2.2.1条件概率与事件的相互独立性(学、教案)
《条件概率与独立事件》参考教案
年级:高二科目:数学授课人:
教 学 过
程
教 学 过 程
(|) B A P A B B AB B 在发生的条件下包含的样本点数=
在发生的条件下样本点数包含的样本点数=
包含的样本点数
AB P AB B P B 包含的样本点数/总数()
=
=
包含的样本点数/总数()例盒中
有球如表任取一球 玻璃 木质 总计
红 2 3 5
蓝 4 7 11
总计 6 10 16
若已知取得是蓝球,问该球是玻璃球的概率
例1 A:取得是蓝球,B:取得是玻璃球
例2
变式:
若已知取得是玻璃球,求取得是篮球的概率
例3
在5道题中有3道理科题和2道文科题。
如果不放回的依次抽取2道题,求:
(1) 第1次抽到理科题的概率;
(2) 第
1次和第2次都抽到理科题的概率;
)
|(A B P )
()
(A P AB P =
11
416
11164=
=
)
|(B A P )
()(B P AB P =
6
416
6164=
=
()
,()()r
r p AB n A m m p B A n
=⋅=
即p。
数学:2.2.2《事件的相互独立性》教案(新人教B版选修2-3)
2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件12,,,n A A A L 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么12()n P A A A +++L =12()()()n P A P A P A +++L探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积如果事件12,,,n A A A L 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅L L .3.对于事件A 与B 及它们的和事件与积事件有下面的关系: ()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025. (2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=, ∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=. (法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.72P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件,,.由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅ [][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是 1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除CJ 开且A J 与B J 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得113lg 2n ≥≈- ∵+∈N n ,∴n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响的,而相互独立事件是以它们能够同时发生为前提的个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案
-2.2.2 条件概率与事件独立性课堂导学三点剖析一、条件概率【例1】一个家庭中有两个小孩,假定生男、生女是等可能,这个家庭有一个是女孩,问这时另一个小孩是男孩概率是多少?解析:一个家庭两个小孩子只有4种可能:{两个都是男孩子},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题目假定可知这4个根本领件发生是等可能.根据题意,设根本领件空间为Ω,A=“其中一个是女孩〞,B=“其中一个是男孩〞,那么Ω={〔男,男〕,〔男,女〕,〔女,男〕,〔女,女〕}, A={〔男,女〕,〔女,男〕,〔女,女〕},B={〔男,男〕,〔男,女〕,〔女,男〕},AB={〔男,女〕,〔女,男〕},问题是求在事件A 发生情况下,事件B 发生概率,即求P 〔B|A 〕.由上面分析可知P 〔A 〕=43,P 〔AB 〕=42. 由公式②可得P 〔B|A 〕=, 因此所求条件概率为32. 温馨提示关键是弄清楚P 〔A·B〕及P 〔A 〕.二、事件独立性应用【例2】甲、乙两名篮球运发动分别进展一次投篮,如果两人投中概率都是0.6,计算: 〔1〕两人都投中概率;〔2〕其中恰有一人投中概率;〔3〕至少有一人投中概率.思路分析:甲、乙两人各投篮一次,甲〔或乙〕是否投中,对乙〔或甲〕投中概率是没有影响,也就是说,“甲投篮一次,投中〞与“乙投篮一次,投中〞是相互独立事件.因此,可以求出这两个事件同时发生概率.同理可以分别求出,甲投中与乙未投中,甲未投中与乙投中,甲未投中与乙未投中同时发生概率,从而可以得到所求各个事件概率.解:〔1〕设A=“甲投篮一次,投中〞,B=“乙投篮一次,投中〞,那么AB=“两人各投篮一次,都投中〞.由题意知,事件A 与B 相互独立,根据公式③所求概率为 P 〔AB 〕=P 〔A 〕·P(B)=0.6×0.6=0.36.(2)事件“两人各投篮一次,恰好有一人投中〞包括两种情况:一种是甲投中、乙未投中〔事件A∩B 发生〕,另一种是甲未投中、乙投中〔事件A∩B 发生〕。
事件的相互独立性学案
§2.2.2 事件的相互独立性学习目标:1、了解条件概率的概念,能利用概率公式解决有关问题;2、理解事件的相互独立性,掌握相互独立事件同时发生的概率.学习重难点:条件概率的计算公式及相互独立事件同时发生的概率的求法.学习过程:复习回顾:求概率题型1.未知概率求概率:古典概型:求概率公式为: ________________几何概型: 求概率公式为: ________________2.已知概率求概率:(1)两个互斥事件A 、B 有一个发生的概率公式是________________(2)若A 与A 为对立事件,则P (A )与P (A )的概率公式是________________(3)条件概率:设事件A 和事件B ,且P(A)>0,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率。
记作P(B |A),计算公式为: P(B |A)=____________(4)相互独立事件概率 (5)独立重复事件概率我们知道,当事件A 的发生对事件B 的发生有影响时,条件概率P(B|A)和概率P(B)一般是不相等的,但有时事件A 的发生对事件B 的发生没有影响,比如依次抛掷两枚硬币的结果(事件A )对抛掷第二枚硬币的结果(事件B )没有影响,这时P(B|A)与P(B)相等吗?思考1.甲盒子里有3个白球和2个黑球,乙盒子里有2个白球和2个黑球,记A=从甲盒子里摸出1个球,得到白球;B=从乙坛子里摸出1个球,得到白球,试问事件A 是否发生会影响事件B 发生的概率大小吗?(即()(|)P B P B A =吗?)思考2.盒中有5个球(3白两黑),每次取出一个,有放回地取两次,记A =第一次抽取取到白球,B =第二次抽取取到白球. 试问事件A 是否发生会影响事件B 发生的概率大小吗?(即()(|)P B P B A =吗?)如果是不放回呢?1、事件的相互独立性设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
高中数学_2.2.1条件概率教学设计学情分析教材分析课后反思
《2.2.1条件概率》教学方案(1)(2)加法公式:如果B 和C 是两个 事件,则 )|(A C B P类型二:条件概率的性质及其应用C 例2、一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求: (1)任意按最后一位数字,不超过 2 次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.题后反思:四、总结反思——提高认识1、知识小结:2、思想方法:回归学习目标及学习重难点五、当堂检测——目标达成A1、 若P (A )=0.3,P (B |A )=0.2,则P (AB )=B2、如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=C3、100件产品中有5件次品,不放回的抽取两次,每次抽一件,在第一次抽出的是次品的条件下,第二次抽学生动手练习,教师巡视辅导。
教师投影部分学生的学案,先投有问题的: 1、 解题步骤缺失 2、 解题结果错误 3、 书写不规范 在投影正确规范的解题过程一学生回答,另一生补充,教师用PPT 展示PPT 展示学生解答并展示结果, 教师讲评并小结, 提升方法和规律 并利用条件概率公式的变形引出下一节课。
性。
2、对于相同条件下只涉及次数的事件的设法让学生体会数学的简洁美!让学生回顾知识形成过程,梳理思路,自我归纳总结,形成良好的自主反思习惯。
对本节课有一个整体认识检测学生学习目标达成度 第1题为概率乘法公式的应用第2题为缩小基本事件范围方法在几何概型中的应用 第3题再次体会古典概型下的条件概率的计算根据学生层次,分层作业,巩固学习效果,为下一节课的学习内容作铺垫。
出的是正品的概率六、布置作业——评价反馈基础作业:A1、甲、乙两城市都位于长江下游,根据一百余年气象记录,知道甲、乙两市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,求:(1)乙市为雨天时,甲市也为雨天的概率;(2)甲市为雨天时,乙市也为雨天的概率.B2、掷两颗均匀骰子,问:⑴“第一颗掷出6点”的概率是多少?⑵“掷出点数之和不小于10”的概率又是多少?⑶“已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?C3、一批产品中有 4% 的次品,而合格品中一等品占45% .从这批产品中任取一件,求该产品是一等品的概率.探究作业:1、三张卡片的骗局:我们先准备3张卡片,1号卡片正反面都是黑色,2号卡片正反面都是红色,3号卡片一面是黑色,一面是红色,然后把卡片放进一个盒子里,摇一摇,让对手抽一张平放在桌子上,接着和他赌反面的颜色和正面的一样,这个赌局公平吗?2、概率乘法公式:若P(A)>0,则P(AB)=P(B|A)P(A),那满足什么条件时有P(AB)=P(A)P(B)?七、学后反思——自我升华本节课我最大的收获是我还存在的疑惑是学生根据自身情况,课下独立完成部分或全部。
2.2.1条件概率与事件的相互独立性(学、教案)
2. 2.1条件概率与事件的相互独立性教学目标:1、通过对具体情景的分析,了解条件概率的定义。
理解两个事件相互独立的概念。
2,掌握一些简单的条件概率的计算。
能进行一些与事件独立有关的概率的计算。
3,通过对实例的分析,会进行简单的应用教学重点:条件概率定义的理解 教学难点:概率计算公式的应用教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率.2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。
例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求(1) 任意按最后一位数字,不超过2次就对的概率;(2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是多少?解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。
这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。
在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3.例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算:(1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为P ( AB )=P (A )P (B )=0.6×0.6=0.36(2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。
重庆高中数学选修2-3第二章第二节《二项分布及其应用》全套教案
二项分布及其应用2.2.1 条件概率【教学目标】1.初步理解条件概率的概念与表示,理解条件概率的一般计算公式,会正确使用公式分析和解决一些条件概率的具体问题.2.归纳出古典概型背景下条件概率的计算公式;经历非古典概型背景下条件概率问题的探究,初步理解条件概率的一般计算公式,会正确使用公式分析和解决一些条件概率的具体问题.3.通过合作交流和问题探究,感受概率问题的生活化特点【教学重点难点】重点:条件概率的概念、计算公式的推导及条件概率的计算.难点: 条件概率的判断与计算【学前准备】:多媒体,预习例题例1.箱子里有红、黄、蓝三个小球,现由甲、乙2名同学依次无放回地摸球,问乙同学摸到红球的概率是多少?所有可能发生的结果记为Ω={红蓝、红黄、黄蓝、黄红、蓝红、蓝黄},共有6个基本事件,记事件B 为“乙同学摸到红球”,则包含的基本事件有两个:黄红、蓝红,因为基本事件数是有限个,而且每个基本事件发生的可能性都是相同的,所以可以判断是古典概型,由古典概型的概率计算公式可得知3162)()()(==Ω=n B n B P . 1.条件概率的概念一般地,设A 、B 为两个事件,且P(A )>0,称)|(A B P 为事件A 发生的条件下,事件B 发生的条件概率.)|(A B P 读作A 发生的条件下B 发生的概率.思考:)|(A B P 与)(AB P 有什么联系和区别?你能借助Venn 图说明吗?我们把事件A 记做集合A ,把事件B记做集合B ,A 与B 公共的部分记做AB ,所有基本事件的总体记做Ω.因为已经知道事件A 发生,所以只需在A 发生的范围内考虑问题,即现在的样本空间缩小为A ,在事件A 发生的条件下事件B 发生,等价于事件A 和事件B 同时发生,即AB 发生. 2.条件概率的计算公式所以在前面摸球的例子中,没有摸到红球,那么乙摸到红球的概率是变大还是变小了?又是多少?记事件到红球”减为蓝红、蓝黄即摸到红球”包含的基本事件依然是只有黄红、蓝红两个,在事件生的条件下事件相当于事件同时发生,即所以事件出现的可能性也是一样的,所以依然满足古典概型,因此由古典概型概率计算公式可知,在甲没有摸到红球的条件下乙摸得红球的概率P 确实比之前乙摸到红球的概率变大了算,我们可以看出在发生的条件下事件生的概率和率是不相等的,理由是样本空间不一样,总的基本事件数是不同的某种动物出生之后活到2.2.2事件的相互独立性【教学目标】1、知识与技能理解两个事件相互独立的概念;2、过程与方法能进行一些与事件独立有关的概率的计算。
高考数学复习知识点讲解教案第62讲 随机事件的相互独立性与条件概率
概率的积,则事件,为相互独立事件.
2.求两个相互独立事件同时发生的概率的步骤
(1)首先确定两个事件是相互独立的;
(2)确定两个事件可以同时发生;
(3)求出每个事件发生的概率,再求积.
变式题(1)
(多选题)[2023·新课标Ⅱ卷] 在信道内传输0,1信号,信号
的传输相互独立.发送0时,收到1的概率为 0 < < 1 ,收到0的概率为1 − ;
由相互独立事件的概率公式得,所求概率为 1 −
2 ,故B正确.
对于C,采用三次传输方案,发送1,1,1,收到的译码为1,
则收到的信号可能为 1,1,0 , 1,0,1 , 0,1,1 , 1,1,1 ,
故所求概率为3ሺ1 −
2
ሻ
+ 1−
3 ,故C错误.
对于D,若采用三次传输方案,发送0,收到的译码为0,
5
1 2
别为 , ,则该谜题被破解的概率为___.
6
2
3
[解析] 设“甲独立地破解出该谜题”为事件,“乙独立地破解出该谜题”为事件,
“该谜题被破解”为事件,且事件与相互独立,
则 = 1 − = 1 − 1 −
1
2
× 1−
2
3
=
5
.
6
3.[教材改编]
交通部门对某地上、下班时间拥堵状况统计调查,发现该地区上
4.结合古典概型,会利用乘法公式计算概率.
◆ 知识聚焦 ◆
1.事件的相互独立性
(1)定义:对任意两个事件与,如果
=____________成立,则称事件与
事件相互独立.
(2)判断方法:
①根据定义;
2.2 条件概率与事件的独立性
【高二数学学案】§2. 2 条件概率与事件的独立性2.2.1 条件概率主备人: 时间:一、自学导引1、条件概率一般地,设A 、B 为两个事件,且P(A)>0,称P(B|A)= 为在事件A 发生的条件下,事件B 发生的条件概率。
一般把P(B|A)读作 。
2、求条件概率的两个公式(1)P(B|A)= ; (2)P(B|A)= .二、学法指导条件概率计算公式的使用说明:(1)利用定义计算。
先分别计算概率P(AB)和P(A),然后将它们相除得到条件概率)()()|(B P AB P A B P =,这个公式适用于一般情形,其中AB 表示A 、B 同时发生。
(2)利用缩小样本空间的观点计算。
在这种观点下,原来的样本空间缩小为已知的条件事件A ,原来的事件B 缩小为AB 。
而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率。
即)()()|(A n AB n A B P =,这里n(A)和n(AB)的计数是基于缩小的概率空间。
三、典例精析例1、设31)(,21)|()|(===A P A B P B A P ,求P(B).随练:某地区气象台统计,该地区下雨的概率是154,刮风的概率为152,既刮风又下雨的概率是101,设A 为下雨,B 为刮风。
求:(1)P(A|B); (2)P(B|A)。
例2、在5道题中有3道理科题和2道文科题。
如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。
随练:抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”。
(1)求P(A), P(B), P(AB);(2)当已知蓝色骰子两点数为3或6时,问两颗骰子的点数之和大于8的概率为多少?例3、在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀。
《事件的相互独立性》 教学设计
《事件的相互独立性》教学设计一、教学目标1、知识与技能目标理解事件相互独立的概念。
能利用相互独立事件的概率乘法公式计算一些事件的概率。
2、过程与方法目标通过实例分析,经历观察、猜想、归纳等数学活动,培养学生的逻辑思维能力和数学应用意识。
通过合作探究,提高学生的合作交流能力和分析问题、解决问题的能力。
3、情感态度与价值观目标让学生在自主探究和合作交流中,感受数学的魅力,激发学生学习数学的兴趣。
培养学生勇于探索、敢于创新的精神,以及严谨的治学态度。
二、教学重难点1、教学重点事件相互独立的概念。
相互独立事件概率乘法公式的应用。
2、教学难点对事件相互独立概念的理解。
正确判断事件是否相互独立,并运用概率乘法公式解决实际问题。
三、教学方法讲授法、讨论法、探究法相结合四、教学过程1、导入新课回顾上节课所学的条件概率的概念和计算公式,通过提问引导学生思考在某些情况下,事件之间是否存在某种特殊的关系。
例如,抛掷两枚质地均匀的硬币,第一枚硬币正面朝上是否会影响第二枚硬币正面朝上的概率?2、讲授新课给出事件相互独立的定义:设 A,B 是两个事件,如果 P(AB) =P(A)P(B),则称事件 A 与事件 B 相互独立。
结合实例进行讲解,帮助学生理解事件相互独立的概念。
例如,同时抛掷两枚骰子,设事件 A 为“第一枚骰子的点数为1”,事件 B 为“第二枚骰子的点数为2”,计算 P(A)、P(B)和 P(AB),验证P(AB) = P(A)P(B),从而说明事件 A 与事件 B 相互独立。
3、深入探究让学生思考:如果事件 A 与事件 B 相互独立,那么 A 与 B 的对立事件、A 的对立事件与 B、A 的对立事件与 B 的对立事件是否也相互独立?通过计算和推理,得出结论:若事件 A 与事件 B 相互独立,则 A与 B 的对立事件、A 的对立事件与 B、A 的对立事件与 B 的对立事件也相互独立。
4、例题讲解例 1:甲、乙两人同时向同一目标射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求目标被击中的概率。
2.2.1&2.2.2条件概率与事件的独立性导学案
B
2 3
C
1 2
D
1 4 4 15
10.掷两颗均匀的骰子,在它们点数不同的条 , 件下, 至少有一颗出现 6 点的概率为 。
4.某地气象台统计, 该地区下雨的概率为 刮风的概率为
1 10 2 15
,既刮风又下雨的概率为
11.设 n 件产品中含有 m 件废品,今从中任取 两件, 在已知其中一件是废品的前提下, 另一 件也是废品的概率为____________。 12. 若 P ( B | A ) = P ( A | B ) 则 P ( B ) ____。 13. 已知A,B为相互独立事件,且 P ( A )
P (B )= 2 3 1 2 1 2 P ( A) 1 3
,设 A 为下雨,B 为刮风,则 P ( B | A ) =
1 4
A
B
1 2
C
3 4
D
2 5
,
5.在 10 个球中有 6 个红球和 4 个白球(各不 相同) ,无放回的依次摸出 2 个球,在第一次 摸出红球的条件下, 第二次也摸到红球的概率 是( ) A
1 4
B
15 16
C
3 5
D
19 20
B
6 13
C
1 26
二、填空题 9. 从一副不含大小王的 52 张扑克牌中不放回 地抽取 2 次, 每次抽 1 张. 已知第 1 次抽到 A , 则第 2 次也抽到 A 的概率是 .
3.一个家庭中有两个小孩。 假定生男生女是等 可能的。 已知这个家庭有一个是女孩。 问另一 个也是女孩的概率是( ) A
事件 D,称为事件 A 与 B 的交(或积) ,记作 3. 条件概率公式:
探究任务二:事件的独立性
高中数学选修1-221条件概率和独立事件教案
提炼的课题
条件概率、独立事件
教学重难点
重点:条件概率和独立事件的概念;
条件概率公式和独立事件概率公式的简单应用;
难点:正确理解条件概率公式,
教学手段运用
教学资源选择
PPT、
教学过程
环节
学生要解决的问题或任务
教师如何教
学生如何学
知
识
回
顾
复习:《必修3》中的古典概型和对立事件。
一、古典概型
(1)特征:有限性、等可能性;
(2)
二、对立事件的概念
学生回答,教师补充
情
境
导
入
典型案例Байду номын сангаас究
实例:100个产品中有93个产品的长度合格,90个产
品的质量合格,85个产品的长度、质量都合格。现
①篮球比赛的“罚球两次”中,②在奥运会的百米赛跑中,
事件A:第一次罚球,球进了;事件A:同学甲获得冠军;
事件B:第二次罚球,球进了。事件B:同学乙获得冠军。
3、某人提出一个问题,规定由甲先答,答对的概率为0.4,若答对,则问题结束;若答错,则由乙接着答,但乙能否答对与甲的回答无关系,已知两人都答错的概率是0.2,求问题由乙答出的概率。
课后作业布置
1.投掷两枚骰子,已知点数和为10,求两枚骰子中第一次投掷的点数大于第二次投掷点数的概率.
2、课本第19页练习
预习内容布置
预习第21页到第25页的《独立性检验》
,
则称A、B相互独立。
典
例
精
讲
正确应用概率公式
高中数学_2.2.1 条件概率教学设计学情分析教材分析课后反思
《条件概率》教学设计一、教学目标1.知识与技能目标:(1)通过对具体情景的分析,理解条件概率的定义,掌握求条件概率的公式;(2)掌握求条件概率的两种方法;(3)通过解决具体问题的实例,理解条件概率的概念,理解事件的交的意义,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。
2.过程与方法目标:(1)情境引入,通过师生共同对“问题链”的探究,运用观察、思考、探究、概括、归纳的方法体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
(2)通过小组的探究讨论,让学生学会分享自己的见解,培养学生的团队合作精神。
3.情感态度与价值观目标:本节课的主要特点是贴近生活,体会条件概率在生活中的重要作用。
通过学习,让学生体会生活和学习中与条件概率有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.二、重点、难点1. 教学重点:能利用条件概率公式解一些简单的实际问题.2.教学难点:掌握求条件概率的两种方法.三、教学设计目标导学设计意图 1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)明确学习目标,做到有的放矢.知识回顾设计意图 在古典概型中,随机事件A 的概率为P (A )=事件A 包含的基本事件数试验的基本事件总数熟悉古典概型的概率公式.自学质疑设计意图 1.教材自学:阅读课本48页至49页例1上面的内容,勾画标注本节课的基础知识,写出存在的问题;2.微课助学:观看微课,借助微课进一步理解条件概率的定义,明确求条件概率的公式的由来;3.合作互学:小组讨论,解决自学过程中存在的疑难问题.提高学生的自学能力,培养学生发现问题的能力以及团队合作的能力.100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},A∩B={产品的长度、质量都合格}.问题1:试求P(A)、P(B)、P(A∩B).提示:P(A)=93100,P(B)=90100,P(A∩B)=85100.问题2:任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.提示:事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=8590.问题3:试探求P(B)、P(A∩B)、P(A|B)间的关系.提示:P(A|B)=8590=1009010085=)()(BPBAP⋂.1.以实际问题引发学生的学习兴趣和求知欲望;2.以此为铺垫,通过具体问题情境引入课题;3.简单直观,符合学生的思维习惯和认知规律.概念形成设计意图1.事件的交事件A和B同时发生所构成的事件D,称为事件A与B的交(或积)记做D=A∩B(或D=AB).2.条件概率对于两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率.用符号“P(B|A)”表示.即条件概率公式P(B|A)=P(A∩B)P(A),P(A)>0.1.理解事件的交,并会用数学符号表示.2.强调条件概率的定义、公式的形式.1.用定义法求条件概率P (B |A )的步骤 (1)分析题意,弄清概率模型; (2)计算P (A ),P (A ∩B );(3)代入公式求P (B |A )=P A ∩BP A .2.计算条件概率的两种方法:(1)在原样本空间Ω中,先计算P (A ∩B ),P (A ),再按公式 P (B |A )=P (A ∩B )P (A )计算求得P (B |A ). (2)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即 P (B |A )=事件A ∩B 所含基本事件的个数事件A 所含基本事件的个数.《条件概率》学情分析学生在日常生活中都接触过概率,特别是必修3中已经学习了概率的概念、古典概型等知识,具备一定的概率基础。
高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立
2.2.1 条件概率 2.2.2 事件的独立性1.了解条件概率和两个事件相互独立的概念.2.理解条件概率公式和相互独立事件同时发生的概率公式.3.能利用概率公式解决实际问题.1.条件概率(1)定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“P (B |A )”来表示,读作“A 发生的条件下B 发生的概率”.类似地,事件B 发生的条件下事件A 发生的条件概率记为“P (A |B )”,读作“B 发生的条件下A 发生的概率”.(2)事件的交(或积)由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(3)条件概率计算公式 一般地,条件概率公式为P (B |A )=P (A ∩B )P (A )(P (A )>0),类似地,P (A |B )=P (A ∩B )P (B )(P (B )>0).2.相互独立事件(1)定义:一般地,事件A 是否发生对事件B 发生的概率没有影响,即P (B |A )=P (B ),则称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.若n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称这n 个事件相互独立.(2)相互独立事件的性质一般地,若事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)相互独立事件同时发生的概率①两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A ∩B )=P (A )×P (B ).②如果事件A 1,A 2,…,A n 相互独立,则这n 个事件都发生的概率,等于每个事件发生的概率的积,即P (A 1∩A 2∩…∩A n )=P (A 1)×P (A 2)×…×P (A n )并且上式中任意多个事件A i 换成其对立事件后,等式仍成立.1.判断(对的打“√”,错的打“×”) (1)若事件A 、B 互斥,则P (B |A )=1.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)× (2)√ (3)√2.已知P (AB )=310,P (A )=35,则P (B |A )为( )A.950 B.12 C.910D.14答案:B3.甲、乙两人各射击一次,他们各自击中目标的概率都是0.6,则他们都击中目标的概率是( )A .0.6B .0.36C .0.16D .0.84答案:B4.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.答案:0.95求条件概率[学生用书P26]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【解】 设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)从5道题中不放回地依次抽取2道题的事件数为A 25=20. 根据分步乘法计数原理,事件A 的总数为A 13×A 14=12. 故P (A )=1220=35.(2)因为事件A ∩B 的总数为A 23=6. 所以P (A ∩B )=620=310.(3)法一:由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P (B |A )=P (A ∩B )P (A )=31035=12.法二:因为事件A ∩B 的总数为6,事件A 发生的总数为12,所以P (B |A )=612=12.利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.设10件产品中有4件不合格,从中任意取出2件,那么在所取得的产品中发现有一件不合格品,求另一件也是不合格品的概率.解:设事件A 为“在所取得的产品中发现有一件不合格品”,事件B 为“另一件产品也是不合格品”,则P (A )=C 14C 16C 210=4×6×210×9=815,P (A ∩B )=C 24C 210=215.因此P (B |A )=P (A ∩B )P (A )=14.相互独立事件的判断判断下列各对事件是不是相互相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【解】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, 所以P (A )=36=12,P (B )=26=13,P (AB )=16,所以P (A ∩B )=P (A )·P (B ), 所以事件A 与B 相互独立.判断两事件的独立性的方法(1)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响. (3)当P (A )>0时,可用P (B |A )=P (B )判断.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解:(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件, 由等可能性知概率各为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, A ∩B ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (A ∩B )=12.由此可知P (A ∩B )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件, A ∩B 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (A ∩B )=38,显然有P (A ∩B )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.求相互独立事件的概率甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率; (2)2个人都译不出密码的概率; (3)至多1个人译出密码的概率;【解】 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A 与B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2个人都译出密码”的概率为:P (AB )=P (A )·P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A -B -)=P (A -)·P (B -)=[1-P (A )]×[1-P (B )]=(1-13)×(1-14)=12.(3)“至多1个人译出密码”的对立事件为“2个人都译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.在本例条件下,求:(1)恰有1个人译出密码的概率; (2)至少1个人译出密码的概率.解:(1)“恰有1个人译出密码”可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A B -∪A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =13×(1-14)+(1-13)×14=512. (2)“至少1个人译出密码”的对立事件为“2个人都未译出密码”,所以至少1个人译出密码的概率为:1-P (A -B -)=1-P (A -)P (B -)=1-23×34=12.与相互独立事件有关的概率问题求解策略一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:A ,B 互斥 A ,B 相互独立P (A +B ) P (A )+P (B )1-P (A -)P (B -)P (AB ) 0P (A )P (B ) P (A -B -)1-[P (A )+P (B )]P (A -)P (B -)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100米跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3),(1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率:P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=35×14×23=110. (3)恰有两人合格的概率:P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合第一问、第二问、第三问可知P 1最大. 所以出现恰有1人合格的概率最大.相互独立事件的综合应用在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众要彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率. (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列.【解】 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.因为事件A 与B 相互独立,所以观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B -)=P (A )·P (B -)=P (A )·[1-P (B )]=23×25=415.(或P (A B -)=C 12·C 34C 23·C 35=415). (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35,因为X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=P (A -B -C -)=13×25×25=475,P (X =1)=P (A B - C -)+P (A -B C -)+P (A -B -C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (A B C -)+P (A -BC )+P (A B -C )=23×35×25+13×35×35+23×25×35=3375, P (X =3)=P (ABC )=23×35×35=1875,所以X 的分布列为X 0 1 2 3 P475207533751875概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.解:记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3, 则P (A 1)=12,P (A 2)=34,P (A 3)=34,不发生故障的事件为(A 2∪A 3)A 1,P =P [(A 2∪A 3)A 1]=P (A 2∪A 3)·P (A 1) =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.————————————————————————————————————————————————1.求条件概率的方法(1)利用定义,分别求P (A )和P (A ∩B ),得P (B |A )=P (A ∩B )P (A ).(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (A ∩B )n (A ).2.判定两个事件相互独立的方法(1)定义法:如果A 、B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A 、B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响.3.事件A 、B 相互独立,则P (AB )=P (A )P (B ).注意与事件互斥区别.1.求复杂事件的概率时,先判断事件间的关系,是互斥还是独立,特别对“至多”“至少”等问题,可分成互斥事件求概率,也可用对立事件求概率.2.在解题过程中,要明确事件中的“至少有一个发生”、“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义,已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),那么:A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A -B -;A 、B 恰有一个发生的事件为A B -∪A -B ;A 、B 中至多有一个发生的事件为A B -∪A -B ∪A -B -.1.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C.由P (AB )=P (A )P (B |A )可得P (A )=34.2.甲、乙、丙3人投篮,投进的概率分别是13,25,12,现3人各投篮1次,则3人都没有投进的概率为( )A.115 B.215C.15D.110解析:选C.甲、乙、丙3人投篮相互独立,都不进的概率为⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-25⎝ ⎛⎭⎪⎫1-12=15.3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16.答案:16[A 基础达标]1.设A 与B 是相互独立事件,则下列事件中不相互独立的是( ) A .A 与B -B.A -与B C.A -与B -D .A 与A -解析:选D.A 、B 、C 选项的两事件相互独立,而A 与A -是对立事件,不是相互独立事件. 2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A .0.2B .0.33C .0.5D .0.6解析:选A.A =“数学不及格”,B =“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=0.2,所以数学不及格时,该生语文也不及格的概率为0.2.3.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16D.17解析:选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B ,则n (A )=A 66,n (AB )=A 55,P (B |A )=A 55A 66=16.4.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.5.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y (若指针停在边界上则重新转),x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116B.18C.316D.14解析:选C.满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.所以所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+ P (x =4,y =1)=14×14+14×14+14×14=316. 6.已知有两台独立在两地工作的雷达,它们发现飞行目标的概率分别为0.9和0.85,则两台雷达都未发现飞行目标的概率为________.解析:所求概率为(1-0.9)×(1-0.85)=0.015. 答案:0.0157.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 解析:设此队员每次罚球的命中率为p , 则1-p 2=1625,所以p =35.答案:358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:349.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 45×56×(1-23)=29, 只有农产品加工和水果种植两个项目成功的概率为 45×(1-56)×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为 (1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.10.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1)从甲箱中任取2个产品的事件数为C 28=28,这2个产品都是次品的事件数为C 23=3.所以这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取一个正品”,事件B 1为“从甲箱中取出2个产品都是正品”,事件B 2为“从甲箱中取出1个正品1个次品”,事件B 3为“从甲箱中取出2个产品都是次品”,则事件B 1、事件B 2、事件B 3彼此互斥.P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,所以P (A )=P (B 1)P (A |B 1)+P (B 2)·P (A |B 2)+P (B 3)P (A |B 3) =514×69+1528×59+328×49=712. [B 能力提升]11.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于( )A.25B.12C.35D.45解析:选A.因为A ∩B ={2,5},所以n (AB )=2. 又因为n (B )=5,故P (A |B )=n (AB )n (B )=25.12.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )=________.解析:由题意,P (A -)·P (B -)=19,P (A -)·P (B )=P (A )·P (B -).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧(1-x )(1-y )=19,(1-x )y =x (1-y ). 即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y , 所以x 2-2x +1=19,所以x -1=-13,或x -1=13(舍去),所以x =23.答案:2313.一只口袋内装有2个白球和2个黑球.求:(1)在先摸出1个白球不放回的条件下,再摸出1个白球的概率是多少? (2)在先摸出1个白球后放回的条件下,再摸出1个白球的概率是多少? 解:(1)记A =“先摸出一个白球不放回”,B =“再摸出一个球为白球”, 则AB =“先后两次摸到白球”. 因为P (A )=24=12,P (A ∩B )=A 22A 24=16,所以P (B |A )=P (A ∩B )P (A )=13.(2)记A 1=“先摸出一个白球放回”,B 1=“再摸出一个球为白球”, 则AB 1=“先后两次摸到白球”. 因为P (A 1)=24=12,P (A 1∩B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1∩B 1)P (A 1)=12.14.(选做题)某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.求:(1)恰有一名同学当选的概率; (2)至多有两人当选的概率.解:设甲,乙,丙当选分别为事件A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立, 所以恰有一名同学当选的概率为P (A ∩B -∩C -)+P (A -∩B ∩C -)+P (A -∩B -∩C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C ) =45×25×310+15×35×310+15×25×710 =47250. (2)至多有两人当选的概率为 1-P (A ∩B ∩C )=1-P (A )P (B )P (C )4 5×35×710=83125.=1-。
条件概率与事件的独立性-讲义(学生版)
条件概率与事件的独立性一、课堂目标1.掌握条件概率的定义和计算公式,以及条件概率与乘法公式之间的关系.2.掌握独立事件的定义和性质.3.掌握互斥事件和独立事件的综合应用.4.掌握全概率公式的定义及应用,了解贝叶斯公式.二、知识讲解1. 条件概率知识精讲(1)定义一般地,当事件发生的概率大于时(即),则事件发生的条件下事件发生的概率,称为条件概率,记作.(2)计算公式一般地,设为两个随机事件,且,则:.(3)性质①非负性:条件概率具有的性质,任何事件的条件概率都在0和1之间,即.②若事件A与B互斥,即与不可能同时发生,则.③可加性:如果和是两个互斥事件,则.(4)条件概率的求法①定义法,先求和,再求;②基本事件法,借助古典型概率公式,先求事件包含的基本事件数,再求事件所包含的基本事件数,得.注意:求复杂事件的条件概率时,可以把它分解为若干个互不相容的简单事件,求出这些简单事件的条件概率,再利用概率的可加性,得到最终结果.经典例题A. B.C.D.1.某地气象台预计,月日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则().巩固练习A.B.C.D.2.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为,在第二个路口遇到红灯的概率为,在两个路口连续遇到红灯的概率是.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是().经典例题A. B.C.D.3.一个盒子内装有个红球,个白球,从盒子中取出两个球,已知一个球是红球,则另一个也是红球的概率是().巩固练习A. B.C.D.4.某盒中装有只乒乓球,其中只新球,只旧球,不放回地依次摸出个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为().经典例题A. B.C.D.5.袋中装有形状和大小完全相同的个黑球,个白球,从中不放回地依次随机摸取两个球,则在第一次摸到黑球的条件下,第二次摸到白球的概率是().巩固练习A.B.C.D.6.抛掷一颗质地均匀的骰子的基本事件构成集合,令事件,,则的值为().2.乘法公式知识精讲由条件概率的计算公式可知,这就是说,根据事件发生的概率,以及事件发生的条件下事件发生的概率,可以求出与同时发生的概率.一般地,这个结论称为乘法公式.经典例题7.甲袋中有个白球,个红球;乙袋中有个白球,个红球,从两个袋子中任取一袋,然后从所取到的袋子中任取一球 ,则取到白球的概率是.巩固练习A.B.C.D.8.市场上供应的灯泡中,甲厂产品占,乙厂占,甲厂产品的合格率是,乙厂产品的合格率是,则从市场上买到一个是甲厂生产的合格灯泡的概率是().A.B.C.D.9.已知箱中有红球个,白球个,箱中有白球个,(、箱中所有的球除颜色外完全相同).现随意从箱中取出个球放入箱,将箱中的球充分搅匀后,再从箱中随意取出个球放入箱,则红球从箱移到箱,再从箱返回箱中的概率等于().3. 事件的独立性知识精讲(1)定义当时,与独立的充要条件是这时,我们称事件、相互独立,并把这两个事件叫做相互独立事件.(2)独立事件的性质对于两个独立事件和,有如下两个性质:①与,与,与也相互独立;②.经典例题A. B.C.D.10.袋中有大小形状都相同的个黑球和个白球.如果不放回地依次取次球,每次取出个,那么在第次取到的是黑球的条件下,第次取到白球的概率为().巩固练习A. B.C.D.11.已知件次品和件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是().经典例题12.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为,,,则此密码能被译出的概率为.巩固练习13.某学生在上学的路上要经过三个路口,假设在各路口是否遇到红绿灯是相互独立的,遇到红灯的概率都是,则这名学生在上学的路上到第三个路口时第一次遇到红灯的概率为.4. 互斥事件与独立事件知识精讲互斥事件与独立事件的区别:“互斥事件”和“相互独立事件”是两个不同的概念,前者表示两个事件不可能同时发生,后者指一个事件是否发生对另一个事件发生的概率没有影响.知识点睛已知两个事件,它们的概率分别为.将中至少有一个发生记为事件,都发生记为事件,都不发生记为事件,恰有一个发生记为事件,至多有一个发生记为事件,则它们的概率间的关系见下表.概率互斥相互独立1经典例题A.不相互独立事件B.相互独立事件C.互斥事件D.对立事件14.一袋中装有只白球,只黄球,在有放回地摸球中,用表示第一次摸得白球,表示第二次摸得白球,则事件与是( ).巩固练习A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥15.掷一颗骰子一次,设事件:“掷出奇数点”,事件:“掷出点或点”,则事件,的关系( ).经典例题A.B.C.D.16.甲、乙两名学生通过某种听力测试的概率分别为和,两人同时参加测试,其中有且只有一人能通过概率是( ).(1)(2)17.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,并且该生各科取得第一名相互独立.问一次考试中:三科成绩均未获得第一名的概率是多少?恰有一科成绩未获得第一名的概率是多少?巩固练习18.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,假设各项标准互不影响,从中任选一名学生,则该学生恰有一项合格的概率为( ).A.B. C.D.A.B.C.D.19.社区开展“建军周年主题活动——军事知识竞赛”,甲乙两人能荣获一等奖的概率分别为和,两人是否获得一等奖相互独立,则这两人中至少有一人获得一等奖的概率为().5. 全概率公式知识精讲(1)公式公式的推导:一般地,如果样本空间为,而为事件,则与是互斥的,且,所以,当且时,由乘法公式得:,所以,.(2)全概率公式的一般结论前面提到的全概率公式,本质上是将样本空间分成互斥的两部分(即与)后得到的.如果将样本空间分成更多互斥的部分,从而得到更一般的结论,如下:定理:若样本空间中的事件满足:①任意两个事均互斥,即;②;③.则对中的任意事件,都有,且.上述公式也称为全概率公式.经典例题20.某射击小组共有名射手,其中一级射手人, 二级射手人, 三级射手人, 四级射手人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是、、、. 求任选一名射手能通过选拔进入比赛的概率.巩固练习(1)(2)21.某仓库有同样规格的产品箱,其中箱、箱、箱依次是由甲、乙、丙三个厂生产的,且三个厂的次品率分别为、、.现从这箱中任取一箱,再从取得的一箱中任意取出一件产品,求:取得一件产品是次品的概率.若已知取得的一件产品为次品,这件次品是乙厂生产的概率.6. 贝叶斯公式知识精讲(1)贝叶斯公式一般地,当且时,有.这称为贝叶斯公式.(2)贝叶斯公式的推广同全概率公式一样,贝叶斯公式也可以进行推广.定理:若样本空间中的事件满足:①任意两个事件均互斥,即;②;③.则对中的任意概率非零事件,有.上述公式也称为贝叶斯公式.经典例题22.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的,乙厂生产的占;甲厂商品的合格率为,乙厂商品的合格率为.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为 .巩固练习23.某地区居民的肝癌发病率为 ,现用甲胎蛋白法进行普查医学研究表明,化验结果是存在错误的已知患有肝癌的人其化验结果呈阳性(有病),而没患肝癌的人其化验结果呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率有多少?三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测A.B.C.D.24.下面结论正确的是( ).若,则事件与是互为对立事件若,则事件与是相互独立事件若事件与是互斥事件,则与也是互斥事件若事件与是相互独立事件,则与也是相互独立事件25.根据某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,则在刮风天里,下雨的概率为 ,在下雨天里,刮风的概率为 .26.已知件产品中有件次品,现逐一不放回的检验,直到件次品都能被确认为止,则检验次数为的概率为 .27.甲、乙、丙的投篮命中率分别为,,.三人各投篮一次,假设三人投篮相互独立,则至少有一人命中的概率是 .。
事件的相互独立性与条件概率、全概率公式课件-2025届高三数学一轮复习
3.全概率公式
一般地,设 , ,⋯ , 是一组两两互斥的事件,
∪ ∪ ⋯ ∪ = ,且 > , = ,2,⋯ ,,则对任意的事件 ⊆ ,
∑ ∣
有 =⑧_________________.
=
我们称上面的公式为全概率公式.
−
+ −
= −
+ − ,故C不正确;对于D,
发送0,采用三次传输方案译码为0,相当于发0,0,0,收到0,0,1或
0,1,0或1,0,0或0,0,0,则此方案的概率
= −
+ −
= −
相互独立事件不一定互斥.
2.条件概率
(1)概念:一般地,设,为两个随机事件,且 > ,我们称②
| =
_______________为在事件发生的条件下,事件发生的条件概率,简称
条件概率.
(2)两个公式
①利用古典概型: |
=③______.
|
=
=
,
=
=
,由条件概率
.
方法二(样本点数法):不放回地依次随机抽取2道题作答,样本空间有
× = 个样本点, = × = , = × = ,
所以 | =
=
=
.
注意 | 和 | 的区别.
1.事件的关系与运算
(1),都发生的事件为;,都不发生的事件为.
人教课标版高中数学选修2-3《事件的独立性》教案-新版
第二章随机变量及其分布2.2 二项分布及其应用2.2.1 事件的独立性一、教学目标1、核心素养通过上一节课条件概率和本节课事件的相互独立性的学习,使学生会处理较为复杂的概率计算,同时也培养了学生分类讨论的思想.从而提高了学生的运算能力和数学建模能力;2、学习目标(1)理解事件独立性的概念;(2)理解互斥事件、对立事件和相互独立事件的区别;(3)会利用相互独立事件概率的乘法公式解决相应的问题;3、学习重点理解事件A与B独立的概念,并能运用相互独立事件的概率乘法公式解决实际问题;4、学习难点运用相互独立事件的概率乘法公式解决实际问题二、教学设计(一)课前设计1、预习任务任务1阅读教材,思考:(1)互斥事件、相互独立事件和对立事件的区别?(2)如何用条件概率证明两个事件相互独立?任务2熟记相互独立事件的乘法公式,并会利用公式解决预习自测的题目;2、预习自测1.设A与B是相互独立事件,则下列命题中正确的命题是()A.A与B是对立事件B.A与B是互斥事件C.A与B不相互独立D.A与B是相互独立事件答案 D2.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B 表示第二次摸得白球,则A 与B 是( )A 、互斥事件B 、不相互独立事件C 、对立事件D 、相互独立事件 答案 B3.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42答案:D4.一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率是( ) A.41 B.31 C.21 D.43 答案:C(二)课堂设计1、知识回顾(1)互斥事件和相互独立事件的概念;(2)互斥事件与相互独立事件的区别;(3)古典概型的概率公式;(4)条件概率的概念及其性质、计算公式;(5)本节课所学习的事件独立性的概念?相互独立事件概率计算公式?2、问题探究问题探究一 活动一:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”.事件A 的发生会影响事件B 发生的概率吗?解析:显然无放回时,A 的发生影响着B ,即是条件概率.而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B |A )=P (B ),代入条件概率公式得P (AB )=P (B |A )P (A )=P (A )P (B )活动二:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球 问题:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题:事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响) “从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. 相互独立事件的定义:设A,B 为两个事件,如果 P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立(mutually independent ).事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题探究二、互斥事件、对立事件、相互独立事件的区别 1.定义:设A ,B 为两个事件,如果()=()()P AB P A P B ⋅,那么称事件A 与事件B 相互独立.2.如果A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.3.如果A 与B 相互独立,那么()=()P B A P B ,()=()P A B P A .4.互斥事件是不可能同时发生的两个事件,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响,二者不能混淆.对于事件A、B,在一次试验中,A、B如果不能同时发生,那么称A、B互斥.一次试验中,如果A、B两个事件互斥且A、B中必然有一个发生,那么称A、B对立,显然A+B为一个必然事件.A、B互斥则不能同时发生,但可能同时不发生.如掷一枚骰子,“点数为1”为事件A,“点数为2”为事件B,则A、B可能都不发生.两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.A、B互斥,则0)(=ABP;A、B对立,则1)()(=+BPAP.A、B相互独立,则)()()(BPAPABP⋅=,可见这是不相同的概率.问题探究三、利用相互独立事件乘法公式能解决哪些实际问题?例1.一个口袋内装有2个白球和2个黑球.求(1)先摸出一个白球不放回,再摸出一个白球的概率是多少?(2)先摸出一个白球后放回,再摸出一个白球的概率是多少?【知识点:相互独立事件乘法公式、条件概率】详解:(1)先摸出一白球不放回这件事对再摸出一个白球的概率产生了影响,再摸时只有一个白球,两个黑球,则概率为13;(2)先摸出一白球后放回这件事对再摸出一个白球的概率没有影响,还是从两个白球两个黑球中摸,则概率为1 2例2.天气预报中,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲乙两地都降雨的概率;(2)甲乙两地都不降雨的概率;(3)甲乙两地至少一个地方的概率;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:“甲地降雨”为时间A,“乙地降雨”为事件B.(1)“甲乙两地都不下雨”表示时间A,B同时发生,且甲乙两地是否降雨相互之间没有影响,即事件A与事件B相互独立.所以()()()=0.20.3=0.06p AB P A P B=⨯(2)“甲乙两地都不降雨”即事件A与B同时发生.利用独立事件的性质2可知,事件A与B 相互独立.所以()()()10.210.30.56p AB P A p B==-⨯-=()()(3)“至少一个地方降雨”用字母表示应为()()()()()()()()()()0.20.70.80.30.20.30.44p AB AB AB p AB p AB p AB p A p B p A p B p A p B ++=++=++=⨯+⨯+⨯=例3:俗话说“三个臭皮匠,顶上一个诸葛亮”,从数学角度解释这句话的含义【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:三个臭皮匠不妨命名为A,B,C .假设三人解决某一问题的概率为0.5,且相互独立.诸葛亮解决该问题的概率为0.8.那么这三个臭皮匠至少有一人解决问题的概率为:1()10.50.50.50.8750.8p ABC -=-⨯⨯=>从数学角度解释名言,更能引起同学们的兴趣.激发他们上课的热情和积极性.例4:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,“两次抽奖都抽到某一指定号码”为事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得,两次抽奖抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.0025.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A )()B AB 表示.由于事件B A B A 与互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为095.005.0)05.01()05.01(05.0)()()()()()(=⨯-+-⨯=+=+B P A P B P A P B A P B A P (3)“两次抽奖至少有一次抽到某一指定号码”可以用()()()AB AB AB 表示.由于事件B A B A AB ,,两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为0975.0095.00025.0)()()(=+=++B A P B A P AB P例5.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为5512345123454()=()()()()()(10.2)5P A A A A A P A P A P A P A P A ⎛⎫⋅⋅⋅⋅⋅⋅⋅⋅=-= ⎪⎝⎭∴敌机未被击中的概率为5)54(. (2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为415n⎛⎫- ⎪⎝⎭∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点拨:上面例题的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便;3、课堂总结结合第一小节的知识梳理【知识梳理】【重点难点突破】(1)条件概率的计算方法有两种:①利用定义计算,先分别计算概率)(AB P 和)(A P ,然后代入公式)()()(A P AB P A B P =. ②利用缩小样本空间计算(局限在古典概型内),即将原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为AB ,利用古典概型计算概率:)()()(A n AB n A B P =. (2)判定相互独立事件的方法①由定义,若)()()(B P A P AB P ⋅=,则B A 、独立.②有些事件不必通过概率的计算就能判定其独立性,如有放回的两次抽奖,由事件本身的性质就能直接判定出是否相互影响,从而得出它们是否相互独立.4、随堂检测1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 920【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C2个球不都是白球的概率()D2个球中恰好有1个是白球的概率【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()()A0.128 ()B0.096 ()C0.104 ()D0.384【知识点:相互独立事件乘法公式;】答案 B4.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()()A35192()B25192()C35576()D65192【知识点:相互独立事件乘法公式;】答案 A5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.【知识点:相互独立事件乘法公式;】答案(1) 132(2) 0.56(三)课后作业★基础型自主突破1.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A 表示第一次摸得白球,B表示第二次摸得白球,则A与B是()A、互斥事件B、不相互独立事件C、对立事件D、相互独立事件【知识点:相互独立事件、互斥事件】答案 B2.10件产品中有4件是次品,从10件产品中任取2件,恰好2件是正品或2件是次品的概率是()A、225B、215C、13D、715【知识点:相互独立事件乘法公式;数学思想:分类谈论思想】答案 D3.加工某零件需要经过两道工序,第一道工序的废品率是0.01,第二道工序的废品率为0.02,设这两道工序是否出废品是彼此无关的,那么产品的合格率为()A、0.9702B、0.9700C、0.9998D、0.9996【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 A4.种植某种树苗,成活率为0.9,若种植这种树苗5棵,则恰好成活4棵的概率是()A、0.33B、0.66C、0.5D、0.45【知识点:相互独立事件乘法公式】答案 B5.一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次击中的概率是()A、13B、23C、14D、25【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C6.甲、乙两篮球运动员在罚球线投球的命中率分别是0.7和0.6,每人投球3次,则两人都投进2球的概率是_________.【知识点:相互独立事件乘法公式】答案0.19★★能力型师生共研7.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()A.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B8.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )(A ) 0.216 (B )0.36 (C )0.432 (D )0.648【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D9.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为______. 【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 2411 10.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 31251053 11.甲、乙、丙三人射击命中目标的概率分别为0.5,0.25,0.125,现三人同时射击一目标,则目标被命中的概率为________.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 6443 ★★★探究型 多维突破12.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A.13 B.29 C.49 D.827答案 A【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】13.在一个选拔项目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为5 6、45、34、13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;(3)该选手在考核过程中回答过的问题的个数记为X,求随机变量X的分布列.【知识点:相互独立事件乘法公式;数学思想:正难则反思想,分类讨论思想】答案:设事件A i(i=1,2,3,4)表示“该选手能正确回答第i轮问题”,由已知P(A1)=56,P(A2)=45,P(A3)=34,P(A4)=13,(1)设事件B表示“该选手进入第三轮才被淘汰”,则P(B)=P(A1A2A3)=P(A1)P(A2)P(A3)=56×45×(1-34)=16.(2)设事件C表示“该选手至多进入第三轮考核”,则P(C)=P(A1+A1A2+A1A2A3)=P(A1)+P(A1A2)+P(A1A2A3)=16+56×15+56×45×(1-34)=12.(3)X的可能取值为1,2,3,4.P(X=1)=P(A1)=1 6,P(X=2)=P(A1A2)=56×(1-45)=16,P(X=3)=P(A1A2A3)=56×45×(1-34)=16,P(X=4)=P(A1A2A3)=56×45×34=12,所以,X的分布列为自助餐1.已知事件A 、B 发生的概率都大于零,则( )A .如果A 、B 是互斥事件,那么A 与B 也是互斥事件B .如果A 、B 不是相互独立事件,那么它们一定是互斥事件C .如果A 、B 是相互独立事件,那么它们一定不是互斥事件D .如果A +B 是必然事件,那么它们一定是对立事件【知识点:相互独立事件、互斥事件】答案 C2.两个事件对立是这两个事件互斥的( )A .充分但不是必要条件B .必要但不是充分条件C .充分必要条件D .既不充分又不必要条件【知识点:互斥事件、对立事件】答案 B3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( )A.35B.34C.1225D.1425【知识点:相互独立事件乘法公式】答案 D4.今有光盘驱动器50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A .35035C CB .350352515C C C C ++ C .3503451C C -D .3501452524515C C C C C + 【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D5.甲、乙、丙3人投篮,投进的概率分别是13,25,12.现3人各投篮1次,则3人都没有投进的概率为( )A.115B.215C.15D.110【知识点:相互独立事件乘法公式】答案 C6.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A 型的螺栓概率为( )A .201 B.1615 C .53 D .2019 【知识点:相互独立事件乘法公式】答案 C7.到成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为35,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为( )A.36125B.44125C.54125D.98125【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D8.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位移动的方向为向上或向右,并且向上和向右移动的概率都为21,质点P 移动5次后位于(2,3)的概率是( ) A.5)21( B.525)21(C C.325)21(C D.53525)21(C C【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B9.某市派出甲、乙两支球队参加全省足球冠军赛甲乙两队夺取冠军的概率分别是4173和 .则该市足球队夺得全省冠军的概率是_________.【知识点:互斥事件加法公式】答案 2819 10.一个家庭中有两个小孩,求:(1)两个小孩中有一个是女孩的概率;(2)两个都是女孩的概率; (3)已知其中一个是女孩,另一个也是女孩的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“家庭中有一个是女孩”为事件A ,“另一个也是女孩”为事件B ,则“两个都是女孩”为事件AB ,家庭中有两个小孩的情况有:男、男;男、女;女、男;女、女;共4种情况,因此n (Ù)=4;其中有一个是女孩的情况有3种,因此n (A )=3;其中两个都是女孩的情况有1种,因此n (AB )=1.(1)由P (A )=n (A )n (Ù)=34,可得两个小孩中有一个是女孩的概率为34.(2)由P (AB )=n (AB )n (Ù)=14,可得两个都是女孩的概率为14.(3)由条件概率公式,可得P (B |A )=P (AB )P (A )=1434=13或P (B |A )=n (AB )n (A )=13.因此,在已知其中一个是女孩,另一个也是女孩的概率为13.11.某零件从毛坯到成品,一共要经过六道自动加工工序,如果各道工序出次品的概率分别为0.01、0.02、0.03、0.03、0.05、0.05,那么这种零件的次品率是多少?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“第i 道工序出次品”为事件A i ,i =1,2,3,4,5,6,它们相互独立,但不互斥,所以出现次品的概率为P (A 1+A 2+A 3+A 4+A 5+A 6)=1-P (A -1·A -2·A -3·A -4·A -5·A -6)=1-(1-0.01)·(1-0.02)·(1-0.03)2·(1-0.05)2=0.176 1.12.甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率;(2)2个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案: 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2 个人都译出密码”的概率为:P (A ·B )=P (A )×P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A ·B )=P (A )×P (B )=[1-P (A )]×[1-P (B )]=(1-13)(1-14)=12. (3)“恰有1个人译出密码”可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A ·B +A ·B )=P (A ·B )+P (A ·B )=P (A )P (B )+P (A )P (B )=13(1-14)+(1-13)×14=512.(4)“至多1个人译出密码”的对立事件为“有2个人译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.(5)“至少1个人译出密码”的对立事件为“2个都未译出密码”,所以至少有1个人译出密码的概率为:1-P (A ·B )=1-P (A )P (B )=1-23×34=12.。
高中数学北师大版选修1-2教案-2.1条件概率与独立事件_教学设计_教案
教学准备1. 教学目标1.知识与技能(1)了解条件概率的概念,能利用条件概率分析和解决简单的实际问题.(2)能从条件概率的角度理解两个事件相互独立的含义,能求两个相互独立事件同时发生的概率.2.过程与方法在利用事件的独立性对生活中的随机现象进行辨析的过程中,进一步培养学生的随机观念,掌握利用概率的知识,分析解决实际问题的方法.3.情感、态度与价值观通过利用概率知识解决简单的实际问题,进一步体会和感受数学知识在生活中的应用,培养随机意识.2. 教学重点/难点重点:两个事件相互独立的概念及相应概率的计算.难点:对条件概率的概念的理解及相应计算.3. 教学用具4. 标签教学过程课标解读1.了解条件概率的概念及计算(重点).2.理解相互独立事件的意义及相互独立事件同时发生的概率乘法公式(重点).3.掌握利用概率的知识分析解决实际问题的方法(难点).条件概率【问题导思】一个家庭有两个孩子,假设男女出生率一样.(1)这个家庭一男一女的概率是多少?(2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】(1)1/2,(2)2/3.(1)概念:已知事件B发生的条件下,A发生的概率称为B发生时A发生的条件概率,记为P(A|B).(2)公式:当P(B)>0时,P(A|B)=.相互独立事件【问题导思】在一次数学测试中,甲考满分,对乙考满分有影响吗?【提示】没有影响.(1)定义:对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立.(2)性质:如果A,B相互独立,则A与,与B,与也相互独立.(3)如果A1,A2,…,An相互独立,则有P(A1A2…An)=P(A1)P(A2)…P(An).条件概率问题1.在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,试求:(1)第一次取到不合格品的概率;(2)在第一次取到不合格品后,第二次再次取到不合格品的概率.【思路探究】求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题.【自主解答】设“第一次取到不合格品”为事件A,“第二次取到不合格品”为事件B.(1)P(A)==0.05.(2)法一第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为,这是一个条件概率,表示为P(B|A)=.法二根据条件概率的定义计算,需要先求出事件AB的概率.规律:1.注意抽取方式是“不放回”地抽取.2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率.3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P(B|A)=,此法常应用于古典概型中的条件概率求法.互动探究:在例1题设的条件下,试求在第一次取到合格品后,第二次取到不合格品的概率.【解】法一第一次取走1件合格品后,还剩下99件产品,其中有5件不合格品,于是第二次取到不合格品的概率为5/99.独立事件的判定2.对于下列给出的两个事件:①甲、乙两同学同时解一道数学题,事件A表示“甲同学做对”,事件B表示“乙同学做对”;②在某次抽奖活动中,记事件A表示“甲抽到的两张奖券中,一张中一等奖,另一张未中奖”,事件B表示“甲抽到的两张奖券均中二等奖”;③一个布袋里有3个白球和2个红球,记事件A,B分别表示“从中任意取一个是白球”与“取出的球不放回,再从中任取一球是红球”;④在有奖储蓄中,记甲在不同奖组M和N中所开设的两个户头分别中一等奖为事件A和B.其中事件A和事件B相互独立的是( )A.①②B.①④C.③④D.仅有①【思路探究】判断事件A与事件B是否相互独立,就是要看事件A的发生对事件B的发生是否有影响.【自主解答】规律:判断两个事件是不是相互独立有以下两种方法:(1)由定义,若P(AB)=P(A)P(B),则事件A与B相互独立.(2)由事件本身的性质直接判断,也就是判断一个事件的发生对另一个事件有没有影响.下列事件A,B是独立事件的是( )A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有4个小球,其中2个白球,2个黑球,不放回地摸两次,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到30岁”,B=“人能活到60岁”【解析】由独立事件的意义可定性地判断B,C,D中,其中一个事件的发生对另一个事件有一定的影响.故选A.【答案】 A相互独立事件同时发生的概率3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是0.6.求:(1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率.【思路探究】本题的着眼点是①事件性质的判断;②概率公式的选择;③“正难则反”的转化.【自主解答】设A为“甲投篮一次,投中”,B为“乙投篮一次,投中”.(1)易知AB为“两人各投篮一次,都投中”,由题意知,事件A与B相互独立,∴P(AB)=P(A)P(B)=0.6×0.6=0.36.(2)事件“两人各投篮一次,恰好有一人投中”包括两种情况:一种是甲投中,乙未投中(事件A发生),另一种是甲未投中,乙投中(事件B发生).根据题意,这两种情况在各投篮一次时不可能同时发生,即事件A与B互斥,并且A与,与B各自相互独立,因而所求概率为P(A)+P(B)=P(A)P()+P()P(B)=0.6×(1-0.6)+(1-0.6)×0.6=0.48.(3)事件“两人各投篮一次,至少有一人投中”的对立事件“两人各投篮一次,均未投中”的概率是P()=P()P()=(1-0.6)×(1-0.6)=0.16.因此,至少有一人投中的概率为1-P()=1-0.16=0.84.规律:1.求解某些事件的概率时,应首先确定事件间的关系,即两事件是互斥事件,还是相互独立事件.再选择相应的概率公式进行概率计算.2.求解含有“恰有”“至少”“至多”等词语的概率问题,通常转化为求其对立事件的概率,即利用P(A)=1-P()求解.有n位同学参加某项选拔测试,每位同学能通过测试的概率都是p(0<p<1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A.(1-p)n B.1-pnC.pnD.1-(1-p)n【解析】至少有一位同学通过测试的对立事件为无人通过测试,其概率为(1-p)n.应用对立事件的概率求解知,至少有一位同学通过测试的概率为1-(1-p)n.【答案】 D事件理解不清致误袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,则在发现其中之一是黄色的时,另一个也是黄色的概率为________.【错因分析】将该事件错误地认为是在第一次取出黄色的乒乓球的条件下,第二次取出的也是黄色的乒乓球.【防范措施】在求概率时,首先要弄清楚随机试验是什么?属于什么概型?其次要判断清楚事件的性质.“其中之一是黄色的”包含三个事件:①第一个是黄色的,第二个是白色的;②两个都是黄色的;③第一个是白色的,第二个是黄色的.【正解】设“取两次,其中之一是黄色的”为事件A,“两个都是黄色的”为事件B,则“其中之一是黄色的,另一个也是黄色的”为P(B|A).1.条件概率的前提条件是:在知道事件A必然发生的前提下,只需局限在A发生的范围内考虑问题,在事件A发生的前提下事件B发生,等价于事件A和B同时发生,由古典概型知其条件概率为:,其中n(Ω)为一次试验可能出现的结果数,n(A)为事件A所包含的结果数,n(AB)为AB同时发生时的结果数.2.P(AB)=P(A)P(B)使用的前提条件是A,B为相互独立事件;当事件A与B相互独立时,事件A与、与B、与也相互独立.3.求事件概率时,有时遇到求“至少”或“至多”等事件概率问题,可考虑用他们的对立事件求解.1.从1,2,3,4,5中任取两个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )A. B. C. D.【解析】事件A包含(1,3),(1,5),(3,5),(2,4)共4个基本事件,事件B包含(2,4)一个基本事件.【答案】 B2.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为( )A. B. C. D.【解析】记“从甲袋中任取一球为白球”为事件A,“从乙袋中任取一球为白球”为事件B,则事件A,B是相互独立事件,故P(A∩B)=P(A)×P(B)【答案】 A3.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(A·)=________;P(·)=________.4.甲、乙同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.(1)求甲、乙都未击中敌机的概率;(2)求敌机被击中的概率.【解】设“甲击中敌机”为事件A,“乙击中敌机”为事件B,“甲、乙都未击中敌机”为事件C,“敌机被击中”为事件D.由题意可知A,B相互独立,则与也相互独立.(1)P(C)=P()=P()·P()=(1-0.6)×(1-0.5)=0.2.(2)P(D)=1-P()=1-0.2=0.8.一、选择题1.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示第一次摸得白球,如果第二次摸得白球记为B,否则记为C,那么事件A与B,A与C间的关系是( )A.A与B,A与C均相互独立B.A与B相互独立,A与C互斥C.A与B,A与C均互斥D.A与B互斥,A与C相互独立【解析】由于摸球过程是有放回的,故第一次摸球的结果对第二次摸球的结果没有影响,故事件A与B,A与C均相互独立,且A与B,A与C均有可能同时发生,说明A与B,A与C均不互斥,故选A.【答案】 A2.设A与B是相互独立事件,则下列命题中正确的是( )A.与是对立事件B.与是互斥事件C.与不相互独立D.A与是相互独立事件【解析】由P(A)=P(AB)+P(A)=P(A)P(B)+P(A)得P(A)=P(A)-P(A)P(B)=P(A)[1-P(B)]=P(A)P(),所以A与是相互独立事件.【答案】 D3.(2013·蚌埠高二检测)袋中有3个红球,4个黄球,2个白球(球除颜色外其余均相同),从中进行不放回地摸球,用A表示第一次摸到的是白球,用B表示第二次摸到的是黄球,则在事件A发生的前提下事件B发生的概率为( )A. B. C. D.【解析】法一P(A)=,P(AB)==,∴P(B|A)===.法二第一次摸出一个白球,袋中还剩8个球.其中黄球4个,摸到每个球的机会均等,所以在事件A发生的前提下事件B发生的概率为=.【答案】 B4.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)等于( )A. B. C. D.【解析】由题意得解得P(A)=2/3.【答案】 D二、填空题6.某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则该种使用寿命超过1年的元件还能继续使用1年的概率为________.【解析】设事件A为“该元件的使用寿命超过1年”,B为“该元件的使用寿命超过2年”,则P(A)=0.6,P(B)=0.3,因为B⊆A,所以P(AB)=0.3,于是P(B|A)===0.5.【答案】0.57.(2013·永泰高二检测)某同学参加学校举办的智力比赛,比赛规定:分三关进行淘汰赛,通过前一关者才能参加下一关的比赛,闯过三关为获胜者,假设这位同学过第一、二、三关的概率分别为0.8、0.7、0.6,则这位同学获胜的概率为________.【解析】记这位同学通过第i关为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6,且过各关之间互不影响,所以所求概率为P=P(A1A2A3)=P(A1)P(A2)P(A3)=0.8×0.7×0.6=0.336.故这位同学获胜的概率是0.336.【答案】0.3368.在感冒流行的季节设甲、乙患感冒的概率分别为0.6和0.5,则他们中有人患感冒的概率是________.【解析】设甲、乙患感冒为事件A、B,则P=1-P()=1-P()P()=1-(1-0.6)(1-0.5)=0.8.【答案】0.8三、解答题9.有红色、蓝色两颗骰子,设事件A为“抛红骰子所得点数为偶数”,设事件B为“抛蓝骰子所得点数大于4”,求在事件A发生的条件下,事件B发生的概率.【解】画示意图如图所示,横轴表示抛红骰子所得点数,纵轴表示抛蓝骰子所得点数.∴P(A)=18/36=1/2,P(A∩B)=6/36=1/6,∴P(B|A)=1/3则在事件A发生的条件下,事件B发生的概率为.10.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?【解】(1)设敌机被第k门高炮击中的事件为Ak(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为····.∵事件A1,A2,A3,A4,A5相互独立,∴敌机未被击中的概率为P(····)=P()·P()·P()·P()·P()=(1-0.2)5=()5.∴敌机未被击中的概率为()5.(2)设至少需要布置n门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-()n,∴令1-()n≥0.9,∴()n≤,两边取常用对数,得n≥≈10.3,∵n∈N+,∴n=11.∴至少需要11门高炮才能有0.9以上的概率击中敌机.11.设事件A与B相互独立,两个事件中只有A发生的概率和只有B发生的概率都是,求事件A和事件B同时发生的概率.【解】在相互独立事件A和B中,只有A发生,即事件A发生,只有B发生即事件B发生.∵A和B相互独立,∴A与,和B也相互独立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 2.1条件概率与事件的相互独立性教学目标:1、通过对具体情景的分析,了解条件概率的定义。
理解两个事件相互独立的概念。
2,掌握一些简单的条件概率的计算。
能进行一些与事件独立有关的概率的计算。
3,通过对实例的分析,会进行简单的应用教学重点:条件概率定义的理解 教学难点:概率计算公式的应用教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率.2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。
例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求(1) 任意按最后一位数字,不超过2次就对的概率;(2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是多少?解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。
这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。
在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3.例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算:(1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为P ( AB )=P (A )P (B )=0.6×0.6=0.36(2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。
因此所求概率为48.06.0)6.01()6.01(6.0)()()()()()(=⨯-+-⨯=+=+B P A P B P A P B A P B A P 。
(3)分析:“两人各投一次,至少有一人投中”包括三种情况:甲投中,乙未投中(事件AB 发生);甲未投中,乙投中(事件AB 发生);甲、乙两人都击中目标(事件AB 发生) 解法一:“两人各投一次,至少有一人投中”的概率为P=P(AB) +P(AB) +P(AB) =0.6×0.6 + 0.6×(1-0.6) +(1-0.6) ×0.6=0.36 +0.48 =0.84方法二:分析:“两人都未投中目标(事件AB 发生)”的概率为P (A·B)=P (A ) · P(B )=(1-0.6) ×(1-0.6)=0.16P=1-P (AB )=1-0.16=0.84例4.在一段线路中并联着三个独立自动控制的开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是7.0,计算在这段时间内线路正常工作的概率.解:分别记这段时间内开关JA,JB,JC 能够闭合为事件A ,B ,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是∴这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是自我检测1. 设A 、B 为两个事件,且()0>A P ,若()31=AB P ,()32=A P ,则()=A B P ( ) A .21 B .92 C . 91 D .94 2.某人忘记了电话号码的最后一个数字,如果已知最后一个数字是不小于5的数,则他按对的概率是( )A .51 B .52 C .53 D .54 3.甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为 ( )A .43B .32C .107D .54 4,某产品的制作需三道工序,设这三道工序出现次品的概率分别是P1,P2,P3。
假设三道工序互不影响,则制作出来的产品是正品的概率是 。
5.在5道题中,有3道选择题和2道解答题,如果不放回地依次抽取2道题:(1)则第一次抽到选择题的概率为 .(2)第一次和第二次都抽到选择题的概率为 .(3)则在第一次抽到选择题的条件下,第二次抽到选择题的概率为6.甲、乙两人分别对一目标射击1次,甲射中的概率为8.0,乙射中的概率为9.0,求(1)2人都射中的概率; (2)2人中恰有1人射中的概率;(3)2人至少有1人射中的概率;答案:1,A 。
2,A 。
3,A 。
4,(1-P1) (1-P2) (1-P3)。
5,(1)0.6(2)0.3(3)0.5. 6,(1)0.72.(2)0.26.(3)0.98小结:1、条件概率的定义:设A ,B 为两个事件,则在事件A 发生的条件下,事件B 发生的概率就叫做的条件概率2、条件概率的计算公式; ()()()n AB P B A n A =()()P AB P A =3,相互独立事件的定义:设A,B两个事件,如果事件A是否发生对事件B发生的概率没有影响(即P(AB)=P(A)P(B) ), 则称事件A与事件B相互独立.作业;P60,1,2.2. 2.1条件概率与事件的相互独立性预习目标:1、了解条件概率的概念,能利用概率公式解决有关问题;2、理解事件的相互独立性,掌握相互独立事件同时发生的概率. 学习重点:条件概率的计算公式及相互独立事件同时发生的概率的求法.学习过程:一.课前预习:内化知识 夯实基础(一) 基本知识回顾1. 的两个事件叫做相互独立事件.2、两个相互独立事件同时发生的概率,等于每个事件发生的 ,即()=⋅B A P .一般的,如果事件1A 、n A A 、2相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的 ,即()=⋅⋅⋅n A A A P 21 .3、一般的,设A ,B 为两个事件,且()0>A P ,称 为在事件A 发生的条件下,事件B 发生的条件概率.4、条件概率的性质:(1) (2)5、计算事件A 发生的条件下B 的条件概率,有2种方法:(1)利用定义:()()()A P AB P A B P = (2)利用古典概型公式:()()()A n AB n A B P = 二.过关练习1、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为 ( )A .49 B .52 C .101 D .103 2、从一副不含大小王的52张扑克牌中不放回地抽取2张,每次抽1张,已知第一次抽到A ,第二次也抽到A 的概率为 . 3、掷骰子2次,每个结果以()y x ,记之,其中1x ,2x 分别表示第一颗,第二颗骰子的点数,设(){}10,2121=+=x x x x A ,(){}2121,x x x x B >=,则()=A B P . 4、事件A 、B 、C 相互独立,如果()61=⋅B A P ,()81=⋅C B P ,()81=⋅⋅C B A P ,则()=⋅B A P .三.课堂互动:积极参与 领悟技巧例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求(3) 任意按最后一位数字,不超过2次就对的概率;(4) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率.例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是多少?例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算:(1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率.例4.在一段线路中并联着三个独立自动控制的开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是7.0,计算在这段时间内线路正常工作的概率.四.强化训练:自我检测 能力升级1. 设A 、B 为两个事件,且()0>A P ,若()31=AB P ,()32=A P ,则()=A B P ( ) A .21 B .92 C . 91 D .94 2.某人忘记了电话号码的最后一个数字,如果已知最后一个数字是不小于5的数,则他按对的概率是( )A .51 B .52 C .53 D .54 3.甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为 ( )A .43B .32C .107D .54 4,某产品的制作需三道工序,设这三道工序出现次品的概率分别是P1,P2,P3。
假设三道工序互不影响,则制作出来的产品是正品的概率是 。
5.在5道题中,有3道选择题和2道解答题,如果不放回地依次抽取2道题:(1)则第一次抽到选择题的概率为 .(2)第一次和第二次都抽到选择题的概率为 .(3)则在第一次抽到选择题的条件下,第二次抽到选择题的概率为 .6.甲、乙两人分别对一目标射击1次,甲射中的概率为8.0,乙射中的概率为9.0,求(1)2人都射中的概率; (2)2人中恰有1人射中的概率;(3)2人至少有1人射中的概率;答案:答案:1,A 。
2,A 。
3,A 。
4,(1-P1) (1-P2) (1-P3)。
5,(1)0.6(2)0.3(3)0.5. 6,(1)0.72.(2)0.26.(3)0.98小结:1、 条件概率的定义2、 条件概率的计算公式;3、 相互独立事件的定义:作业;P60,1,2.2.2.2独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈.(2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5. ∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 例3.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯- 450.80.80.4100.3280.74=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例4.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6,种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率答案:1. C 2. D 3. A 4. A 5. 0.784。