角的概念及弧度制练习题1、 在直角坐标系中,若角α与角β的终边关于x 轴对称,则α与β的关系一定是 .若角α与角β的终边互相垂直,则α与β的关系可以是 .2、圆内一条弦的长等于半径,这条弦所对的圆心角是 .3、已知集合{第一象限的角},{锐角},{小于90o 的角},下列四个命题:① ② ③ ④正确的命题个数是 .4、若2弧度的圆心角所对的弧长为4cm ,则这个圆心角所夹的扇形的面积是 .5、若是第四象限角,则是 .6、-1120°角所在象限是 .7、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180| αα8、已知角2α的终边在x 轴的上方,那么α是 ( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角9、两弧度的圆心角所对的弦长为2,这个圆心角所夹的扇形的面积为 。

=A =B =C C B A ==C A ⊂A C ⊂B C A =⊂ααπ-10、写出—720°到720°之间与—1068°终边相同的角的集合 .11、与1991°终边相同的最小正角是 .绝对值最小的角是 .12、若角α的终边为第二象限的角平分线,则α的集合为 .13、在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .14、将分针拨快10分钟,则分针转过的弧度数是 .15、求θ,使θ与 900-角的终边相同,且[] 1260180,-∈θ.16、设集合, {}Z k k k A ∈︒+︒⋅<<︒-︒⋅=,4536045360αα=B {}Z k k k ∈︒+︒⋅<<︒+︒⋅,9018030180ββ,求B A ,B A 。

(完整版)任意角和弧度制练习题有答案

(完整版)任意角和弧度制练习题有答案

任意角和弧度制练习题一、选择题1、下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°2、-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、把-1485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.45°-4×360° B.-45°-4×360°C.-45°-5×360° D.315°-5×360°4.在“①160°②480°③-960°④—1600°”这四个角中,属于第二象限的角是()A.①B.①②C.①②③ D。

①②③④5、终边在第二象限的角的集合可以表示为: ()A.{α∣90°〈α<180°}B.{α∣90°+k·180°<α〈180°+k·180°,k∈Z}C.{α∣-270°+k·180°〈α<-180°+k·180°,k∈Z}D。

{α∣-270°+k·360°〈α<-180°+k·360°,k∈Z}6。

终边落在X轴上的角的集合是( )Α。

{α|α=k·360°,K∈Z } B.{α|α=(2k+1)·180°,K∈Z }C。

{ α|α=k·180°,K∈Z } D.{ α|α=k·180°+90°,K∈Z }7。

任意角和弧度制

任意角和弧度制

任意角和弧度制任意角和弧度制、任意角的三角函数1. 角的有关概念:①从运动角度看:②从终边的位置看:③象限角的集合表示:④轴线角的集合表示:2. 弧度与角度的互化:⑴1弧度角的定义:⑵角的弧度数公式:⑶角度与弧度的互化:⑷扇形的面积公式:3. 任意角三角函数定义:⑴ ⑵⑶各象限内符号:⑷各三角函数定义域:练习:⒈ 870 的终边在第象限⒉下列说法不正确的有:⑴小于90 的角是锐角;⑵第二象限角大于第一象限角;⑶终边相同的角相等;⑷钝角都是第二象限角;⑸第一象限角都是正角⒊如果是第三象限角,那么,2 ,2的终边的位置。

4⒋已知角的终边上有一点p(m, 3),且cos ,则m的值5,则tan ⒍若Q(4,y)是角终边上一点,且sin y⒌已知角的终边与单位圆的交点p(msin⒎给出下列各函数值:①sin( 1000 );②cos( 2200 );③tan( 10 );④7cos 其中值tan9为负的有⒏已知扇形的周长为10,面积是4,求扇形的圆心角。

变:若扇形的周长为10,当它的半径和圆心角分别为多少时,扇形的面积最大?⒐圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数是⒑若1弧度的圆心角所对的弦长等于2,则这个圆心角所对的弧长是。

4. 同角三角函数基本关系平方关系:商数关系5.诱导公式:练习:⒈sin600 +tan240 值为⒉ ABC中,cosA1,则sin(B C) 3) ⒊化简sin( )cos(2 ) 2sin( )2⒋如果sin( A) ⒌已知sin(cos(13 ,那么cos( A)的值是2217 ) ,则cos( )的值等于*****⒍已知f(x) asin( x ) bcos( x ) 4,其中(a,b, , 为常数),f(20XX年) 5 那么f(20XX年)33⒎若cos ,且,那么tan 值为()52⒏记cos( 80 ) k,那么tan100A.⒐若3sin +cos 0,则变:⑴求C.D.1cos2 +sin2sin 3cos值⑵求sin2 +sin2 2值sin cos2⒑如果f(tanx) sinx 5cosxsinx,那f(5)=1x 0,sinx cosx ,求⑴若sinxcosx的值⑵求sinx cosx的值25⑶求sin4x cos4x的值⑷求sin4x+cos4x的值⒒已知⒓已知(0, ),sin cos则tan 的值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?
生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。

轴右侧的角的集合.
~中,轴右侧的角可记为,同样把该范围”后,得
,,故轴右侧角的集合为

()后与原来角终边重合,同样一个
()角后,所得
、在~间,找出与下列各角终边相同的角,并判定它们是第几象限角
;(;(.
)∵
角终边相同的角是角,它是第三象限的角;
)∵
终边相同的角是,它是第四象限的角;
角终边相同的角是,它是第二象限角.。

相关文档
最新文档