四川省广安市2015年中考数学真题试题(含解析)
广安市中考数学试卷(含答案精校解析版)

2016年四川省广安市中考数学试卷一、选择题(每小题只有一个选项符合题意,请将正确选项涂在答题卡上,每小题3分,共30分)1.(3分)(2016•广安)﹣3的绝对值是()A.B.﹣3 C.3 D.±32.(3分)(2016•广安)下列运算正确的是()A.(﹣2a3)2=﹣4a6B.=±3 C.m2•m3=m6D.x3+2x3=3x33.(3分)(2016•广安)经统计我市去年共引进世界500强外资企业19家,累计引进外资410000000美元,数字410000000用科学记数法表示为()A.41×107B.4.1×108C.4.1×109D.0.41×1094.(3分)(2016•广安)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边行C.正五边形D.圆5.(3分)(2016•广安)函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)(2016•广安)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.707.(3分)(2016•广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号 1 2 3 4 5 方差平均成绩得分38 34 ■37 40 ■37那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,38.(3分)(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个9.(3分)(2016•广安)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2π B.π C.π D.π10.(3分)(2016•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共18分)11.(3分)(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.12.(3分)(2016•广安)如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=.13.(3分)(2016•广安)若反比例函数y=(k≠0)的图象经过点(1,﹣3),则第一次函数y=kx﹣k(k≠0)的图象经过象限.14.(3分)(2016•广安)某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可列方程.15.(3分)(2016•广安)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.16.(3分)(2016•广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是.三、解答题(本大题共4小题,第17小题5分,第18、19、20小题各6分,共3分)17.(5分)(2016•广安)计算:()﹣1﹣+tan60°+|3﹣2|.18.(6分)(2016•广安)先化简,再求值:(﹣)÷,其中x满足2x+4=0.19.(6分)(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.20.(6分)(2016•广安)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(﹣1,6),B(a,﹣2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.四、实践应用(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21.(6分)(2016•广安)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.22.(8分)(2016•广安)某水果积极计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量4 2 3(吨)每吨水果可获利润(千5 7 4元)(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?23.(8分)(2016•广安)如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全现要作一个不锈钢扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC(杆子的地段分别为D、C),且∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)(1)求点D与点C的高度DH;(2)求所有不锈钢材料的总长度(即AD+AB+BC的长,结果精确到0.1米)24.(8分)(2016•广安)在数学活动课上,老师要求学生在5×5的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).五、推理与论证(9分)25.(9分)(2016•广安)如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.六、拓展探究(10分)26.(10分)(2016•广安)如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.2016年四川省广安市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请将正确选项涂在答题卡上,每小题3分,共30分)1.(3分)(2016•广安)﹣3的绝对值是()A.B.﹣3 C.3 D.±3【考点】绝对值.【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣3的绝对值是3.故选:C.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a 本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(3分)(2016•广安)下列运算正确的是()A.(﹣2a3)2=﹣4a6B.=±3 C.m2•m3=m6D.x3+2x3=3x3【考点】幂的乘方与积的乘方;算术平方根;合并同类项;同底数幂的乘法.【分析】根据积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;算术平方根的定义,同底数幂相乘,底数不变指数相加;以及合并同类项法则对各选项分析判断即可得解.【解答】解:A、(﹣2a3)2=(﹣2)2•(a3)2=4a6,故本选项错误;B、=3,故本选项错误;C、m2•m3=m2+3=m5,故本选项错误;D、x3+2x3=3x3,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方、算术平方根的定义,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•广安)经统计我市去年共引进世界500强外资企业19家,累计引进外资410000000美元,数字410000000用科学记数法表示为()A.41×107B.4.1×108C.4.1×109D.0.41×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将410000000用科学记数法表示为:4.1×108.故选:C.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2016•广安)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边行C.正五边形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:等边三角形是轴对称图形不是中心对称图形;平行四边形不是轴对称图形是中心对称图形;正五边形是轴对称图形不是中心对称图形;圆是轴对称图形又是中心对称图形,故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2016•广安)函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;函数自变量的取值范围.【专题】计算题;实数.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选A【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.6.(3分)(2016•广安)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【考点】多边形内角与外角;多边形的对角线.【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.7.(3分)(2016•广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号 1 2 3 4 5 方差平均成绩得分38 34 ■37 40 ■37 那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,3【考点】方差.【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案.【解答】解:∵这组数据的平均数是37,∴编号3的得分是:37×5﹣(38+34+37+40)=36;被遮盖的方差是:[(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4;故选B.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.(3分)(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定.【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.【点评】本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.9.(3分)(2016•广安)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2π B.π C.π D.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△B EC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△B EC=﹣OE×DE+BE•CE=﹣2+2=.故选B.【点评】考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.10.(3分)(2016•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选:B.【点评】此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共18分)11.(3分)(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【考点】坐标与图形变化-平移.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(3分)(2016•广安)如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3= 70°.【考点】平行线的性质.【分析】根据平行线的性质得到∠4=∠1=130°,由三角形的外角的性质得到∠5=∠4﹣∠2=70°根据对顶角相等即可得到结论.【解答】解:∵直线l1∥l2,∴∠4=∠1=130°,∴∠5=∠4﹣∠2=70°∴∠5=∠3=70°.故答案为:70°.【点评】本题重点考查了平行线的性质、对顶角相等及三角形外角的性质定理,是一道较为简单的题目.13.(3分)(2016•广安)若反比例函数y=(k≠0)的图象经过点(1,﹣3),则第一次函数y=kx﹣k(k≠0)的图象经过一、二、四象限.【考点】反比例函数图象上点的坐标特征;一次函数的图象.【分析】由题意知,k=1×(﹣3)=﹣3<0,所以一次函数解析式为y=﹣3x+3,根据k,b的值判断一次函y=kx﹣k的图象经过的象限.【解答】解:∵反比例函数y=(k≠0)的图象经过点(1,﹣3),∴k=1×(﹣3)=﹣3<0,∴一次函数解析式为y=﹣3x+3,根据k、b的值得出图象经过一、二、四象限.故答案为:一、二、四.【点评】本题考查了一次函数的性质及利用待定系数法求反比例函数的解析式,其中利用的知识点:(1)用待定系数法确定反比例函数的k的值;(2)对于一次函数y=kx+b,如果k<0,b>0,那么图象经过一、二、四象限.14.(3分)(2016•广安)某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可列方程.【考点】由实际问题抽象出分式方程.【专题】方程与不等式.【分析】根据题目中的数量关系,可以列出相应的方程,本题得以解决.【解答】解:由题意可得,,化简,得,故答案为:.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出所求问题需要的条件.15.(3分)(2016•广安)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为21.【考点】三角形的面积.【分析】根据正方形的性质来判定△ABE∽△ADG,再根据相似三角形的对应线段成比例求得BE的值;同理,求得△ACF∽△ADG,AC:AD=CF:DG,即CF=5;然后再来求梯形的面积即可.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;∴S梯形IHE F=(IF+HE)•HI=×(2+5)×6=21;所以,则图中阴影部分的面积为21.【点评】本题主要考查的是相似三角形的判定及性质、以及梯形面积的计算,解决本题的关键是利用三角形的性质定理与判定定理.16.(3分)(2016•广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是﹣4032.【考点】整式的混合运算.【专题】阅读型;规律型.【分析】首先确定x2014是展开式中第几项,根据杨辉三角即可解决问题.【解答】解:(x﹣)2016展开式中含x2014项的系数,根据杨辉三角,就是展开式中第二项的系数,即﹣2016×2=﹣4032.故答案为﹣4032.【点评】本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.三、解答题(本大题共4小题,第17小题5分,第18、19、20小题各6分,共3分)17.(5分)(2016•广安)计算:()﹣1﹣+tan60°+|3﹣2|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:()﹣1﹣+tan60°+|3﹣2|=3﹣3+﹣3+2=0.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式化简、特殊角的三角函数值、绝对值等考点的运算.18.(6分)(2016•广安)先化简,再求值:(﹣)÷,其中x满足2x+4=0.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【解答】解:原式=•=,由2x+4=0,得到x=﹣2,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.20.(6分)(2016•广安)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(﹣1,6),B(a,﹣2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【解答】解:(1)把点A(﹣1,6)代入反比例函数y2=(m≠0)得:m=﹣1×6=﹣6,∴.将B(a,﹣2)代入得:﹣2=,a=3,∴B(3,﹣2),将A(﹣1,6),B(3,﹣2)代入一次函数y1=kx+b得:∴∴y1=﹣2x+4.(2)由函数图象可得:x<﹣1或0<x<3.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,此类题目的求解一般都是先把已知点的坐标代入反比例函数表达式求出反比例函数解析式,然后再求一次函数解析式,难度中等.四、实践应用(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21.(6分)(2016•广安)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)利用“享受美食”的人数除以所占的百分比计算即可得解;(2)求出听音乐的人数即可补全条形统计图;由C的人数即可得到所对应的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出两名同学都是女生的情况,再利用概率公式即可求得答案.【解答】解:(1)由题意可得总人数为10÷20%=50名;(2)听音乐的人数为50﹣10﹣15﹣5﹣8=12名,“体育活动C”所对应的圆心角度数==108°,补全统计图得:(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况,∴选取的两名同学都是女生的概率==.【点评】本题考查的是用列表法或画树形图求随机事件的概率,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22.(8分)(2016•广安)某水果积极计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量4 2 3(吨)每吨水果可获利润(千 5 7 4元)(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?【考点】二元一次方程组的应用.【分析】(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组,即可解答;(3)设总利润为w千元,表示出w=10m+216.列出不等式组,确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.【解答】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:,解得:.答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得.答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.(3)设总利润为w千元,w=4×5m+2×7(m﹣12)=4×3(32﹣2m)=10m+216.∵,∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,在w=10m+216中,w随x的增大而增大,∴当m=15时,W最大=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366元.【点评】此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值需确定自变量的取值范围.23.(8分)(2016•广安)如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全现要作一个不锈钢扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC(杆子的地段分别为D、C),且∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)(1)求点D与点C的高度DH;(2)求所有不锈钢材料的总长度(即AD+AB+BC的长,结果精确到0.1米)【考点】解直角三角形的应用.【分析】(1)根据图形求出即可;(2)过B作BM⊥AD于M,先求出AM,再解直角三角形求出即可.【解答】解:(1)DH=1.5米×=1.2米;(2)过B作BM⊥AD于M,在矩形BCHM中,MH=BC=1米,AM=AD+DH﹣MH=1米+1.2米﹣1米=1.2米=1.2米,在Rt△AMB中,AB=≈3.0米,所以有不锈钢材料的总长度为1米+3.0米+1米=5.0米.【点评】本题考查了解直角三角形和锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.24.(8分)(2016•广安)在数学活动课上,老师要求学生在5×5的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).。
2015年四川省广安市岳池县中考数学二诊试卷(解析版)

2015年四川省广安市岳池县中考数学二诊试卷一、选择题1.(3分)﹣的倒数是()A.8 B.﹣8 C.﹣ D.2.(3分)将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)去年国庆假期,天安门接待游客日平均为10.7万人,这个假期7天共接待的游客人数用科学记数法可表示为()A.1.07×105人 B.7.49×104人 C.7.49×105人 D.7.49×106人4.(3分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A.5 B.﹣5 C.4 D.﹣35.(3分)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,66.(3分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米7.(3分)若x,y为实数,且|x+2|+=0,则()2015的值为()A.1 B.﹣1 C.2 D.﹣28.(3分)若一组数据3,5,7,8,x,11的众数是5,则这组数据的中位数是()A.4 B.5 C.6 D.7.59.(3分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,=2,则k的值是()垂足为M,连接BM,若S△ABMA.2 B.m﹣2 C.m D.410.(3分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.二、填空题11.(3分)将直线y=x+5向上平移3个单位后,则平移后直线与x轴的交点坐标是.12.(3分)分解因式2x3﹣12x2+18x=.13.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)14.(3分)代数式有意义,x应满足的条件是.15.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当y<10时,x的取值范围是.三、按要求解答各题:17.(6分)计算:2cos60°+2﹣2+(π﹣3.14)0﹣|2﹣|18.(6分)先化简,再求值:(),其中a=﹣1.19.(6分)已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E作EF∥DA交DB的延长线于点F.求证:EF=BC.20.(7分)如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.四、应用题21.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.22.(8分)一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?23.(8分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)24.(7分)一个棱长为a的菱形ABCD,E是AD的中点,将此图形沿BF折叠,点C恰好与点E重合,如图.求tanA的值.五、综合应用:25.(7分)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠BDC.26.(9分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2015年四川省广安市岳池县中考数学二诊试卷参考答案与试题解析一、选择题1.(3分)﹣的倒数是()A.8 B.﹣8 C.﹣ D.【分析】根据倒数的定义,即可解答.【解答】解:﹣的倒数是﹣8,故选:B.2.(3分)将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.【解答】解:点M(﹣1,﹣5)向右平移3个单位长度,得到点N的坐标为(2,﹣5),故点N在第四象限.故选:D.3.(3分)去年国庆假期,天安门接待游客日平均为10.7万人,这个假期7天共接待的游客人数用科学记数法可表示为()A.1.07×105人 B.7.49×104人 C.7.49×105人 D.7.49×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10.7万人×7=749000人=7.49×105人.故选:C.4.(3分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A.5 B.﹣5 C.4 D.﹣3【分析】根据一元二次方程的解,把x=﹣2代入原方程得到关于k的一元二次方程,然后解此方程即可.【解答】解:把x=﹣2代入原方程得4﹣2k+6=0,解得k=5.故选:A.5.(3分)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,6【分析】根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.【解答】解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,∴=2,又∵∠A=∠D,∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,∵△ABC的周长是16,面积是12,∴△DEF的周长为16÷2=8,面积为12÷4=3,故选:A.6.(3分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.7.(3分)若x,y为实数,且|x+2|+=0,则()2015的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,()2015=()2015=﹣1.故选:B.8.(3分)若一组数据3,5,7,8,x,11的众数是5,则这组数据的中位数是()A.4 B.5 C.6 D.7.5【分析】根据众数的定义确定x=5,然后把数据按大小关系排列确定中位数.【解答】解:根据题意,x=5.把这组数据从小到大排列为:3,5,5,7,8,11.所以中位数为=6.故选:C.9.(3分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,=2,则k的值是()垂足为M,连接BM,若S△ABMA.2 B.m﹣2 C.m D.4=2S△AOM,又S△AOM=|k|,则k的值即可求出.【分析】由题意得:S△ABM【解答】解:设A(x,y),∵直线y=mx与双曲线y=交于A、B两点,∴B(﹣x,﹣y),=|xy|,S△AOM=|xy|,∴S△BOM=S△AOM,∴S△BOM=S△AOM+S△BOM=2S△AOM=2,S△AOM=|k|=1,则k=±2.∴S△ABM又由于反比例函数位于一三象限,k>0,故k=2.故选:A.10.(3分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.【分析】利用切线长定理得出CA=CF,DF=DB,PA=PB,进而得出PA=r,求出即可.【解答】解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.二、填空题11.(3分)将直线y=x+5向上平移3个单位后,则平移后直线与x轴的交点坐标是(﹣8,0).【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=x+5沿y轴向上平移3个单位,则平移后直线解析式为:y=x+8,直线与x轴的交点坐标为:0=x+8,解得:x=﹣8.故答案为(﹣8,0)12.(3分)分解因式2x3﹣12x2+18x=2x(x﹣3)2.【分析】首先提公因式2x,然后利用完全平方公式即可分解.【解答】解:原式=2x(x2﹣6x+9)=2x(x﹣3)2.故答案是:2x(x﹣3)2.13.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.14.(3分)代数式有意义,x应满足的条件是x≠±4.【分析】利用分式有意义的条件是分母不等于零,进而求出即可.【解答】解:代数式有意义,则|x|﹣4≠0,故x应满足的条件是:x≠±4.故答案为:x≠±4.15.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=.【分析】画出旋转后的图形位置,根据图形可知△ABB′是等腰直角三角形,所以sin∠ABB′=sin45°求解.【解答】解:如右图,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,∴△ABB′是等腰直角三角形,∴sin∠ABB′=sin45°=.故答案为:.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当y<10时,x的取值范围是﹣1<x<5.【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【解答】解:由所给数据可知当x=2时,y有最小值1,∴二次函数的对称轴为x=2,又由表格数据可知当y<10时,对应的x的范围为﹣1<x≤2,又由二次函数的对称性可知当2<x<5时,y值的范围也是y<10,故答案为:﹣1<x<5.三、按要求解答各题:17.(6分)计算:2cos60°+2﹣2+(π﹣3.14)0﹣|2﹣|【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2×++1﹣2+=+.18.(6分)先化简,再求值:(),其中a=﹣1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣1时,原式==﹣1.19.(6分)已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E作EF∥DA交DB的延长线于点F.求证:EF=BC.【分析】先证明△ABD与△EBF全等,得到EF=AD,再根据平行四边形的对边相等即可证明.【解答】证明:∵EF∥DA,∴∠A=∠E,又∵AB=BE,∠ABD=∠EBF,∴△ABD≌△EBF,∴EF=AD,∵四边形ABCD是平行四边形,∴AD=BC,∴EF=BC.20.(7分)如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.【分析】(1)解方程组可得到A点坐标和B点坐标;=S△AOD+S△BOD进行(2)先确定一次函数与y轴的交点D的坐标,然后根据S△AOB计算.【解答】解:(1)解方程组得或.所以A点坐标为(﹣2,4),B点坐标为(4,﹣2);(2)直线AB交y轴于点D,如图,把x=0代入y=﹣x+2得y=2,则D点坐标为(0,2),=S△AOD+S△BOD=×2×2+×2×4=6.所以S△AOB四、应用题21.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:(2分) (1)P (两数相同)=.(3分)(2)P (两数和大于10)=.(5分)22.(8分)一辆汽车从A 地驶往B 地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h ,普通公路和高速公路各是多少km ?【分析】由题意得:从A 地驶往B 地,前路段为普通公路,其余路段为高速公路.得到:高速公路的长度=普通公路长度的两倍;汽车从A 地到B 地一共行驶了2.2h .最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数,列方程组,解答问题.【解答】解:设普通公路长为x (km ),高速公路长为y (km ).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.23.(8分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD 中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.24.(7分)一个棱长为a的菱形ABCD,E是AD的中点,将此图形沿BF折叠,点C恰好与点E重合,如图.求tanA的值.【分析】取AE的中点G,连接BG,根据折叠的性质和菱形的性质可知AG⊥BG,AG=a,根据勾股定理求出BG,再根据正切定义计算即可.【解答】解:取AE的中点G,连接BG,由题意知菱形ABCD的边长为a,则AB=BE=a,∴AG⊥BG,AG=a,在Rt△ABG中,BG===a,∴tanA===.五、综合应用:25.(7分)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠BDC.【分析】(1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径和BC的长,即可得到结果.【解答】(1)证明:连接OB.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠CBF+∠OBC=∠OBD+∠OBC,∴∠OBF=∠CBD=90°,即OB⊥BF,∴FB是圆的切线;(2)解:∵CD是圆的直径,CD⊥AB,∴BE=AB=4,设圆的半径是R,在直角△OEB中,根据勾股定理得:R2=(R﹣2)2+42,解得:R=5,在R t△BEC中,BC===2,在R t△DBC中,sin∠BDC===.26.(9分)如图,抛物线y=﹣x 2+mx +n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【分析】(1)由待定系数法建立二元一次方程组求出求出m 、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD 的值,再以点C 为圆心,CD 为半径作弧交对称轴于P1,以点D 为圆心CD 为半径作圆交对称轴于点P 2,P 3,作CE 垂直于对称轴与点E ,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y=﹣x 2+mx +n 经过A (﹣1,0),C (0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤a≤4).∵S=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,四边形CDBF=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤a≤4).=﹣(a﹣2)2+=,∴a=2时,S四边形CDBF的面积最大∴E(2,1).。
2024年四川省广安市中考数学试题+答案详解

2024年四川省广安市中考数学试题+答案详解(试题部分)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2−B. 12−C. 0D. 12. 代数式3x −的意义可以是( ) A. 3−与x 的和B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商3. 下列运算中,正确的是( ) A. 235a a a +=B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B.50︒C. 60︒D. 65︒6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定D. “五边形的内角和是540︒”是必然事件7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( ) A. 0m <且1m ≠− B. 0m ≥ C. 0m ≤且1m ≠−D. 0m <8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A.π9B.5π9C.10π9D.25π910. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫−⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.12. 分解因式:39a a −=________________. 13. 若2230x x −−=,则2241x x −+=______.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.16. 已知,直线:33l y x =−与x轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.18. 先化简2344111a a a a a ++⎛⎫+−÷⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数ky x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C 类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E 类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元. (1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁; ②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长. 六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.2024年四川省广安市中考数学试题+答案详解(答案详解)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2− B. 12−C. 0D. 1【答案】D 【解析】【分析】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.把选项中的4个数按从小到大排列,即可得出最大的数. 【详解】解:∵12012−<−<<, ∴最大的数是1 故选:D .2. 代数式3x −的意义可以是( ) A. 3−与x 的和 B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商【答案】C 【解析】【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x −中的运算关系解答即可.【详解】解:代数式3x −的意义可以是3−与x 的积.故选C .3. 下列运算中,正确的是( ) A. 235a a a += B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=【答案】B 【解析】【分析】本题考查整式的运算,根据合并同类项法则、积的乘方运算法则、完全平方公式和同底数幂的除法运算法则逐项判断即可解答.【详解】解:A 、2a 和3a 不是同类项,不能加减,故原计算错误,不符合题意; B 、()32628a a −=−,计算正确,符合题意;C 、22(1)21a a a −=−+,故原计算错误,不符合题意;D 、844a a a ÷=,故原计算错误,不符合题意; 故选:B .4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园【答案】A 【解析】【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答. 【详解】解:与“共”字所在面相对面上的汉字是“校”, 故选:A .5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B. 50︒C. 60︒D. 65︒【答案】D【解析】 【分析】本题考查了三角形中位线定理、平行线的性质定理,三角形的内角和定理,熟记性质并准确识图是解题的关键.先证明DE AB ∥,可得45CDE A ∠=∠=︒,再利用三角形的内角和定理可得答案.【详解】解:∵点D ,E 分别是AC ,BC 的中点,∴DE AB ∥,∵45A ∠=︒,∴45CDE A ∠=∠=︒,∵70CED ∠=︒,∴180457065C ∠=︒−︒−︒=︒,故选D6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定 D. “五边形的内角和是540︒”是必然事件【答案】D【解析】【分析】本题考查了多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义等知识.根据多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义判断即可.【详解】解:A 、将580000用科学记数法表示为:55.810⨯,故本选项不符合题意;B 、这列数据从小到大排列为3,5,6,8,8,8中,8出现了3次,故众数是8,中位数是6872+=,故本选项不符合题意; C 、0.05 1.2<,则22S S <乙甲,则乙组同学的成绩较稳定,故本选项不符合题意;D 、“五边形的内角和是540︒”是必然事件,故本选项符合题意.故选:D .7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A. 0m <且1m ≠−B. 0m ≥C. 0m ≤且1m ≠−D. 0m <【答案】A【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案. 【详解】解:关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,∴()()22410m ∆=−−+>,解得:0m <, 10m +≠,1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−.故选:A .8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.【答案】B【解析】【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h 随时间x 变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h 随时间x 的增大而增长缓慢,用时较长,即压强y 随时间x 的增大而增长缓慢,用时较长,最上面容器最小,则压强y 随时间x 的增大而增长变快,用时最短.故选:B .9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A. π9B. 5π9C. 10π9D. 25π9【答案】C【解析】【分析】本题考查了求弧长.根据等腰三角形的性质和三角形的内角和定理求得A ∠的度数,证明OE AC ∥,再由OA OD =,再由等腰三角形的性质和平行线的性质求得DOE ∠的度数,利用弧长公式即可求解.【详解】解:连接OD ,OE ,∵AB AC =,∴70ABC C ∠=∠=︒,∵OE OB =,∴70OEB B ∠=∠=︒,∴70OEB C ∠=∠=︒∴OE AC ∥,在ABC 中,180A ABC C ∠+∠+∠=︒,∴180180707040A ABC C ∠=︒−∠−∠=︒−︒−︒=︒, 又152OA OD AB ===, ∵OE AC∴40A ADO DOE ∠=∠=︒=∠,∴DE 的长度为40π510π1809⨯=, 故选:C .10. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与x 轴交点问题逐项分析判断即可.【详解】解:由图可知,二次函数开口方向向下,与y 轴正半轴交于一点,<0a ∴,>0c . <02b a−, <0b ∴.>0abc ∴.故①错误;对称轴是直线12x =−,点()11,y −和点()22,y 都在抛物线上, 而()11111112222222⎛⎫−−−=−+=<−−= ⎪⎝⎭, 12y y ∴>.故②错误;当x m =时,2y am bm c =++,当12x =−时,函数取最大值21142a b c −+, ∴对于任意实数m 有:221142am bm c a b c ++≤−+, ∴21142am bm a b +≤−,故③正确; 122b a −=−, b a ∴=.当32x =−时,0y =, 93042a b c ∴−+=. 9640a b c ∴−+=,即340a c +=,故④正确.综上所述,正确的有③④.故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.【答案】0【解析】【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3330=−=,故答案为:012. 分解因式:39a a −=________________.【答案】()()33a a a +−【解析】【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a −=+−, 故答案为:()()33a a a +−.13. 若2230x x −−=,则2241x x −+=______.【答案】7【解析】【分析】本题考查了求代数式的值.对已知等式变形得到2246x x −=,再整体代入计算求解即可.【详解】解:∵2230x x −−=,∴223x x −=,∴2246x x −=,∴2241617x x −+=+=,故答案为:7.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.【答案】(3,1)−【解析】【分析】本题考查一次函数图象与坐标轴的交点,旋转的性质,正方形的判定和性质等,延长DC 交y 轴于点E ,先求出点A 和点B 的坐标,再根据旋转的性质证明四边形OACE 是正方形,进而求出DE 和OE 的长度即可求解.【详解】解:如图,延长DC 交y 轴于点E ,22y x =+中,令0x =,则2y =,令220y x =+=,解得=1x −,∴(1,0)A −,(0,2)B ,∴1OA =,2OB =, AOB 绕点A 逆时针方向旋转90︒得到ACD ,∴90ACD AOB OAC ∠=∠=∠=︒,1OA OC ==,2OB CD ==,∴四边形OACE 是正方形.∴1CE OE OA ===,∴213DE CD CE =+=+=,∴点D 的坐标为(3,1)−.故答案为:(3,1)−.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.【解析】【分析】如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,当,M M '重合时,MA MD +最小,最小值为A D ',再进一步结合勾股定理求解即可.【详解】解:如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,∴当,M M '重合时,MA MD +最小,最小值为A D ',∵4AB =,30ABC ∠=︒,在ABCD Y 中, ∴122AH AB ==,AD BC ∥, ∴24AA AH '==,AA AD '⊥,∵5AD =,∴A D '==【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.16. 已知,直线:l y x =与x 轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.【答案】202352⎛⎫ ⎪⎝⎭【解析】【分析】直线直线:33l y x =−可知,点1A 坐标为()1,0,可得11OA =,由于11OA B 是等边三角形,可得点112B ⎛ ⎝⎭,把2y =代入直线解析式即可求得2A 的横坐标,可得2152A C =,由于221B A B 是等边三角形,可得点252A ⎛ ⎝⎭;同理,3254A ⎛ ⎝⎭,发现规律即可得解,准确发现坐标与字母的序号之间的规律是解题的关键.【详解】解:∵直线l ::l y x =与x 轴负半轴交于点1A , ∴点1A 坐标为()1,0, ∴11OA =,过1B ,2B ,作1B M x ⊥轴交x 轴于点M ,2B N x ⊥轴交21A B 于点D ,交x 轴于点N ,∵11A BO 为等边三角形,∴130OB M ∠=︒∴11122MO AO ==,∴12B M === ∴1122B ⎛⎫ ⎪ ⎪⎝⎭,,当2y =时,233x =−,解得:52x =,∴2152A C =,252A ⎛ ⎝⎭, ∴1211524C CD A ==,∴2B D ===∴2B N ==,∴当4y =时,343x =−,解得:254x =,∴32544A ⎛⎫ ⎪ ⎪⎝⎭,; 而225542⎛⎫= ⎪⎝⎭, 同理可得:4A 的横坐标为3512528⎛⎫= ⎪⎝⎭, ∴点2024A 的横坐标为202352⎛⎫ ⎪⎝⎭, 故答案为:202352⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了一次函数图象上点的坐标的特征,勾股定理的应用,等边三角形的性质,特殊图形点的坐标的规律,掌握探究的方法是解本题的关键.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.【答案】1【解析】【分析】先计算零次幂,代入特殊角的三角函数值,化简绝对值,计算负整数指数幂,再合并即可.【详解】解:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+−− ⎪ ⎪⎝⎭⎝⎭1222=+−122=1=【点睛】本题考查的是含特殊角的三角函数值的混合运算,零次幂,负整数指数幂的含义,化简绝对值,掌握相应的运算法则是解本题的关键.18. 先化简2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 【答案】22a a −+,0a =时,原式1=−,2a =时,原式0=. 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可. 【详解】解:2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭ 2213(2)111a a a a a ⎛⎫−+=−÷ ⎪−−−⎝⎭ 2(2)(2)11(2)a a a a a +−−=⋅−+ 22a a −=+ 1a ≠且2a ≠−∴当0a =时,原式1=−;当2a =时,原式0=.19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .【答案】见解析【解析】【分析】根据菱形的性质可得AB =BC =CD =AD ,∠A =∠C ,再由BE =BF ,可推出AE =CF ,即可利用SAS 证明△ADE ≌△CDF 得到DE =DF ,则∠DEF =∠DFE .【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C ,∵BE =BF ,∴AB -BE =BC -BF ,即AE =CF ,∴△ADE ≌△CDF (SAS ),∴DE =DF ,∴∠DEF =∠DFE .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数k y x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.【答案】(1)2y x =+,8y x =(2)4m >或8m <−【解析】【分析】(1)将A 点坐标代入反比例函数解析式求得反比例函数,再把B 点坐标代入所求得的反比例函数解析式,求得m ,进而把A 、B 的坐标代入一次函数解析式便可求得一次函数的解析式;(2)由一次函数的解析式求得与x 轴的交点C 的坐标,然后PAC △的面积大于12,再建立不等式即可求解.【小问1详解】解:∵(2,4)A 在反比例函数()0k y k x =≠的图象上, ∴248k =⨯=,∴反比例函数的解析式为:8y x =, 把(,2)B n −代入8y x=,得n =−4, ∴()4,2B −−, 把(2,4)A ,()4,2B −−都代入一次函数y ax b =+,得2442a b a b +=⎧⎨−+=−⎩ , 解得12a b =⎧⎨=⎩, ∴一次函数的解析式为:2y x =+;【小问2详解】解:如图,对于2y x =+,当20y x =+=,解得=2x −,∴()2,0C −,∵(,0)P m , ∴2CP m =+,∵PAC △的面积大于12, ∴142122m ⨯+>,即26m +>, 当2m ≥−时,则26m +>,解得:4m >,当2m <−时,则26m −−>,解得:8m <−;∴4m >或8m <−.【点睛】本题考查了一次函数和反比例函数的交点问题,反比例函数图象上点的坐标特征,三角形的面积等,求得交点坐标是解题的关键.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.【答案】(1)50;144︒(2)见解析(3)1 6【解析】【分析】本题主要考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适用于两步完成是事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.(1)根据B类人数和人数占比即可求出本次被调查的学生人数;用360度乘以C类的人数占比即可求出C类学生平均每天睡眠时间的扇形的圆心角度数;(2)根据(1)所求,求出D类的人数即可补全统计图;(3)先画出树状图得到所有的等可能性的结果数,再找到所选的2人恰好都是男生的结果数,最后依据概率计算公式求解即可.【小问1详解】解:1428%50÷=(人);2036014450⨯=︒︒; 故答案为:50;144︒;【小问2详解】解:D 类的人数为506142046−−−−=(人),补全条形统计图,如图,【小问3详解】解:画树状图如下:共有12种等可能结果,其中两人恰好是2名男生的结果有2种.()221126P ∴==抽到男. 22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元.(1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.【答案】(1)A 种花卉的单价为3元/株,B 种花卉的单价为5元/株(2)当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.(1)设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,根据题意列出二元一次方程组,解方程组即可求解;(2)设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,根据题意列出不等式,得出8000m ≤,进而根据题意,得到35(10000)W m m =+−,根据一次函数的性质即可求解.【小问1详解】解:设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,由题意得:23214537x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 答:A 种花卉的单价为3元/株,B 种花卉的单价为5元/株.【小问2详解】解:设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,由题意得:35(10000)250000W m m m =+−=−+,4(10000)m m ≤−,解得:8000m ≤,在250000W m =−+中,20−<,∴W 随m 的增大而减小,∴当8000m =时W 的值最小,280005000034000W =−⨯+=最小,此时100002000m −=.答:当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)【答案】32m【解析】【分析】本题考查的是矩形的判定与性质,解直角三角形的实际应用,过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H ,先求解cos6010m CH CD =⋅︒=,sin 6017.3m DH CD =︒≈,再证明40m BH BC CH =+=,再利用锐角的正切可得tan 2014.4m AF FD =⋅︒=,从而可得答案.【详解】解:过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H由题意得:20m DC =,60DCH ∠=︒在Rt DCH △中,cos 60CHCD ︒=,sin 60DH CD︒= ∴cos6010m CH CD =⋅︒=,sin6017.3m DH CD =︒=≈90DFB B DHB ∠=∠=∠=︒,∴四边形DFBH 为矩形,∴BH FD =,BF DH =,(3010)m 40m BH BC CH =+=+=,∴40m FD =在AFD △中.tan 20AF FD=︒, tan 20400.3614.4m AF FD ∴=⋅︒≈⨯=(17.314.4)m 31.7m 32m AB AF BF ∴=+≈+=≈答:该风力发电机塔杆AB 的高度为32m .24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁;②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.【答案】见解析【解析】【分析】本题考查的是矩形的性质,全等图形的定义与性质,同时考查了学生实际的动手操作能力,根据全等图形的性质分别画出符合题意的图形即可.【详解】解:如图,五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.【答案】(1)见解析 (2)14【解析】【分析】(1)连接OC ,由圆周角定理求得90ACB ∠=︒,再利用等角的余角相等求得90OCD ∠=︒,据此即可证明DC 是O 的切线;(2)利用三角函数的定义求得8OC OA ==,在Rt OCD △中,利用勾股定理求得6CD =,再证明DOC DEG △△∽,利用相似三角形的性质列式计算即可求解.【小问1详解】证明:连接OC ,OB OC =,OBC OCB ∴∠=∠,DCA OBC ∠=∠,DCA OCB ∴∠=∠,而AB 是O 的直径,90ACB ∴∠=︒,90DCA OCA OCA OCB ∴∠+∠=∠+∠=︒,90OCD ∴∠=︒,∴DC 是O 的切线;【小问2详解】解:设OC OA r ==,4sin 5OC D OD ==, 425r r ∴=+, 8r ∴=,8OC OA ∴==,在Rt OCD △中,6CD ===,90DCA ECF BFG CBA ∠+∠=∠+∠=︒,∴ECF BFG ∠=∠, 又BFG EFC ∠=∠,∴ECF EFC ∠=∠,EC EF ∴=,设EC EF x ==,D D ∠=∠,DCO DGE ∠=∠,∴DOC DEG △△∽, ∴DO OC DE EG =,则10862x x =++, 解得:14x =经检验14x =是所列方程的解,∴14CE =.【点睛】本题考查了切线的判定与相似三角形的判定与性质,三角函数的定义,勾股定理.正确证明DOC DEG △△∽是解决本题的关键.六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.【答案】(1)224233y x x =−++。
2023年四川省广安市中考数学试卷(含解析)

2023年四川省广安市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −6的绝对值是( )A. −6B. 6C. −6或6D. 无法确定2. 下列运算中,正确的是( )A. a2+a4=a6B. 3a3⋅4a2=12a6C. (2a+b)2=4a2+b2D. (−2ab2)3=−8a3b63. 2023年以来,广安市全面落实市委、市政府关于促进消费的各项政策措施,积极优化消费运行环境,消费加速回升.1−2月,全市实现社会消费品总额116亿元,同比增长10.8%.请将116亿用科学记数法表示( )A. 1.16×109B. 1.16×1010C. 1.16×1011D. 116×1084.如图,由5个大小相同的小正方体搭成的几何体,它的俯视图是( )A.B.C.D.5. 下列说法正确的是( )A. 三角形的一个外角等于两个内角的和B. 对角线相等且互相垂直的四边形是正方形C. 在一组数据11,9,7,8,6,8,12,8中,众数和中位数都是8D. 甲乙两组各10名同学参加“安全知识竞赛”,若两组同学的平均成绩相同,甲组的方差S2甲=0.15,则甲组同学的成绩比乙组同学的成绩稳定=0.25,乙组的方差S2乙6. 已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断7.如图,用弹簧测力计将一铁块悬于盛有水的水槽中,然后匀速向上提起,使铁块完全露出水面,并上升一定高度,则下列能反映弹簧测力计的读数y(单位:N)与铁块被提起的时间x(单位:s)之间的函数关系的大致图象是( )A. B. C. D.8.为了降低成本,某出租车公司实施了“油改气”措施.如图,y1、y2分别表示燃油汽车和燃气汽车所需费用y(单位:元)与行驶路程S(单位:千米)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的3倍少0.1元,设燃气汽车每千米所需的费用为x元,则可列方程为( )A. 25x =103x−0.1B. 25x=103x+0.1C. 253x+0.1=10xD. 253x−0.1=10x9.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=22,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是( )A. π−2B. 2π−2C. 2π−4D. 4π−410.如图所示,二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象与x轴交于点A(−3,0),B(1,0).有下列结论:①abc>0;②若点(−2,y1)和(−0.5,y2)均在抛物线上,则y1<y2;③5a−b+c=0;④4a+c>0.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11. 16的平方根是______ .12. 函数y=x+2x−1中,自变量x的取值范围是______.13. 定义一种新运算:对于两个非零实数a、b,a※b=xa +yb.若2※(−2)=1,则(−3)※3的值是______ .14.如图,△ABC内接于⊙O,圆的半径为7,∠BAC=60°,则弦BC的长度为______ .15.如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为______ cm.(杯壁厚度不计)16.在平面直角坐标系中,点A1、A2、A3、A4…在x轴的正半轴上,点B1、B2、B3…在直线y=33x(x≥0)上,若点A1的坐标为(2,0),且△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,则点B2023的纵坐标为______ .三、解答题(本大题共10小题,共72.0分。
2015年广安市中考数学模拟题7

数 学 模 拟 试 题(本试卷满分:120分,考试时间:120分钟)第Ⅰ卷(共48分)一、选择题(每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填入题前的括号内。
本大题共10个小题,每小题3分,共30分)1. 3-的绝对值是( )A .3B .3-C .13D .13-2. 下列运算正确的是( )A .246x x x +=B .236x x x ⋅=C .()336x x = D .3. 下列说法正确的是( )A. 调查我市市民对甲型H1N1流感的了解宜采用全面调查B. 描述一周内每天最高气温变化情况宜采用直方图C. 方差可以衡量样本和总体波动的大小D. 打开电视机正在播放动画片是必然事件4. 下列几何体中,同一个几何体的主视图与俯视图不同的是( )5. 据统计2011年我市生产总值为13465000万元,用科学记数法表示为(保留3个有效数字)( )A . 71035.1⨯万元B . 71034.1⨯万元C .71030.1⨯万元D .810135.0⨯万元6. 已知⊙O 1与⊙O 2的半径分别为2和3,圆心距O 1O 2=4,则这两圆的位置关系是( )A.相交B.相离C.内切D.外切 7. 平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 顺时针旋转90︒得到OA ',则点A '的坐标是( ) A .(4-,3)B .(3-,4)C .(3,4-)D .(4,3-)8. 某校初三参加体育测试,一组10人的引体向上成绩如下表:这组同学引体向上个数的众数与中位数依次是( )A .9.5和10B .9和10C .10和9.5D .10和99. 近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( ) A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D.()()23600200013600x -+= 10. 如图,⊙O 的圆心在定角α(0°<α<180°)的角平分线上运动,且⊙O 与角α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r>0)变化的函数图像大致是( )二、填空题(请把最简答案直接填写在题后的横线上。
广安市中考数学(客观3年、主观5年至2013年)

广安近年中考数学试卷分析客观题2011-2013主,主观题2009-2013五年一、选择题:每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填涂在机读卡上(本大题共10个小题,每小题3分,共30分) C 1.(3分)(2012•广安)﹣8的相反数是( ) A . 8 B . ﹣8 C .D .﹣1、3-的倒数是( ) A 、13B 、13-C 、±13D 、3考点:实数(算术平方根、相反数、倒数)。
2.(3分)(2013•广安)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问2.(2012•广安)经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是( )美元.A . 1.5×104B . 1.5×105C . 1.5×1012D . 1.5×1013 4、(2011•广安)从《中华人民共和国2010年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值为(结果保留两个有效数字)( )A . 3a ﹣a=3B . a 2•a 3=a 5C . a 15÷a 3=a 5(a ≠0)D . (a 3)3=a 62、(2011•广安)下列运算正确的是( )A 、(1)1x x --+=+B =、 22= D 、222()a b a b -=-4.(3分)(2013•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是( )BC4.(2012•广安)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A . 美B . 丽C . 广D . 安 9、(2011•广安)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A 、18 B 、19 C 、20 D 、215.(2012•广安)下列说法正确的是( ) A . 商家卖鞋,最关心的是鞋码的中位数 B . 365人中必有两人阳历生日相同 C . 要了解全市人民的低碳生活状况,适宜采用抽样调查的方法 D . 随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定3、(2011•广安)已知样本数据l ,0,6,l ,2,下列说法不正确的是( ) A 、中位数是6 B 、平均数是2 C 、众数是1 D 、极差是6考点: 统计。
2014年四川省广安市中考数学试卷(含解析版).doc

2014年四川省广安市中考数学试卷一、选择题:每题给出的四个选项中,只有一个选项符合题意要求,请将正确选项填涂到机读卡上相应的位置(本大题共10个小题,每小题3分,共30分)1.(3分)(2014•广安)﹣的相反数是()A.B.﹣C.5D.﹣52.(3分)(2014•广安)下列运算正确的是()A.(﹣a2)•a3=﹣a6B.x6÷x3=x2C.|﹣3|=﹣3 D.(a2)3=a63.(3分)(2014•广安)参加广安市2014年高中阶段教育学生招生考试的学生大约有4.3万人,将4.3万人用科学记数法表示应为()A.4.3×104人B.43×105人C.0.43×105人D.4.3×105人4.(3分)(2014•广安)我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.57 5.(3分)(2014•广安)要使二次根式在实数范围内有意义,则x的取值范围是()A.x=B.x≠C.x≥D.x≤6.(3分)(2014•广安)下列说法正确的是()A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.若甲组数据的方差S=0.03,乙组数据的方差是S=0.2,则乙组数据比甲组数据稳定C.广安市明天一定会下雨D.一组数据4、5、6、5、2、8的众数是57.(3分)(2014•广安)如图所示的几何体的俯视图是()A.B.C.D.8.(3分)(2014•广安)如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(2,3).则当x>2时,y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.以上说法都不对9.(3分)(2014•广安)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A 匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.10.(3分)(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次二、填空题:请把最简答案直接填写在题目后的横线上(本大题共6个小题,每小题3分,共18分)11.(3分)(2014•广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为.12.(3分)(2014•广安)分解因式:my2﹣9m=.13.(3分)(2014•广安)化简(1﹣)÷的结果是.14.(3分)(2014•广安)若∠α的补角为76°28′,则∠α=.15.(3分)(2014•广安)一个多边形的内角和比四边形内角和的3倍多180°,这个多边形的边数是.16.(3分)(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为(不取近似值).三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)(2014•广安)+(﹣)﹣1+(﹣5)0﹣cos30°.18.(6分)(2014•广安)解不等式组,并写出不等式组的整数解.19.(6分)(2014•广安)如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.20.(6分)(2014•广安)如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.四、实践应用:本大题共4个小题,第21题6分,第23、24、25题各8分,共30分)21.(6分)(2014•广安)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字﹣1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q值,两次结果记为(p,q).(1)请你帮他们用树状图或列表法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.22.(8分)(2014•广安)广安某水果点计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?23.(8分)(2014•广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?24.(8分)(2014•广安)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a(a>1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值.五、推理论证(9分)25.(9分)(2014•广安)如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB=,求弦DG的长.六、拓展探究(10分)26.(10分)(2014•广安)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.2014年四川省广安市中考数学试卷参考答案与试题解析一、选择题:每题给出的四个选项中,只有一个选项符合题意要求,请将正确选项填涂到机读卡上相应的位置(本大题共10个小题,每小题3分,共30分)1.(3分)(2014•广安)﹣的相反数是()C.5D.﹣5A.B.﹣考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:﹣的相反数是.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.A.(﹣a2)•a3=﹣a6B.x6÷x3=x2C.|﹣3|=﹣3 D.(a2)3=a6考点:同底数幂的除法;实数的性质;同底数幂的乘法;幂的乘方与积的乘方.分析:分别进行积的乘方和幂的乘方、同底数幂的乘法、同底数幂的除法、绝对值的化简等运算,然后选择正确答案.解答:解:A、(﹣a2)•a3=﹣a5,故本选项错误;B、x6÷x3=x3,故本选项错误;C、|﹣3|=3﹣,故本选项错误;D、(a2)3=a6,故本选项正确.故选D.点评:本题考查了积的乘方和幂的乘方、同底数幂的乘法、同底数幂的除法、绝对值的化简等知识,掌握运算法则是解答本题的关键.3.(3分)(2014•广安)参加广安市2014年高中阶段教育学生招生考试的学生大约有4.3A.4.3×104人B.43×105人C.0.43×105人D.4.3×105人考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4.3万=4 3000=4.3×104,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•广安)我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.57考点:中位数;算术平均数.分析:根据中位数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:9.25,9.35,9.45,9.57,9.63,9.78,9.82,则中位数为:9.57,平均数为:=9.55.故选B.点评:本题考查了中位数和平均数的知识,平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2014•广安)要使二次根式在实数范围内有意义,则x的取值范围是()A.x=B.x≠C.x≥D.x≤考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得5x﹣3≥0,再解不等式即可.解答:解:由题意得:5x﹣3≥0,解得:x≥,故选:C.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.若甲组数据的方差S=0.03,乙组数据的方差是S=0.2,则乙组数据比甲组数据稳定C.广安市明天一定会下雨D.一组数据4、5、6、5、2、8的众数是5考点:全面调查与抽样调查;众数;方差;随机事件分析:A.根据普查的意义判断即可;B.方差越小越稳定;C.广安市明天会不会下雨不确定;D.根据众数的定义判断即可.解答:解:A.了解全国中学生每天体育锻炼的时间,由于人数较多,应当采用抽样调查,故本选项错误;B.甲的方差小于乙的方差所以甲组数据比乙组数据稳定,故本选项错误;C.广安市明天一定会下雨,不正确;D.数据4、5、6、5、2、8中5的个数最多,所以众数为5,故本项正确.故选:D.点评:本题主要考查了全面调查、方差、众数的意义.7.(3分)(2014•广安)如图所示的几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:找到从上面看所得到的图形即可.解答:解:该几何体的俯视图为:.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.(3分)(2014•广安)如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(2,3).则当x>2时,y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.以上说法都不对考点:反比例函数与一次函数的交点问题.分析:根据两函数的交点坐标,结合图象得出答案即可.解答:解:∵两图象都经过点A(2,3),∴根据图象当x>2时,y1>y2,故选A.点评:本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图象的能力,题目比较典型,难度不大.9.(3分)(2014•广安)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A 匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.考点:动点问题的函数图象分析:该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.解答:解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.点评:本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.10.(3分)(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次考点:直线与圆的位置关系.分析:根据题意作出图形,直接写出答案即可.解答:解:如图:,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.二、填空题:请把最简答案直接填写在题目后的横线上(本大题共6个小题,每小题3分,共18分)11.(3分)(2014•广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为(0,﹣3).考点:一次函数图象与几何变换.分析:先由直线直线y=3x+2沿y轴向下平移5个单位可得y=3x﹣3,再根据一次函数y=kx+b 与y轴交点为(0,b)可得答案.解答:解:直线直线y=3x+2沿y轴向下平移5个单位可得y=3x+2﹣5,即y=3x﹣3,则平移后直线与y轴的交点坐标为:(0,﹣3).故答案为:(0,﹣3).点评:此题主要考查了一次函数图象的几何变换,关键是掌握直线y=kx+b沿y轴平移后,函数解析式的k值不变,b值上移加、下移减.12.(3分)(2014•广安)分解因式:my2﹣9m=m(y+3)(y﹣3).考点:提公因式法与公式法的综合运用.分析:首先提取公因式m,进而利用平方差公式进行分解即可.解答:解:my2﹣9m=m(y2﹣9)=m(y+3)(y﹣3).故答案为:m(y+3)(y﹣3).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.13.(3分)(2014•广安)化简(1﹣)÷的结果是x﹣1.考点:分式的混合运算分析:根据分式混合运算的法则进行计算即可.解答:解:原式=•=x﹣1.故答案为:x﹣1.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键14.(3分)(2014•广安)若∠α的补角为76°28′,则∠α=103°32′.考点:余角和补角;度分秒的换算.分析:根据互为补角的概念可得出∠α=180°﹣76°28′.解答:解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为103°32′.点评:本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.15.(3分)(2014•广安)一个多边形的内角和比四边形内角和的3倍多180°,这个多边形的边数是9.考点:多边形内角与外角分析:多边形的外角和是360度,多边形的外角和是内角和的3倍多180°,则多边形的内角和是360×3+180°度,再由多边形的内角和列方程解答即可.解答:解:设这个多边形的边数是n,由题意得,(n﹣2)×180°=360°×3+180°解得n=9.故答案为:9.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.16.(3分)(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).考点:切线的性质;直角梯形;扇形面积的计算.分析:连接OE,根据∠ABC=90°,AD=,∠ABD为30°,可得出AB与BD,可证明△OBE为等边三角形,即可得出∠C=30°.阴影部分的面积为直角梯形ABCD的面积﹣三角形ABD的面积﹣三角形OBE的面积﹣扇形ODE的面积.解答:解:连接OE,过点O作OF⊥BE于点F.∵∠ABC=90°,AD=,∠ABD为30°,∴BD=2,∴AB=3,∵OB=OE,∴∠DBC=60°,∴OF=,∵CD为⊙O的切线,∴∠BDC=90°,∴∠C=30°,∴BC=4,S阴影=S梯形ABCD﹣S△ABD﹣S△OBE﹣S扇形ODE=﹣﹣﹣=﹣﹣﹣π=﹣π.故答案为﹣π.点评:本题考查了切线的性质、直角梯形以及扇形面积的计算,要熟悉扇形的面积公式.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)(2014•广安)+(﹣)﹣1+(﹣5)0﹣cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=4﹣2+1﹣×=4﹣2+1﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•广安)解不等式组,并写出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:首先分别解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,然后再根据x的取值范围找出整数解.解答:解:,解①得:x≤4,解②得:x>2,不等式组的解集为:2<x≤4.则不等式组的整数解:3,4.点评:此题主要考查了解一元一次不等式组,以及不等式组的整数解,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2014•广安)如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:根据正方形的四条边都相等可得BC=CD,对角线平分一组对角可得∠BCP=∠DCP,再利用“边角边”证明△BCP和△DCP全等,根据全等三角形对应角相等可得∠PDC=∠PBC,再根据等边对等角可得∠PBC=∠PEC,从而得证.解答:证明:在正方形ABCD中,BC=CD,∠BCP=∠DCP,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴∠PDC=∠PBC,∵PB=PE,∴∠PBC=∠PEC,∴∠PDC=∠PEC.点评:本题考查了全等三角形的判定与性质,正方形的性质,等边对等角的性质,熟记各性质并判断出全等三角形是解题的关键.20.(6分)(2014•广安)如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.考点:待定系数法求反比例函数解析式;待定系数法求一次函数解析式分析:(1)利用待定系数法把A(1,3)代入反比例函数y=可得k的值,进而得到解析式;(2)根据△AOB的面积为6求出B点坐标,再设直线AB的解析式为y=kx+b,把A、B两点代入可得k、b的值,进而得到答案.解答:解:(1)∵反比例函数y=(k为常数,且k≠0)经过点A(1,3),∴3=,解得:k=3,∴反比例函数解析式为y=;(2)设B(a,0),则BO=a,∵△AOB的面积为6,∴•a•3=6,解得:a=4,∴B(4,0),设直线AB的解析式为y=kx+b,∵经过A(1,3)B(4,0),∴,解得,∴直线AB的解析式为y=﹣x+4.点评:此题主要考查了待定系数法求一次函数解析式和反比例函数解析式,关键是正确确定出B点坐标.四、实践应用:本大题共4个小题,第21题6分,第23、24、25题各8分,共30分)21.(6分)(2014•广安)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字﹣1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q值,两次结果记为(p,q).(1)请你帮他们用树状图或列表法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.考点:列表法与树状图法;根的判别式分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得满足关于x的方程x2+px+q=0没有实数解的有:(﹣1,1),(0,1),(1,1),再利用概率公式即可求得答案.解答:解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)可得:满足关于x的方程x2+px+q=0没有实数解的有:(﹣1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2014•广安)广安某水果点计划购进甲、乙两种新出产的水果共140千克,这进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?考点:一次函数的应用;二元一次方程组的应用.分析:(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润,进而表示出总利润,进而利用一次函数增减性得出即可.解答:解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意可得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元,设总利润为W,由题意可得出:W=3x+4(140﹣x)=﹣x+560,故W随x的增大而减小,则x越小W越大,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140﹣x≤3x,解得:x≥35,∴当x=35时,W最大=﹣35+560=525(元),故140﹣35=105(kg).答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元.点评:主要考查了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题关键.23.(8分)(2014•广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?考点:解直角三角形的应用-坡度坡角问题.分析:(1)由三角函数的定义,即可求得DF与BF的长,又由坡度的定义,即可求得EF 的长,继而求得平台DE的长;(2)首先设GH=x米,在Rt△DMH中由三角函数的定义,即可求得GH的长.解答:解:(1)∵FM∥CG,∴∠BDF=∠BAC=45°,∵斜坡AB长60米,D是AB的中点,∴BD=30米,∴DF=BD•cos∠BDF=30×=30(米),BF=DF=30米,∵斜坡BE的坡比为:1,∴=,解得:EF=10(米),∴DE=DF﹣EF=30﹣10(米);答:休闲平台DE的长是(30﹣10)米;(2)设GH=x米,则MH=GH﹣GM=x﹣30(米),DM=AG+AP=33+30=63(米),在Rt△DMH中,tan30°=,即=,解得:x=30+21,答:建筑物GH的高为(30+21)米.点评:此题考查了坡度坡角问题以及俯角仰角的定义.此题难度较大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用.24.(8分)(2014•广安)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a(a>1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值.考点:作图—应用与设计作图.分析:平行四边形ABCD的邻边长分别为1,a(a>1),剪三次后余下的四边形是菱形的4种情况画出示意图.解答:解:①如图,a=4,②如图,a=,③如图,a=,④如图,a=,点评:此题主要考查了图形的剪拼以及菱形的判定,根据已知行四边形ABCD将平行四边形分割是解题关键.五、推理论证(9分)25.(9分)(2014•广安)如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB=,求弦DG的长.考点:切线的性质分析:(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,而∠ACB=90°,根据切线的判定定理得到AC是⊙O的切线,而DE与⊙O相切,根据切线长定理得ED=EA,则∠EDA=∠EAD,利用等角的余角相等可得到∠C=∠CDE,则ED=EC,即可得到EA=EC;(2)由(1)可得AC=2AE=6,结合cos∠ACB=推知sin∠ACB=,然后利用圆周角定理、垂径定理,解直角三角形即可求得DG的长度.解答:(1)证明:连AD,如图∵AB为⊙O的直径,∠CAB=90°,∴AC是⊙O的切线,又∵DE与⊙O相切,∴ED=EA,∴∠EAD=∠EDA,而∠C=90°﹣∠EAD,∠CDE=90°﹣∠EDA,∴∠C=∠CDE,∴ED=EC,∴EA=EC,即E为BC的中点;(2)解:由(1)知,E为BC的中点,则AC=2AE=6.∵cos∠ACB=,∴sin∠ACB==.连接AD,则∠ADC=90°.在Rt△ACD中,AD=AC•sin∠ACB=6×=.在Rt△ADF中,DF=AD•sin∠DAF=AD•sin∠ACB=×=,∴DG=2DF=.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.六、拓展探究(10分)26.(10分)(2014•广安)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)利用待定系数法求出抛物线的解析式;(2)①本问需结合菱形、平行四边形的性质来进行分析.如答图2﹣1,作辅助线,求出点D的坐标,进而判断平行四边形ODAE是否为菱形;②本问为存在型问题.如答图2﹣2,作辅助线,构造相似三角形,利用比例式,列出一元二次方程,求得点D的坐标.解答:解:(1)把点A(﹣4,0)、B(﹣1,0)代入解析式y=ax2+bx+3,得,解得,∴抛物线的解析式为:y=x2+x+3.(2)①如答图2﹣1,过点D作DH⊥x轴于点H.∵S▱ODAE=6,OA=4,∴S△AOD=OA•DH=3,∴DH=.因为D在第三象限,所以D的纵坐标为负,且D在抛物线上,∴x2+x+3=﹣,解得:x1=﹣2,x2=﹣3.。
四川省广安市2015年中考数学试卷(解析版)

四川省广安市2015年中考数学试卷一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.(3分)(2015•广安)的倒数是()D﹣解:2.(3分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了﹣、4.(3分)(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是()B D7.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )y=、,8.(3分)(2015•广安)一个等腰三角形的两条边长分别是方程x 2﹣7x+10=0的两根,则该9.(3分)(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中y L,则y的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为消耗了可得:10.(3分)(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()二、填空题(每小题3分,共18分)11.(3分)(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.12.(3分)(2015•广安)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.C=13.(3分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=1﹣a.14.(3分)(2015•广安)不等式组的所有整数解的积为0.解:x15.(3分)(2015•广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为9cm2.BD=FGEF=AB=3OB==3,BD EF=AC,cm.16.(3分)(2015•广安)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t2>t3>t1.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.(5分)(2015•广安)计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.×18.(6分)(2015•广安)解方程:=﹣1.19.(6分)(2015•广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E 处,BE和AD相交于点O,求证:OA=OE.20.(6分)(2015•广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.∴,y=.四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分)21.(6分)(2015•广安)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为4.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.的概率为:=22.(8分)(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.解得:23.(8分)(2015•广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC =1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.×=15m×=3.524.(8分)(2015•广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等).五、推理与论证(9分)25.(9分)(2015•广安)如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接PA 、AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是⊙O 的切线;(2)若=,且OC=4,求PA 的长和tanD 的值.,由=进而可得:∵,∵==2AE=2OA=4OB=OA=2,AP==3,BE∴,tanD==六、拓展探究(10分)26.(10分)(2015•广安)如图,边长为1的正方形ABCD 一边AD 在x 负半轴上,直线l :y=x+2经过点B (x ,1)与x 轴,y 轴分别交于点H ,F ,抛物线y=﹣x 2+bx+c 顶点E 在直线l 上.(1)求A ,D 两点的坐标及抛物线经过A ,D 两点时的解析式;(2)当抛物线的顶点E (m ,n )在直线l 上运动时,连接EA ,ED ,试求△EAD 的面积S 与m 之间的函数解析式,并写出m 的取值范围;(3)设抛物线与y 轴交于G 点,当抛物线顶点E 在直线l 上运动时,以A ,C ,E ,G 为顶点的四边形能否成为平行四边形?若能,求出E 点坐标;若不能,请说明理由. 的纵坐标为y=x+2∴,解得,m+2×(=S=×,或y=1+2=)或()。
历年中考数学试卷88 四川广安

2015年四川省广安市中考数学试卷一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分) 1.51的倒数是( ) A . 5B . ﹣5C .51 D . ﹣512.在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为( ) A . 133×10 B . 133×103 C . 133×104 D . 133×1053.下列运算正确的是( ) A . 5a 2+3a 2=8a 4 B . a 3•a 4=a 12C . (a+2b )2=a 2+4b 2D . ﹣364=﹣44.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是( )A . 全B . 明C . 城D . 国5.下列四个图形中,线段BE 是△ABC 的高的是( )A. B .C .D .6.下列说法错误的是( )A . “伊利”纯牛奶消费者服务热线是4008169999,该十个数的中位数为7B . 服装店老板最关心的是卖出服装的众数C . 要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用全面调查D . 条形统计图能够显示每组中的具体数据,易于比较数据之间的差别7.如图,如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A . y =x+2B . y =x 2+2C .y=2+xD .y=21+x8.一个等腰三角形的两条边长分别是方程x 2﹣7x+10=0的两根,则该等腰三角形的周长是( )A . 12B . 9C . 13D . 12或99.某油箱容量为60 L 的汽车,加满汽油后行驶了100 Km 时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x Km ,邮箱中剩油量为y L ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A . y=0.12x ,x >0B . y=60﹣0.12x ,x >0C . y=0.12x ,0≤x ≤500D . y=60﹣0.12x ,0≤x ≤50010.如图,抛物线y=ax 2+bx+c (c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c ,则P 的取值范围是( )A . ﹣3<P <﹣1B . ﹣6<P <0C . ﹣3<P <0D . ﹣6<P <﹣3二、填空题(每小题3分,共18分)11.如果点M (3,x )在第一象限,则x 的取值范围是 .12.如图,A 、B 、C 三点在⊙O 上,且∠AOB=70°,则∠C= 度.13.实数a 在数轴的位置如图所示,则|a ﹣1|= .14.不等式组⎪⎩⎪⎨⎧≤-≥+1242143xx的所有整数解的积为.15.如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.16.如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.计算:04)222(1-+-+|﹣2015|﹣4cos60°.18.解方程:4221-=--xxxx﹣1.19.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.20.如图,一次函数的图象与x 轴、y 轴分别相交于A 、B 两点,且与反比例函数y=xk (k ≠0)的图象在第一象限交于点C ,如果点B 的坐标为(0,2),OA=OB ,B 是线段AC 的中点.(1)求点A 的坐标及一次函数解析式. (2)求点C 的坐标及反比例函数的解析式.四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分) 21.“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示. (1)图中a 值为 .(2)将跳绳次数在160~190的选手依次记为A 1、A 2、…A n ,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A 1和A 2的概率.22.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如下表: 目的地 目的地 车型 A 村(元/辆) B 村(元/辆) 大货车 800 900 小货车 400 600 (1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度,如图,老师测得升旗台前斜坡FC 的坡比为i FC =1:10(即EF :CE=1:10),学生小明站在离升旗台水平距离为35m (即CE=35m )处的C 点,测得旗杆顶端B 的仰角为α,已知tanα=73,升旗台高AF=1m ,小明身高CD=1.6m ,请帮小明计算出旗杆AB 的高度.24.手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)五、推理与论证(9分)25.如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接PA 、AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D . (1)求证:PA 是⊙O 的切线; (2)若32AC OC ,且OC=4,求PA 的长和tanD 的值.六、拓展探究(10分)26.如图,边长为1的正方形ABCD 一边AD 在x 负半轴上,直线l :y=21x+2经过点B (x ,1)与x 轴,y 轴分别交于点H ,F ,抛物线y=﹣x 2+bx+c 顶点E 在直线l 上. (1)求A ,D 两点的坐标及抛物线经过A ,D 两点时的解析式;(2)当抛物线的顶点E (m ,n )在直线l 上运动时,连接EA ,ED ,试求△EAD 的面积S 与m 之间的函数解析式,并写出m 的取值范围;(3)设抛物线与y 轴交于G 点,当抛物线顶点E 在直线l 上运动时,以A ,C ,E ,G 为顶点的四边形能否成为平行四边形?若能,求出E 点坐标;若不能,请说明理由.(3)设抛物线与y 轴交于G 点,当抛物线顶点E 在直线l 上运动时,以A ,C ,E ,G 为顶点的四边形能否成为平行四边形?若能,求出E 点坐标;若不能,请说明理由.2015年四川省广安市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.A 解析:根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.51的倒数是5. 点评: 此题主要考查倒数的意义,关键是求一个数的倒数的方法.2.A 解析:1330用科学记数法表示为1.33×310. 故选A .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×n10的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D 解析:A 、2235a a +=2a ,错误; B 、43a a •=7a ,错误;C 、()222442b ab a b a ++=+,错误;D 、=-364﹣4,正确;故选D .点评: 此题考查同类项、同底数幂的乘法、立方根和完全平方公式,关键是根据法则计算.4.C 解析:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”. 故选:C .点评: 此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.5.D 解析:线段BE 是△ABC 的高的图是选项D . 故选D .点评: 本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.6.C 解析:A 、4008169999的中位数是7,正确; B 、服装店老板最关心的是卖出服装的众数,正确;C 、要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用抽样调查,错误;D 、条形统计图能够显示每组中的具体数据,易于比较数据之间的差别,正确; 故选C .点评: 此题考查中位数、众数、全面调查和条形统计图,关键是根据他们的概念解答.7.C 解析:A 、y=x+2,x 为任意实数,故错误; B 、y=2x +2,x 为任意实数,故错误; C 、2+=x y ,x ﹣2≥0,即x≥2,故正确;D 、y=21+x ,x+2≠0,即x ≠﹣2,故错误; 故选:C .点评: 本题考查了函数自变量的取值范围,解决本题的关键是函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.8.A 解析:2x ﹣7x+10=0,, (x ﹣2)(x ﹣5)=0, x ﹣2=0,x ﹣5=0,1x =2,2x =5,①等腰三角形的三边是2,2,5 ∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意; ②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12; 即等腰三角形的周长是12. 故选:A .点评: 本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.9.D 解析:因为油箱容量为60 L 的汽车,加满汽油后行驶了100 Km 时,油箱中的汽油大约消耗了51, 可得:12.01006051=÷⨯ L/km ,60÷0.12=500(km ), 所以y 与x 之间的函数解析式和自变量取值范围是:y=60﹣0.12x ,(0≤x≤500), 故选D .点评: 本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.10.B 解析:∵抛物线y=c bx ax ++2(c≠0)过点(﹣1,0)和点(0,﹣3), ∴0=a ﹣b+c ,﹣3=c , ∴b=a ﹣3,∵当x=1时,y=c bx ax ++2=a+b+c ,∴P=a+b+c=a+a ﹣3﹣3=2a ﹣6, ∵顶点在第四象限,a >0, ∴b=a ﹣3<0, ∴a <3, ∴0<a <3,∴﹣6<2a ﹣6<0, 即﹣6<P <0. 故选:B .点评: 此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a 与b 的关系,以及当x=1时a+b+c=P 是解决问题的关键.二、填空题(每小题3分,共18分)11. x >0 解析:由点M (3,x )在第一象限,得x >0. 故答案为:x >0.点评: 本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.35 解析:∵∠AOB=70°,∴∠C=21∠AOB=35°. 故答案为:35.点评: 此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.1﹣a 解析:∵a <﹣1, ∴a ﹣1<0, 原式=|a ﹣1| =﹣(a ﹣1) =﹣a+1 =1﹣a .故答案为1﹣a .点评: 本题考查了实数与数轴,解决本题的关键是明确绝对值的意义以及数轴上的点与实数的一一对应关系.14.0 解析:⎪⎩⎪⎨⎧≤-≥+12421,043x x , 解不等式①得:x 34-≥, 解不等式②得:x ≤50,∴不等式组的整数解为﹣1,0,1…50, 所以所有整数解的积为0, 故答案为:0.点评: 本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.9 解析:连接AC ,BD ,相交于点O ,如图所示,∵E 、F 、G 、H 分别是菱形四边上的中点, ∴EH=21BD=FG ,EH ∥BD ∥FG , EF=21AC=HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD , ∴EF ⊥EH ,∴四边形EFGH 是矩形,∵四边形ABCD 是菱形,∠ABC=60°, ∴∠ABO=30°, ∵AC ⊥BD , ∴∠AOB=90°, ∴AO=21AB=3, ∴AC=6,在Rt △AOB 中,由勾股定理得:OB=22OA AB -=33,∴BD=63, ∵EH=21BD ,EF=21AC , ∴EH=33,EF=3,∴矩形EFGH 的面积=EF•FG=93cm 2. 故答案为:93.点评: 本题考查了中点四边形和菱形的性质,解题的关键是判定四边形EFGH 的形状为矩形.16.t 2>t 3>t 1 解析:设面积相等的等边三角形、正方形和圆的面积为3.14, 等边三角型的边长为a≈2, 等边三角形的周长为6; 正方形的边长为b≈1.7, 正方形的周长为1.7×4=6.8; 圆的周长为3.14×2×1=6.28, ∵6.8>6.28>6, ∴t 2>t 3>t 1.故答案为:t 2>t 3>t 1.点评: 本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分) 17.解析:利用有理数的乘方以及特殊角的三角函数值以及零指数幂的性质分别化简求出即可.解:﹣41+0)222(-+|﹣2015|﹣4cos60°=﹣1+1+2015﹣4×21=2013.点评: 此题主要考查了实数运算,正确掌握相关性质是解题关键.18.解析:观察可得方程最简公分母为:2x ﹣4,将方程去分母转化为整式方程即可求解. 解:化为整式方程得:2﹣2x=x ﹣2x+4, 解得:x=﹣2,把x=﹣2代入原分式方程中,等式两边相等, 经检验x=﹣2是分式方程的解. 点评: 此题考查分式方程的解法,解分式方程去分母时有常数项的注意不要漏乘,求解后要进行检验,这两项是都是容易忽略的地方,要注意检查.19.解析:由在平行四边形ABCD 中,将△BCD 沿BD 对折,使点C 落在E 处,即可求得∠DBE=∠ADB ,得出OB=OD ,再由∠A=∠C ,证明三角形全等,利用全等三角形的性质证明即可.证明:平行四边形ABCD 中,将△BCD 沿BD 对折,使点C 落在E 处, 可得∠DBE=∠ADB ,∠A=∠C , ∴OB=OD ,在△AOB 和△EOD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OD OB EOD AOB C A , ∴△AOB ≌△EOD (AAS ), ∴OA=OE .点评: 此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.20.解析:(1)根据OA=OB 和点B 的坐标易得点A 坐标,再将A 、B 两点坐标分别代入y=kx+b ,可用待定系数法确定一次函数的解析式,(2)由B 是线段AC 的中点,可得C 点坐标,将C 点坐标代入y=xk(k≠0)可确定反比例函数的解析式. 解:(1)∵OA=OB ,点B 的坐标为(0,2), ∴点A (﹣2,0),点A 、B 在一次函数y=kx+b (k≠0)的图象上, ∴,解得k=1,b=2,∴一次函数的解析式为y=x+2. (2)∵B 是线段AC 的中点, ∴点C 的坐标为(2,4), 又∵点C 在反比例函数y=xk(k≠0)的图象上, ∴k=8;∴反比例函数的解析式为y=x8点评: 本题考查了用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分) 21.解析:(1)观察直方图可得:a=80﹣8﹣40﹣28=4;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽取到的选手A1和A2的情况,再利用概率公式即可求得答案. 解:(1)根据题意得:a=80﹣8﹣40﹣28=4, 故答案为:4;(2)画树状图得:∵共有12种等可能的结果,恰好抽取到的选手A 1和A 2的有2种情况, ∴恰好抽取到的选手A 1和A 2的概率为:61122 点评: 此题考查了列表法或树状图法求概率以及直方图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.解析:(1)设大货车用x 辆,小货车用y 辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(8﹣x )辆,前往A 村的小货车为(10﹣x )辆,前往B 村的小货车为[7﹣(10﹣x )]辆,根据表格所给运费,求出y 与x 的函数关系式;(3)结合已知条件,求x 的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案. 解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x )+400(10﹣x )+600[7﹣(10﹣x )]=100x+9400.(0≤x ≤10,且x 为整数).(3)由题意得:12x+8(10﹣x )≥100, 解得:x ≥5, 又∵0≤x ≤10,∴5≤x ≤10且为整数, ∵y=100x+9400,k=100>0,y 随x 的增大而增大, ∴当x=5时,y 最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A 村;3辆大货车、2辆小货车前往B 村.最少运费为9900元.点评: 本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B 村的大货车数x 的关系.23.解析:首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG 与EF 的大小,进而求得BE 、AE 的大小,再利用AB=BE ﹣AE 可求出答案. 解:作DG ⊥AE 于G ,则∠BDG=α, 易知四边形DCEG 为矩形. ∴DG=CE=35m ,EG=DC=1.6m在直角三角形BDG 中,BG=DG•×tanα=35×73=15m , ∴BE=15+1.6=16.6m .∵斜坡FC 的坡比为i FC =1:10,CE=35m , ∴EF=35×101=3.5, ∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE ﹣AE=16.6﹣4.5=12.1m . 答:旗杆AB 的高度为12.1m .点评: 本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.24.解析:(1)正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,连接HE 、EF 、FG 、GH 、HF ,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD 中,E 、F 分别是AB 、BC 的中点,O 是AC 、BD 的交点,连接OE 、OF ,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD 中,F 、H 分别是BC 、DA 的中点,O 是AC 、BD 的交点,连接HF ,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解:根据分析,可得.(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2m)=2(c2(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2m)=2(c2(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2m)=2(c2(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2m).=1(c2点评:(1)此题主要考查了作图﹣应用与设计作图问题,要熟练掌握,解答此题的关键是结合正方形的性质和基本作图的方法作图.(2)此题还考查了三角形的面积的求法,要熟练掌握.五、推理与论证(9分)25.解析:(1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE ,由AC OC =32,且OC=4,可求AC ,OA 的值,然后根据射影定理可求PC 的值,从而可求OP 的值,然后根据勾股定理可求AP 的值;由AC=BC ,AO=OE ,可得OC 是△ABE 的中位线,进而可得BE ∥OP ,BE=2OC=8,进而可证△DBE ∽△DPO ,进而可得:OPBEPD BD =,从而求出BD 的值,进而即可求出tanD 的值. (1)证明:连接OB ,则OA=OB ,∵OP ⊥AB , ∴AC=BC ,∴OP 是AB 的垂直平分线, ∴PA=PB ,在△PAO 和△PBO 中, ∵,∴△PAO ≌△PBO (SSS ) ∴∠PBO=∠PAO ,PB=PA , ∵PB 为⊙O 的切线,B 为切点, ∴∠PBO=90°, ∴∠PAO=90°, 即PA ⊥OA ,∴PA 是⊙O 的切线; (2)连接BE ,∵AC OC =32,且OC=4, ∴AC=6, ∴AB=12,在Rt △ACO 中, 由勾股定理得:AO=22OC AC +=213,∴AE=2OA=413,OB=OA=213, 在Rt △APO 中, ∵AC ⊥OP , ∴2AC =OC•PC , 解得:PC=9,∴OP=PC+OC=13,在Rt △APO 中,由勾股定理得:AP=22OA OP -=313, ∴PB=PA=313, ∵AC=BC ,OA=OE , ∴OC=21BE ,OC ∥BE , ∴BE=2OC=8,BE ∥OP , ∴△DBE ∽△DPO , ∴OPBEPD BD =, 即138133=+BDBD , 解得:BD=51324, 在Rt △OBD 中, tanD=BD OB =51324132=125. 点评: 本题考查了切线的判定与性质以及相似三角形的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.六、拓展探究(10分) 26.解析:(1)通过直线l 的解析式求得B 的坐标,进而根据正方形的边长即可求得A 、D 的坐标,然后利用待定系数法即可求得抛物线经过A ,D 两点时的解析式; (2)根据一次函数图象上点的坐标特征求得E 的纵坐标为21m+2,然后根据三角形的面积公式即可求得S 与m 之间的函数解析式;(3)根据平行四边形的性质得出AC=EQ ,AC ∥EQ ,易证得△EHQ ≌△CDA ,从而得出E 的横坐标为﹣1,然后代入直线l 的解析式即可求得E 的坐标 解:(1)∵直线l :y=21x+2经过点B (x ,1),∴1=21x+2,解得x=﹣2, ∴B (﹣2,1), ∴A (﹣2,0),D (﹣3,0), ∵抛物线经过A ,D 两点,∴⎩⎨⎧=+--=+--039024c b c b ,解得⎩⎨⎧-=-=65c b ,∴抛物线经过A ,D 两点时的解析式为y═652---x x ; (2)∵顶点E (m ,n )在直线l 上,∴n=21m+2, ∴S=21×1×(m+2)=41m+1,即S=41m+1(m≠4);(3)如图,若以A ,C ,E ,G 为顶点的四边形能成为平行四边形,则AC=EQ ,AC ∥EQ , 作EH ∥y 轴交过Q 点平行于x 轴的直线相交于H ,则EH ⊥QH ,△EHQ ≌△CDA , ∴QH=AD=1, ∴E 的横坐标为±1, ∵顶点E 在直线l 上,∴y=21×(﹣1)+2=23,或y=21×1+2=25 ∴E (﹣1,23)或(1,25).点评: 本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,平行四边形的判定与性质,正方形的性质,全等三角形的判定与性质,抛物线上点的坐标特征,确定QH=AD=1是解题的关键.。
2015年四川省凉山州中考数学试卷及解析

2015年四川省凉山州中考数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)(2015•凉山州)(π﹣3.14)0的相反数是()A .3.14﹣πB.0 C.1 D.﹣12.(4分)(2015•凉山州)如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A .B.C.D.3.(4分)(2015•凉山州)我州今年参加中考的学生人数大约为5.08×104人,对于这个用科学记数法表示的近似数,下列说法正确的是()A.精确到百分位,有3个有效数字B.精确到百分位,有5个有效数字C.精确到百位,有3个有效数字D.精确到百位,有5个有效数字4.(4分)(2015•凉山州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A .52°B.38°C.42°D.60°5.(4分)(2015•凉山州)下列根式中,不能与合并的是()A .B.C.D.6.(4分)(2015•凉山州)某班45名同学某天每人的生活费用统计如表:生活费(元) 10 15 20 25 30 学生人数(人)4 10 15 106 对于这45名同学这天每人的生活费用,下列说法错误的是()A .平均数是20 B.众数是20 C.中位数是20 D.极差是207.(4分)(2015•凉山州)关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A .m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠28.(4分)(2015•凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A .1cm B.2cm C.3cm D.4cm9.(4分)(2015•凉山州)在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A .(﹣3,﹣2)B.(3,2)C.(2,﹣3)D.(3,﹣2)10.(4分)(2015•凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A .80°B.100°C.110°D.130°11.(4分)(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A .10 B.11 C.12 D.1312.(4分)(2015•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A .①②④B.①④C.①②③D.③④二、填空题(共5小题,每小题4分,满分20分)13.(4分)(2015•凉山州)的平方根是.14.(4分)(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a= ,b= .15.(4分)(2015•凉山州)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有人.16.(4分)(2015•凉山州)分式方程的解是.17.(4分)(2015•凉山州)在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD:S△COB= .三、解答题(共2小题,满分12分)18.(6分)(2015•凉山州)计算:﹣32÷×+|﹣3|19.(6分)(2015•凉山州)先化简:(+1)++,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.四、解答题(共3小题,满分24分)20.(8分)(2015•凉山州)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)21.(8分)(2015•凉山州)如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE 交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.22.(8分)(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?五、解答题(共2小题,满分16分)23.(8分)(2015•凉山州)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.24.(8分)(2015•凉山州)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点请你运用所学知识,结合上述材料,解答下列问题.如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°(1)求证:EF=AC;(2)若OD=3,OC=5,求MN的长.六、填空题(共2小题,每小题5分,满分10分)25.(5分)(2015•凉山州)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则= .26.(5分)(2015•凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.七、解答题(共2小题,满分20分)27.(8分)(2015•凉山州)如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.28.(12分)(2015•凉山州)如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴交于D、E两点.(1)求m的值.(2)求A、B两点的坐标.(3)点P(a,b)(﹣3<a<1)是抛物线上一点,当△PAB的面积是△ABC面积的2倍时,求a,b的值.2015年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)(2015•凉山州)(π﹣3.14)0的相反数是()A .3.14﹣πB.0 C.1 D.﹣1考点:零指数幂;相反数.分析:首先利用零指数幂的性质得出(π﹣3.14)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.解答:解:(π﹣3.14)0的相反数是:﹣1.故选:D.点评:本题考查的是相反数的定义以及零指数幂的定义,正确把握相关定义是解题关键.2.(4分)(2015•凉山州)如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A .B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上边看第一层是一个小正方形,第二层在第一层的上面一个小正方形,右边一个小正方形,故选:B.点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.3.(4分)(2015•凉山州)我州今年参加中考的学生人数大约为5.08×104人,对于这个用科学记数法表示的近似数,下列说法正确的是()A.精确到百分位,有3个有效数字B.精确到百分位,有5个有效数字C.精确到百位,有3个有效数字D.精确到百位,有5个有效数字考科学记数法与有效数字.点:分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:5.08×104精确到了百位,有三个有效数字,故选C.点评:此题考查科学记数法和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.4.(4分)(2015•凉山州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A .52°B.38°C.42°D.60°考点:平行线的性质.分析:先求出∠3,再由平行线的性质可得∠1.解答:解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同位角相等.5.(4分)(2015•凉山州)下列根式中,不能与合并的是()A .B.C.D.考点:同类二次根式.分析:将各式化为最简二次根式即可得到结果.解答:解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.点评:此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.6.(4分)(2015•凉山州)某班45名同学某天每人的生活费用统计如表:生活费(元) 10 15 20 25 30 学生人数(人)4 10 15 106 对于这45名同学这天每人的生活费用,下列说法错误的是()A .平均数是20 B.众数是20 C.中位数是20 D.极差是20考点:众数;加权平均数;中位数;极差.分析:根据众数、中位数、极差、平均数的概念求解.解答:解:这组数据中位数是20,则众数为:20,平均数为:20.4,极差为:30﹣10=20.故选A.点评:本题考查了众数、极差、中位数和平均数的概念,掌握各知识点的概念是解答本题的关键.7.(4分)(2015•凉山州)关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A .m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.解答:解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是 m≤3且m≠2.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(4分)(2015•凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A .1cm B.2cm C.3cm D.4cm考点:圆锥的计算.专题:计算题.分析:设扇形的半径为R,根据扇形面积公式得=4π,解得R=4;设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•4=4π,然后解方程即可.解答:解:设扇形的半径为R,根据题意得=4π,解得R=4,设圆锥的底面圆的半径为r,则•2π•r•4=4π,解得r=1,即所围成的圆锥的底面半径为1cm.故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.(4分)(2015•凉山州)在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A .(﹣3,﹣2)B.(3,2)C.(2,﹣3)D.(3,﹣2)考点:坐标与图形变化-对称.分析:根据直线y=x是第一、三象限的角平分线,和点P的坐标结合图形得到答案.解答:解:点P关于直线y=x对称点为点Q,作AP∥x轴交y=x于A,∵y=x是第一、三象限的角平分线,∴点A的坐标为(2,2),∵AP=AQ,∴点Q的坐标为(2,﹣3)故选:C.点评:本题考查的是坐标与图形的变换,掌握轴对称的性质是解题的关键,注意角平分线的性质的应用.10.(4分)(2015•凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A .80°B.100°C.110°D.130°考点:圆周角定理.分析:连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.解答:解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11.(4分)(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A .10 B.11 C.12 D.13考点:反比例函数系数k的几何意义.分析:根据反比例函数系数k的几何意义,可得第一象限的小正方形的面积,再乘以4即可求解.解答:解:∵双曲线y=经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.故选:C.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.12.(4分)(2015•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A .①②④B.①④C.①②③D.③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征.分析:①函数图象的对称轴为:x=﹣==1,所以b=﹣2a,即2a+b=0;②由抛物线的开口方向可以确定a的符号,再利用图象与x轴的交点坐标以及数形结合思想得出当﹣1≤x≤3时,y≤0;③由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;④由图象过点(3,0),即可得出9a+3b+c=0.解答:解:①∵函数图象的对称轴为:x=﹣==1,∴b=﹣2a,即2a+b=0,故①正确;②∵抛物线开口方向朝上,∴a>0,又∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴当﹣1≤x≤3时,y≤0,故②错误;③∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故③错误;④∵二次函数y=ax2+bx+c的图象过点(3,0),∴x=3时,y=0,即9a+3b+c=0,故④正确.故选B.点评:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,难度适中.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(2015•凉山州)的平方根是±3 .考点:平方根;算术平方根.分析:首先化简,再根据平方根的定义计算平方根.解答:解:=9,9的平方根是±3,故答案为:±3.点评:此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.14.(4分)(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a= ,b= ﹣.考点:正比例函数的定义;解二元一次方程组.分析:根据正比例函数的定义可得关于a和b的方程,解出即可.解答:解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.点评:此题考查正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.15.(4分)(2015•凉山州)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有10 人.考点:扇形统计图.分析:根据A型血的有20人,所占的百分比是40%即可求得班级总人数,根据AB型所对应的扇形圆心角的度数求得对应的百分比,则用总人数乘以O型血所对应的百分比即可求解.解答:解:全班的人数是:20÷40%=50(人),AB型的所占的百分比是:=10%,则O型血的人数是:50(1﹣40%﹣30%﹣10%)=10(人).故答案为:10.点评:本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.16.(4分)(2015•凉山州)分式方程的解是x=9 .考点:解分式方程.专题:计算题.分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解解:方程的两边同乘x(x﹣3),得答:3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.点评:本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17.(4分)(2015•凉山州)在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD:S△COB= 或.考点:相似三角形的判定与性质;平行四边形的性质.分析:首先根据M,N是AD边上的三等分点,判断出或;然后根据四边形ABCD是平行四边形,判断出AD∥BC,△DMO∽△BC0,据此求出;从而可得S△MOD:S△COD.解答:解:如图,∵M,N是AD边上的三等分点,当时,如图1,∴,∵四边形ABCD是平行四边形,∴AD∥BC,∴△DMO∽△BC0,∴S△MOD:S△COB=()2=.当时,如图1,同理可得S△MOD:S△COB=.故答案为:或.点评:(1)此题主要考查了相似三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.(2)此题还考查了平行四边形的性质和应用,要熟练掌握,解答此题的关键是要明确平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:三角形的高一定时,三角形的面积和底成正比.三、解答题(共2小题,满分12分)18.(6分)(2015•凉山州)计算:﹣32÷×+|﹣3|考点:二次根式的混合运算;特殊角的三角函数值.分析:分别利用特殊角的三角函数值以及绝对值的性质化简求出即可.解答:解:﹣32÷×+|﹣3|=﹣9××+3﹣=﹣.点评:此题主要考查了二次根式的混合运算以及特殊角的三角函数值、绝对值的性质等知识,正确化简各数是解题关键.19.(6分)(2015•凉山州)先化简:(+1)++,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.考点:分式的化简求值.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=0代入计算即可求出值.解答:解:(+1)++=====,把x=0代入得:原式=﹣2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(共3小题,满分24分)20.(8分)(2015•凉山州)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.解答:解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,在RT△PCG中,∵tanβ=,∴CG=(5+6)•=5+2,∴CD=(6+2)米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.21.(8分)(2015•凉山州)如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE 交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.考点:全等三角形的判定与性质;正方形的性质.分析:根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.解答:解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AED=∠DEF=∠AFB=90°,∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△ABF和△DAE中,∴△ABF≌△DAE (AAS),∴BF=AE.∵AF=AE+EF,AF=BF+EF.点评:本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换.22.(8分)(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)首先根据题意,设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,然后根据“空列”项目总共需要60.8亿元,以及每千米水上建设费用比陆地建设费用多0.2亿元,列出二元一次方程组,再解方程组,求出每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元即可.(2)首先根据题意,设每天租m辆大车,则需要租10﹣m辆小车,然后根据每天至少需要运送沙石1600m3,以及每天租车的总费用不超过9300元,列出一元一次不等式组,判断出施工方有几种租车方案;最后分别求出每种租车方案的费用是多少,判断出哪种租车方案费用最低,最低费用是多少即可.解答:解:(1)设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,则,解得.所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.答:每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.(2)设每天租m辆大车,则需要租10﹣m辆小车,则∴,∴施工方有3种租车方案:①租5辆大车和5辆小车;②租6辆大车和4辆小车;③租7辆大车和3辆小车;①租5辆大车和5辆小车时,租车费用为:1000×5+700×5=5000+3500=8500(元)②租6辆大车和4辆小车时,租车费用为:1000×6+700×4=6000+2800=8800(元)③租7辆大车和3辆小车时,租车费用为:1000×7+700×3=7000+2100=9100(元)∵8500<8800<9100,∴租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.点评:(1)此题主要考查了一元一次不等式组的应用,要熟练掌握,解答此题的关键是要明确:一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:①分析题意,找出不等关系;②设未知数,列出不等式组;③解不等式组;④从不等式组解集中找出符合题意的答案;⑤作答.(2)此题还考查了二元一次方程组的应用,要熟练掌握,解答此题的关键是要明确列二元一次方程组解决实际问题的一般步骤:①审题:找出问题中的已知条件和未知量及它们之间的关系.②设元:找出题中的两个关键的未知量,并用字母表示出来.③列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.④求解.⑤检验作答:检验所求解是否符合实际意义,并作答.五、解答题(共2小题,满分16分)23.(8分)(2015•凉山州)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征;切线的性质.专计算题.题:分析:(1)用树状图法展示所有9种等可能的结果数;(2)根据一次函数图象上点的坐标特征,从9个点中找出满足条件的点,然后根据概率公式计算;(3)利用点与圆的位置关系找出圆上的点和圆外的点,由于过这些点可作⊙O的切线,则可计算出过点M(x,y)能作⊙O的切线的概率.解答:解:(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了一次函数图象上点的坐标特征和切线的性质.24.(8分)(2015•凉山州)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点请你运用所学知识,结合上述材料,解答下列问题.如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°(1)求证:EF=AC;(2)若OD=3,OC=5,求MN的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题只有一个选项符合题意要求,每小题 3 分,共 30 分) 1. (3 分) (2015•广安) 的倒数是( ) A 5 . 考点: 倒数.. 分析: 根据倒数的意义,乘积是 1 的两个数互为倒数,求一个数的倒数就是把这个数的分 子和分母调换位置.由此解答. 解答: 解: 的倒数是 5. 故选 A. 点评: 此题主要考查倒数的意义 ,关键是求一个数的倒数的方法. 2. (3 分) (2015•广安)在第三届中小学生运动会上,我市共有 1330 名学生参赛,创造了 比赛组别、人数、项目之最,将 1330 用科学记数法表示为( ) A 133×10 . B 1.33×103 . C 133×104 . D 133×105 . B ﹣5点评: 本题考查了函数自变量的取值范围,解决本题的关键是函数自变量的范围一般从三 个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为 0; (3)当函数表达式是二次根式时,被开方数非负. 8. (3 分) (2 015•广安)一个等腰三角形的两条边长分别是方程 x2﹣7x+10=0 的两根,则 该等腰三角形的周长是( ) A 12 . B 9 . C 13 . D 12 或 9 .
考点: 三角形的角平分线、中线和高.. 分析: 根据三角形高的画法知,过点 B 作 AC 边上的高,垂足为 E,其中线段 BE 是△ABC 的 高,再结合图形进行判断. 解答: 解:线段 BE 是△ABC 的高的图是选项 D. 故选 D. 点评: 本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线, 连接顶点与垂足之间的线段.熟记定义是解题的关键. 6. (3 分) (2015•广安)下列说法错误的是( ) A “伊利”纯牛奶消费者服务热线是 4008169999,该十个数的中位数为 7 . B 服装店老板最关心的是卖出服装的众数
A 全 .
B 明 .
C 城 .
D 国 .
考点: 专题:正方体相对两个面上的文字.. 分析: 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 解答: 解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城” . 故选:C. 点评: 此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两 个字的特点是解决本题的关键. 5. (3 分) (2015•广安)下列四个图形中,线段 BE 是△ABC 的高的是( ) A . B . C . D .
. C 要了解全市初三近 4 万名学生 2015 年中考数学成绩情况,适宜采用全面调查 . D 条形统计图能够显示每组中的具体数据,易于比较数据之间的差别 . 考点: 中位数;全面调查与抽样调查;统计图的选择;众数.. 分析: 根据中位数、众数、全面调查和条形统计图的概念解答即可. 解答: 解:A、4008169999 的中位数是 7,正确 ; B、服装店老板最关心的是卖出服装的众数,正确; C、要了解全市初三近 4 万名学生 2015 年中考数学成绩情况,适宜采用抽样调查, 错误; D、条形统计图能够显示每组中的具体数据,易于比较数据之间的差别,正确; 故选 C. 点评: 此题考查中位数、众数、全面调查和条形统计图,关键是根据他们的概念解答. 7. (3 分) (2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数 解析式为( )
考点: 科学记数法—表示较大的数.. 分析: 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值 时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 解答: 解:1330 用科学记数法表示为 1.33×103. 故选 B. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 3. (3 分) (2015•广安)下列运算正确的是( ) A 5a2+3a2=8a4 . B a3•a4=a12 . C (a+2b)2=a2+4b2 D ﹣ . . =﹣4
考点: 完全平方公式;立方根;合并同类项;同底数幂的乘法.. 分析: 根据同类项、同底数幂的乘法、立方根和完全平方公式计算即可. 解答: 解:A、5a2+3a2=8a2,错误; B、a3•a4=a7,错误; C、 (a+2b)2=a2+4ab+4b2,错误; D、 ,正确;
故选 D. 点评: 此题考查同类项、同底数幂的乘法、立方根和完全平方公式,关键是根据法则计 算. 4. (3 分) (2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建 为“全国文明城市” ,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与 “文”字所在的面上标的字应是( )
A y=x+2 .
B y=x2+2 .
C y= .
D y= .
考点: 函数自变量的取值范围;在数轴上表示不等式的解集.. 分析: 分别求出个解析式的取值范围,对应数轴,即可解答. 解答: 解:A、y=x+2,x 为任意实数,故错误; B、y=x2+2,x 为任意实数,故错误; C、 D、y= ,x﹣2≥0,即 x≥2,故正确; ,x+2≠0,即 x≠﹣2,故错误;
考点: 解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.. 分析: 求出方程的解,即可得出三角形的边长,再求出即可. 解答: 解:x2﹣7x+10=0, (x﹣2) (x﹣5)=0, x﹣2=0,x﹣5=0, x1=2,x2=5, ①等腰三角形的三边是 2,2,5 ∵2+2<5, ∴不符合三角形三边关系定理,此时不符合题意; ②等腰三角形的三边是 2,5,5,此时符合三角形三边关系定理,三角形的周长是 2+5+5=12; 即等腰三角形的周长是 12. 故选:A. 点评: 本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识, 关键是求出三角形的三边长. 9. (3 分) (2015•广安)某油箱容量为 60 L 的汽车,加满汽油后行驶了 10 0 Km 时,油箱 中的汽油大约消耗了 ,如果加满汽油后汽车行驶的路程为 x Km,邮箱中剩油量为 y L, 则 y 与 x 之间的函数解析式和自变量取值范围分别是( ) A y=0.12x,x>0 . C y=0.12x,0≤x≤500 . 考点: 根据实际问题列一次函数关系式.. 分析: 根据题意列出一次函数解析式,即可求得答案. 解答: 解:因为油箱容量为 60 L 的汽车,加满汽油后行驶了 100 Km 时,油箱中的汽油大 约消耗了 , 可得: L/km,60÷0.12=500(km) , B y=60﹣0.12x,x>0 . D y=60﹣0.12x,0≤x≤500 .