运筹学之目标规划

合集下载

运筹学学习计划怎么写

运筹学学习计划怎么写

运筹学学习计划怎么写一、学习目标1. 学习并掌握运筹学的基本理论和方法,深入了解其在实际生活中的应用;2. 提高数理逻辑能力,培养系统思维和综合分析问题的能力;3. 增加对运筹学领域内最新研究成果的了解,与时俱进。

二、学习内容1. 运筹学基础知识:线性规划、整数规划、非线性规划、动态规划等;2. 运筹学应用:物流管理、生产调度、库存管理、供应链管理等;3. 运筹学进阶知识:多目标规划、风险决策、决策模型等;4. 运筹学领域最新研究成果的了解。

三、学习方法1. 系统地阅读经典的运筹学教材和参考书籍,包括《运筹学导论》、《运筹学》、《运筹学原理与算法》等;2. 注重实际案例分析,深入理解运筹学在实际生活中的应用;3. 参加相关行业的研讨会、学术讲座,了解运筹学领域的最新研究成果;4. 主动参与相关实践项目,积累实际经验;5. 寻找相关领域的导师或专家,进行深入交流和学习。

四、学习时间安排1. 学习基础知识:预计1-2个月时间;2. 学习应用案例:预计2-3个月时间;3. 学习进阶知识和最新成果:持续学习,与时俱进。

五、学习评估学习过程中,定期进行自我评估和总结,及时调整学习计划。

定期与导师或专家交流,获取反馈和建议。

定期参加行业研讨会和学术讲座,与专业人士交流和学习,获取外部评估和认可。

六、学习计划实施过程中可能遇到的问题及解决方法1. 学习压力较大:调整学习计划,合理安排时间,保持良好的学习状态;2. 学习内容难度较大:多与专业人士交流,寻找相关案例进行实际演练,增加实战经验;3. 学习计划与实际需求不符:及时调整学习计划,符合实际需求;4. 学习过程中遇到瓶颈:多思考,寻求外部帮助,与导师或专家进行深入交流。

七、学习计划实施后的应用1. 运用运筹学理论和方法解决实际问题;2. 开展相关行业的研究和实践项目;3. 在相关领域内进行学术交流和发表论文。

八、学习计划实施后的预期收获1. 掌握运筹学的基本理论和方法;2. 提高数理逻辑能力和综合分析问题的能力;3. 对运筹学领域内最新研究成果的了解,并与时俱进;4. 成为相关行业的专家和领军人才。

运筹学第五章_目标规划

运筹学第五章_目标规划

第一节目标规划实例与模型
看起来有 点繁~ 有点 ‘烦’… … …★
因此其目标规划的数学模型: minz=p1d1++p2(d2-+d2+)+p3d3s.t 2x1+x2≤11 x1-x2+d1--d1+=0 x1+2x2+d2--d2+=10 8x1+10x2+d3--d3+=56 x1,x2≥0,di-,di+≥0,i=1,2,3
第一节目标规划实例与模型
(5)目标函数—准则函数 目标函数是由各目标约束的正负偏差变量及其相应 的优先级、权因子构成的函数,且对这个函数求极小值, 其中不包含决策变量xi.因为决策者的愿望总是希望尽可能 缩小偏差,使目标尽可能达到理想值,因此目标函数总是 极小化。有三种基本形式:
第一节目标规划实例与模型
第一节目标规划实例与模型
(4)优先级与权因子 多个目标之间有主次缓急之分,凡要求首先达到的目 标,赋于优先级p1,要求第2位达到的目标赋于优先级 p2,…设共有k0个优先级则规定 p1>>p2>>p3……Pk0>0 P1优先级远远高于p2,p3,只有当p1级完成优化后,再考 虑p2,p3。反之p2在优化时不能破坏p1级的优先值,p3级 在优化时不能破坏p1,p2已达到的优值 由于绝对约束是必须满足的约束,因此与绝对约束相 应的目标函数总是放在p1级
第一节目标规划实例与模型
该问题的决策目标是: (1)总利润最大; (2)尽可能少加工; (3)尽可能多销售电扇; (4)生产数量不能超过预销售数量。 (5)绝对目标约束。所谓绝对目标约束就是必须要严格 满足的约束。绝对目标约束是最高优先级,在考虑较低 优先级的目标之前它们必须首先得到满足。

运筹学 目标规划

运筹学 目标规划

6 5 5 6 0 0 6
4
10 3
10 2
3 0 0
0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
5 0 1 5
5 0 1 5
1 0 0 0
1 0 0 1
P1 P2
P3 3 0
x1 x2 x3 0 0 d1 0 0 x2 x1 P1 P2 P3 0 1 0 0 0 1 0 0 0 0
目标规划
一个实际的规划问题可能有多个目标函数,这些目标 函数可能是不一致的,甚至是冲突的,因此,在处理 时不能指望它们都达到最优,而只是希望它们尽可能 接近于事先给定的目标值,这就是目标规划问题。
在目标规划问题中,通过引入正、负偏差变量把目标 函数转化为目标约束。 ˆ 例如,若目标函数 f ( x ) 给定的目标值是 f ,引入正 偏差变量 d 和负偏差变量d 表示 f ( x ) 超过或未达 ˆ 到目标值 f 的部分,则相应的目标 约束为 ˆ f ( x) d d f
11 0 10 56 0 10 56
11 5
0 0 0 0
1 0 0 0 0 0
1 0 0 1 0 0
0 1 0 0 0 0
0 1 0 0 2 0
0 0 1 0 0 0
0 0 1 0 0 1
5.6
P1
P2 1 2 0 P3 8 10 0
x1 x2 x3 d1 d1 d 2 d 2 d 3 d 3 x3 3 0 1 0 0 1 1 0 0 2 2 2 d1 3 0 0 1 1 1 1 0 0 2 2 2 x2 1 1 0 0 0 1 1 0 0 2 2 2 d3
目标规划的最优解通常称为满意解。

运筹学:目标规划

运筹学:目标规划

运筹学:⽬标规划
基本概念
概念解释
正偏差变量d+决策值超过⽬标值的部分
负偏差变量d−决策值未达到⽬标值的部分
绝对约束必须严格满⾜的约束
⽬标约束允许产⽣正/负偏差的约束,⽬标函数也可转化为⽬标约束
优先因⼦与权系数达到⽬标时有轻重缓急
⽬标规划的⽬标函数正负偏差变量赋予优先因⼦/权系数⽽构造的
⽬标规划的数学模型需要确定⽬标值、优先等级、权系数等具有主观性和模糊性的参数
图解法
按优先级⼀步步缩⼩范围,如果满⾜不了就只在临近点中取
单纯形法
检验数对每个优先因⼦排成⼀⾏,初态k=1,每次检查该⾏是否存在负数,并且对应列的前k−1 ⾏系数为 0,若有则进⾏换基操作,否则k++,若k=K则结束
确定换⼊变量:选择检验数最⼩的
确定换出变量:b 列⽐ a 列,最⼩⽐值原则,如果有多个相同就选择优先级别⾼的变量
Processing math: 100%。

运筹学第五章 目标规划

运筹学第五章 目标规划

第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。

当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。

无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。

目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。

在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。

(2)模型特征。

目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。

1)正、负偏差变量,i i d d +-。

正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。

因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。

2)硬约束和软约束。

硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。

我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。

3)优先因子与权系数。

一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。

运筹学基础-目标规划

运筹学基础-目标规划

5.2 应用举例
[例1]某电子厂生产录音机和电视机两种产品,分别经由甲、乙两个车间生产。已知除外购件外,生产一台录音机需甲车间加工2h,乙车间装配1h;生产一台电视机需甲车间加工1h,乙车间装配3h;两种产品需检验、销售环节,每台录音机检验销售费用需50元,每台电视机检验销售费用需30元。又甲车间每月可用工时为120h,车间管理为80元/h,乙车间每月可用工时为150h,车间管理为20元/h。估计每台录音机利润100元,每台电视机利润75元,又估计下一年度内平均每月可销售录音机50台,电视机80台。 该厂的月度目标为
4、用EXCEL求解下列目标规划问题:
x =(10,20,10)
5、用EXCEL解以下目标规划模型
5、x1=12, x2=10, =14, Z=14p4
答案:
工序
型号
每周最大加工能力
A
B
Ⅰ(小时/台) Ⅱ(小时/台)
4 3
6 2
150 50
利润(元/台)
300
450
如果工厂经营目标的期望值和优先等级如下: p1: 每周总利润不得低于10000元; p2: 因合同要求,A型机每周至少生产10台,B型机每周至少生产15台; p3: 希望工序Ⅰ的每周生产时间正好为150小时,工序Ⅱ的生产时间最好用足,甚至可适当加班。 试建立这个问题的目标规划模型。
+ P3 ( 6d1- +5 d2- )
+ P4d6+
+ P6(6d4++5d5+)
(1)甲、乙两厂设备运转时间约束: 甲的总时间为8×12×25=2400(h),乙的总工作时间为16×7×25=2800(h),则:
2.5x1 +1.5x2 +d2- –d2+ = 2800

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。

《运筹学》教案目标规划数学模型

《运筹学》教案目标规划数学模型

《运筹学》教案-目标规划数学模型教案章节:一、引言教学目标:1. 理解目标规划数学模型的基本概念。

2. 掌握目标规划数学模型的建立方法。

教学内容:1. 目标规划数学模型的定义。

2. 目标规划数学模型的建立步骤。

教学方法:1. 讲授法:讲解目标规划数学模型的基本概念和建立方法。

2. 案例分析法:分析实际案例,让学生更好地理解目标规划数学模型。

教学准备:1. 教案、PPT、教学案例。

2. 投影仪、白板、教学用具。

教学过程:1. 引入新课:通过讲解目标规划数学模型的定义和应用领域,引发学生对该课题的兴趣。

2. 讲解基本概念:讲解目标规划数学模型的基本概念,包括目标、约束条件、优化方法等。

3. 讲解建立方法:讲解目标规划数学模型的建立步骤,包括明确目标、确定约束条件、选择优化方法等。

4. 案例分析:分析实际案例,让学生更好地理解目标规划数学模型。

5. 课堂练习:让学生运用所学的知识,解决实际问题,巩固所学内容。

6. 总结与展望:总结本节课的重点内容,布置课后作业,预告下一节课的内容。

教学评价:1. 课堂讲解的清晰度和准确性。

2. 学生参与案例分析和课堂练习的积极性和主动性。

3. 学生对目标规划数学模型的理解和应用能力。

教案章节:二、线性规划数学模型教学目标:1. 理解线性规划数学模型的基本概念。

2. 掌握线性规划数学模型的建立方法。

教学内容:1. 线性规划数学模型的定义。

2. 线性规划数学模型的建立步骤。

教学方法:1. 讲授法:讲解线性规划数学模型的基本概念和建立方法。

2. 案例分析法:分析实际案例,让学生更好地理解线性规划数学模型。

教学准备:1. 教案、PPT、教学案例。

2. 投影仪、白板、教学用具。

教学过程:1. 引入新课:通过讲解线性规划数学模型的定义和应用领域,引发学生对该课题的兴趣。

2. 讲解基本概念:讲解线性规划数学模型的基本概念,包括决策变量、目标函数、约束条件等。

3. 讲解建立方法:讲解线性规划数学模型的建立步骤,包括明确目标、确定决策变量、列出约束条件等。

第6章目标规划管理运筹学

第6章目标规划管理运筹学

目标规划的正式提出
目标规划(Goal Programming):是针对线性规划目标单一 的局限性而提出的,是线性规划的应用拓展,是解决实际问题 的一种方法。线性规划是研究资源有效分配和利用,其特点是 在满足一组约束条件的情况下,寻求某一个目标的最大值或最 小值。而在现实社会中,经常遇到需要考虑多个目标的优化问 题。目标规划与传统方法不同,它强调了系统性,其方法在于 寻找一个“尽可能”满足所有目标的解,而不是绝对满足这些 目标的值。
根据背 景材料 列出全 部约束 不等式
目标 约束
系统 约束
xj ≥0 d±≥0
“≥”min{d-} “≤”min{d+} “=”min{d-+d+}
左端+ d--d+=右端
确定优先 级和权系 数,构造目 标偏差最 小的目标 函数
约束 条件
目标 规划 数学 模型
管理运筹学 第6章 目标规划
例6-1
已知某实际问题的线性规划模型 为:
目标规划有着极大的灵活性,表现在它可以模拟系统的约束和 目标优先等级变化的各种模型,为管理决策提供众多的信息。 解决目标规划问题首先要根据目标的重要性分清主次先后、轻 重缓急,引入偏差变量,将目标按等级转化为目标约束,最终 形成可用线性规划方法解决的问题。
管理运筹学 第6章 目标规划
目标规划的正式提出
(2)据市场预测,I、II两种产品 需求量的比例大致是1:2;
(3)A为贵重设备,严格禁止超时 使用;
(4)设备C可以适当加班,但要控 制;设备B既要求充分利用,又尽可 能不加班,在重要性上设备B是C的 3倍。
综合考虑上述因素,企业应如何决 策?这里本章所要讨论的问题。
管理运筹学 第6章 目标规划

运筹学目标规划

运筹学目标规划

运筹学目标规划运筹学目标规划,英文名为Operations Research,是一门应用数学领域的综合性学科,旨在通过数学建模和优化方法解决工程和管理问题。

运筹学目标规划是运筹学中的一个重要方法,可以帮助决策者制定合理的目标,并找到实现这些目标的最优方案。

运筹学目标规划的主要目标是将决策问题转化为数学模型,并采用数学优化方法解决这些模型。

在目标规划中,决策者的目标通常是多个且互相冲突的,因此需要进行目标权重的设定和优化。

运筹学目标规划通过建立数学模型和运用多目标优化算法,可以帮助决策者找到最佳的目标权重,从而实现最优方案。

运筹学目标规划的应用范围广泛,可以用于解决工程、生产、物流、供应链管理等各个领域的问题。

在生产领域,目标规划可以帮助企业制定合理的生产计划,优化资源配置,提高生产效率和质量。

在物流领域,目标规划可以帮助企业设计最佳的物流网络,优化货物配送路线和仓库布局,降低物流成本和时间。

在供应链管理领域,目标规划可以帮助企业协调供应链上各个环节的决策,并优化整个供应链的绩效。

运筹学目标规划的具体步骤包括问题定义、建模、求解和结果分析。

首先,需要明确决策问题的目标和约束条件,并收集相关的数据。

然后,将问题转化为数学模型,确定目标函数和约束条件。

接下来,采用适当的数学优化方法,如线性规划、整数规划、动态规划等,求解模型,得到最优解。

最后,对求解结果进行分析,评估方案的可行性和有效性,并提出相应的优化建议。

总之,运筹学目标规划是一种将决策问题转化为数学模型,并采用数学优化方法解决的方法。

它可以帮助决策者制定合理的目标,并找到实现这些目标的最优方案。

运筹学目标规划在工程和管理领域有着广泛的应用,可以显著提高效率和降低成本。

将来随着计算机技术的发展和算法的改进,运筹学目标规划还将不断发展和完善,为各个行业的决策者提供更强大的决策支持。

管理运筹学目标规划

管理运筹学目标规划

设d1-未到达利润目旳旳差值, d1+ 为超出目旳旳差值
当利润不不小于3200时,d1->0且d1+=0,有
40x1+30x2+50x3+d1-=3200成立
当利润不小于3200时,d1+>0且d1-=0,有
40x1+30x2+50x3-d1+=3200成立
当利润恰好等于3200时,d1-=0且d1+=0,有
试求一种投资方案,使得一年旳总投资风险不高于700,且投资收 益不低于10000元。用来全部投资一种股票两个目旳不能同步到达.
管理运筹学
13
§2 目旳规划旳图解法
显然,此问题属于目旳规划问题。它有两个目旳变量:一是 限制风险,一是确保收益。在求解之前,应首先考虑两个目旳 旳优先权。
假设第一种目旳(即限制风险)旳优先权比第二个目旳(确 保收益)大,这意味着求解过程中必须首先满足第一种目旳, 然后在此基础上再尽量满足第二个目旳。
min
d
3
x3
d
3
d
3
30
管理运筹学
10
§1 目的规划问题举例
(4) 设d4ˉ 、d4+为设备A旳使用时间偏差变量, d5ˉ、d5+为设备
B旳使用时间偏差变量,最佳不加班旳含义是 d4+ 和d5+同步取最 小值,等价 于d4+ + d5+取最小值,则设备旳目旳函数和约束为:
min
d
4
6
§1 目的规划问题举例
目前决策者根据企业旳实际情况和市场需求,需要重新制 定经营目旳,其目旳旳优先顺序是:
(1)利润不少于3200元 (2)产品甲与产品乙旳产量百分比尽量不超出1.5 (3)提升产品丙旳产量使之到达30件 (4)设备加工能力不足能够加班处理,能不加班最佳不加班 (5)受到资金旳限制,只能使用既有材料不能再购进

目标规划运筹学

目标规划运筹学

目标规划运筹学目标规划是一种运筹学方法,旨在帮助个人或组织制定明确的目标,并通过合理的安排资源和计划来达到这些目标。

它结合了规划和运筹学的概念和技术,可以帮助人们更好地管理时间、能源、资金和其他资源,以实现最佳的结果。

目标规划的核心理念是将复杂的问题分解为更容易解决的子问题,并为每个子问题设定明确的目标。

然后通过对每个子问题进行分析和优化,制定出最佳的解决方案,最终实现整体目标。

具体来说,目标规划包括以下几个主要步骤:1. 目标设定:明确和具体化需要实现的目标。

目标应该是可衡量的,并且具备一定的时间限制和约束条件。

2. 因素分析:识别影响目标实现的因素,并对这些因素进行评估与分析。

这些因素可以是内部的,如资源和技能,也可以是外部的,如市场情况和竞争对手。

3. 子目标设定:将整体目标分解为更小的子目标,并为每个子目标设定明确的要求和优先级。

4. 度量指标确定:为每个子目标制定度量指标,以便可以进行定量评估和衡量目标的实现程度。

5. 模型建立:根据因素分析和子目标设定的结果,建立数学模型来描述问题,并根据模型进行系统分析和优化。

6. 解决方案确定:通过模型的求解,得出最佳的解决方案,以实现目标的最大化。

7. 实施和控制:将解决方案转化为具体的行动计划,并进行实施和控制。

通过监测和评估目标的实现程度,及时对计划进行修正和调整。

运用目标规划的方法可以帮助个人和组织时刻保持目标的明确性和可行性,同时还可以提高决策的科学性和效率。

通过合理的规划和优化,可以最大限度地利用有限的资源,减少浪费,提高整体效益。

总之,目标规划是一种应用广泛的运筹学方法,它可以帮助个人和组织制定明确的目标,并通过科学的分析和优化,实现最佳的解决方案。

运用目标规划的思维方式和技术工具,可以提高个人和组织的绩效和效能,实现更好的发展和成长。

运筹学 目标规划

运筹学 目标规划
1 1 -3 5 1 -5 1
P3
P2 P3 θ + d - d + d2 3 3 ½ 4 -½ 10/3 10 -½ 5 1 -1 6/3
σj
最终表
CB cj XB xs d1 x2 x1 b x1 x2 3 2 4 1 2 1 P1 P2 P3 xs 1 P1 P2 d1 - d1 + d2 2 1 -1 3 4/3
0
d3
d3 A
-
+
d2 d2 (3)
-
+
(2) x1
Min z =P1d1- +P2d2+ +P3(2d3-+d4-) x1 +x2 +d1- -d1+ =40 x1 +x2 +d2- -d2+ =50 x1 +d3- -d3+ =24 x2 +d4- -d4+ =30 x1, x2, di-, di+ ≥0, i=1,2,3,4
1 1 1 1
P3 θ - d + d3 3 -½ ½ -½ ½ -4/3 -1/6 1/6 -5/3 5/3 1/3 -1/3
P2 d2 + -2 -3
σj
单纯形法
1.
ห้องสมุดไป่ตู้
2.
建立初始单纯形表,在表中将检验数行按 优先因子个数分别列成 K 行,置 k=1 检查该行中是否存在负数,且对应的前k-1 行的系数是零
1 -2 -10 2 1
P1 P2 P2 P3 θ + d - d + d - d + d1 2 2 3 3
11/1
P2 P3
1
-1 1 -1

运筹学灵敏度分析目标规划

运筹学灵敏度分析目标规划

3 灵敏度分析
例3 7:
例3 4增加3x1+ 2x2≤15;原最优解不 满足这个约束 于是
Ci
2 3000
0
CB XB b X1 X2 X3 X4 X5
X6
2 X1 4 1 0 0 1/4 0
0
0 X5 4 0 0 -2 1/2 1
0
3 X2 2 0 1 1/2 -1/8 0
0
0 X6 -1 0 0 -1 -1/2 0
故恒有d+×d=0
目标规划问题及其数学模型
2 统一处理目标和约束
对有严格限制的资源使用建立系统约束;数学形式同线性规划中 的约束条件 如C和D设备的使用限制
4 x 1 16 4 x 2 12
对不严格限制的约束;连同原线性规划建模时的目标;均通过目 标约束来表达 1例如要求甲 乙两种产品保持1:1的比例;系统约束表达为: x1=x2 由于这个比例允许有偏差; 当x1<x2时;出现负偏差d;即: x1+d =x2或x1x2+d =0 当x1>x2时;出现正偏差d+;即: x1d+ =x2或x1x2d+ =0
-z
m
f
0…
m
0 σm+1 … σn
其中:f = ∑ ci bi’ j = cj ∑ ci aij’ 为检验数 向量 b’ = B1 b
i=1
i=1
A= p1; p2; …; pn ; pj’ = B1 pj; pj’ = a1j’ ; a2j’ ; … ; amj’ T ; j = m+1; … ; n
0
0
-1.5-ΔC2/2 -1/8+ΔC2/8
0
σj=cjc1×a1j+c5 × a5j+c2+Δc2 ×a2jj=3;4 可得到 3≤Δc2≤1时;原最优解不变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1 -X2 +d1- -d1+=0 X1 +2X2 +d2- -d2+=10 8X1 +10X2 +d3- -d3+=56
X1 , X2 , di- , di+ 0
di- • di+ =0
d1- : X1产量不足X2 部分 d1+ : X1产量超过X2 部分 d2- : 设备使用不足10 部分 d2+ :设备使用超过10 部分 d3- : 利润不足56 部分 d3+ :利润超过56 部分
第二优先级要求 Min(d3+ );
第三优先级要求 Min(d4- );
第四优先级要求 Min(d1- + 2d2- ),
这里, 当不能满足市场需求时, 市场认为B产 品的重要性是A产品的2倍.即减少B产品的 影响是A产品的2倍,因此我们引入了2:1的 权系数。
综合上述分析,可得到下列目标规划模型
把例1的4个目标表示为不等式.仍设决策变
量 x1,x2 分别为产品A,B的产量. 那么, 第一个目标为: x1 9 ,x2 8 ;
第二个目标为: 4x1 + 6x2 60 ; 第三个目标为: 希望总利润最大,要表示成不 等式需要找到一个目标上界,这里可以估计为 252(=129 + 188),于是有
7.2 目标规划的几何意义及图解法
对只具有两个决策变量的目标规划的数学模型, 我们可以用图解法来分析求解.通过图解示例,可 以看到目标规划中优先因子,正、负偏差变量及权 系数等的几何意义。
下面用图解法来求解例1
我们先在平面直角坐标系的第一象限内,作出与 各约束条件对应的直线,然后在这些直线旁分别标
P2 ,… ,Pi 优先级第k个检验数的正、负。若P1
(1) 因为目标规划问题的目标函数都是求最 小化,所以检验数的最优准则与线性规划是相 同的;
(2) 因为非基变量的检验数中含有不同等级的
优先因子, Pi >> Pi+1,i = 1,2,,L-1. 于是从每 个检验数的整体来看: Pi+1(i = 1,2,,L-1)优
先级第k个检验数的正、负首先决定于 P1 ,
12x1 + 18x2 252; 第四个目标为: x1 9,x2 8;
下面引入与建立目标规划数学模型有关的概念.
(1)正、负偏差变量d +,d -
我们用正偏差变量d + 表示决策值超过目标值的 部分;负偏差变量d - 表示决策值不足目标值的 部分。因决策值不可能既超过目标值同时又末 达到目标值,故恒有 d + d - = 0 .
P2、…,并规定 Pi >> Pi+1,i = 1,2,,L-1.
即在计算过程中, 首先保证P1级目标的实现,这时 可不考虑次级目标;而P2级目标是在实现P1级目标 的基础上考虑的,以此类推。当需要区别具有相同 优先因子的若干个目标的差别时,可分别赋于它们 不同的权系数wj 。优先因子及权系数的值,均由决 策者按具体情况来确定.
容易求得上述线性规划的最优解为(9,4)T 到 (3,8)T 所在线段 上的点, 最优目标值为Z* = 180, 即可选方案有多种.
在实际上, 这个结果并非完全符合决策者的要求, 它只实现了 经理的第一、二、三条目标,而没有达到最后的一个目标。 进一步分析可知,要实现全体目标是不可能的。
(2) 目标规划模型的基本概念
(3) 目标规划模型的一般形式
Min
K
L
Mk
ωkl
d
l
ωkl
d
l
k1
l1
n
clj
xj
d
l
d
l
gl , l 1,2,
,L
j1
s.t.
n
aij x j
, bi , i 1,2,
,m
j1
x
j
0,j
1,2,
,n
d
l
,d
l
0,l
1,2,
,L
式中的第二行是L个目标约束,第三行是m个绝对约束,clj 和gl 是目标参数。
这时取 Min (d + + d - );
② 要求不超过目标值,即使相应目标约束 的正偏差变量要尽可能地小。
这时取 Min (d + );
③ 要求不低于目标值,即使相应目标约束 的负偏差变量要尽可能地小。
这时取 Min (d - );
对于例 1, 我们根据决策者的考虑知
第一优先级要求 Min(d1+ + d2+ );
例4
电视机厂装配25寸和21寸两种彩电,每台电视机 需装备时间1小时,每周装配线计划开动40小时, 预计每周25寸彩电销售24台,每台可获利80元, 每周21寸彩电销售30台,每台可获利40元。
该厂目标:
1. 充分利用装配线,避免开工不足。
2. 允许装配线加班,但尽量不超过10小时。
3. 尽量满足市场需求。
解:设X1 , X2 分别表示25寸,21寸彩电产量 Min Z=p1d1-+p2d2++p3(2d3-+d4-)
X1+X2 +d1- -d1+=40 X1 +X2+d2- -d2+=50 X1 +d3- -d3+=24
X2 +d4- -d4+=30
X1 , X2 , di- , di+ 0 (i=1,2,3,4)
x
G-1
20
-+
15 + A(3,8) -
10
5
0
5
+
G-3
G-4
-
10 15
20
图4
+ G-2
-
y
7.3 目标规划的单纯形方法
目标规划的数学模型,特别是约束的结构与 线性规划模型没有本质的区别,只是它的目标 不止是一个,虽然其利用优先因子和权系数把目 标写成一个函数的形式, 但在计算中无法按单 目标处理, 所以可用单纯形法进行适当改进后 求解。在组织、构造算法时,我们要考虑目标 规划的数学模型一些特点,作以下规定:
(3)
12x1+18x2 + d4- -d4+ =252
(4)
(3) 优先因子与权系数
对于多目标问题,设有L个目标函数f1,f2,,fL, 决策 者在要求达到这些目标时,一般有主次之分。为此,
我们引入优先因子Pi ,i = 1,2,,L.无妨设预期的目
标函数优先顺序为f1,f2,,fL,我们把要求第一位达到 的目标赋于优先因子P1,次位的目标赋于优先因子
我们在第一级目标的最优解集合中找满足 第二优先级要求Min(d3+ )的最优解.取d3+= 0 ,可得到图3 中浅绿阴影部分即是满足第一、 第二优先级要求的最优解集合。
x 20
15 + -
10
G-1 -+
5
0
5
+
G-3
G-4
-
10 15
20
图2
+ G-2
-
y
x 20
15 + -
10
G-1 -+
5
引入 d+:决策超过目标值部分(正偏差变量)
d-:决策不足目标值部分(负偏差变量)
目标约束: 100X1+80X2 -d++d- =10000
d+•d- =0
d+,d- 0
Min Z= d100X1+80X2 -d++d- =10000
4X1+ 2X2
400
2X1+ 4X2
500
X1 , X2 , d- , d+ 0
例2

金工 4
装配 2
收益 100
乙 有效工时
2
400
4
500
80
LP: Max Z=100X1 + 80X2
2X1+4X2 500 s.t 4X1+2X2 400
X1 , X2 0
X* =(50,100) Z* =13000
目标:去年总收益9000,增长要求11.1%
即:今年希望总收益不低于10000
(2)绝对约束和目标约束
我们把所有等式、不等式约束分为两部分:绝 对约束和目标约束。
绝对约束
指必须严格满足的等式约束和不等式约束;如在线 性规划问题中考虑的约束条件,不能满足这些约束 条件的解称为非可行解,所以它们是硬约束。设例
1 中生产A,B产品所需原材料数量有限制,并且无
法从其它渠道予以补充,则构成绝对约束。
Min f = P1(d1+ + d2+ ) + P2 d3+ + P3 d4- + P4(d1- + 2d2- )
s.t. x1
+ d1- -d1+ = 9
x2 + d2- -d2+ = 8
4x1 + 6x2 + d3- -d3+ = 60
12x1 + 18x2 +d4- -d4+ = 252
x1 , x2 , di- ,di+ 0 , i = 1,2,3,4.
0
5
+
G-3
G-4
-
10 15
20
图3
+ G-2
-
y
第三优先级要求 Min(d4-),根据图示可知,d4不可能取0值,我们取使d4- 最小的值72得到图4中 两阴影部分的交线(红色粗线),其表示满足第一、 第二及第三优先级要求的最优解集合。
相关文档
最新文档