2013年高考广东卷文科数学试题及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.(本小题满分14分)
设函数 .
(1)当 时,求函数 的单调区间;
(2)当 时,求函数 在 上的最小值 和最大值 .
【解析】:
(1)当 时
, 在 上单调递增.
(2)当 时, ,其开口向上,对称轴 ,且过
(i)当 ,即 时, , 在 上单调递增,
从而当 时, 取得最小值 ,
当 时, 取得最大值 .
7.垂直于直线 且与圆 相切于第Ⅰ象限的直线方程是
A. B.
C. D.
【解析】直接法可设所求的直线方程为: ,再利用圆心到直线的距离等于 ,求得 .选A.
8.设 为直线, 是两个不同的平面,下列命题中正确的是
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
【解析】借助长方体判断,可知B正确..
分组(重量)
频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在 的频率;
(2)用分层抽样的方法从重量在 和 的苹果中共抽取4个,其中重量在 的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在 和 中各有1个的概率.
【解析】(1)苹果的重量在 的频率为 ;
(2)重量在 的有 个;
【解析】:考查三角函数诱导公式, ,选C.
5.执行如图1所示的程序框图,若输入 的值为3,则输出 的值是
A.1 B.2 C.4 D.7
【解析】根据程序框图,s=1+0+1+2=4.选C.
6.某三棱锥的三视图如图2所示,则该三棱锥的体积是
A. B. C. D.
【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则 ,选B.
(ii)当 ,即 时,令
解得: ,注意到 ,
(注:可用韦达定理判断 , ,从而 ;或者由对称结合图像判断)
的最小值 ,
的最大值
综上所述,当 时, 的最小值 ,最大值
解法2(2)当 时,对 ,都有 ,故
故 ,而 , ,
所以 , .
数列 的通项公式为 .
(3)
20.(本小题满分14分)
已知抛物线 的顶点为原点,其焦点 到直线 的距离为 .设 为直线 上的点,过点 作抛物线 的两条切线 ,其中 为切点.
(1)求抛物线 的方程;(2)当点 为直来自 上的定点时,求直线 的方程;
(3)当点 在直线 上移动时,求 的最小值.
【解析】(1)依题意 ,解得 (负根舍去)
2013年普通高等学校招生全国统一考试
文科(文科A卷)数学
(广东卷)
本试卷共4页,21小题,满分150分.考试用时120分钟.
锥体的体积公式: .其中S表示锥体的底面积,h表示锥体的高.
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 , ,则
二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分.
(一)必做题(11~13题)
11.设数列 是首项为 ,公比为 的等比数列,则
【解析】依题意得a1=1,a2=-2,a3=4,a4=-8.所以
12.若曲线 在点 处的切线平行于 轴,则 .
【解析】本题考查切线方程、方程的思想.依题意
13.已知变量 满足约束条件 ,则 的最大值是.
如图3,在矩形 中, , ,垂足为 ,则 .
【解析】由 ,可知
从而 ,
.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分12分)
已知函数 .
(1)求 的值;
(2)若 ,求 .
【解析】(1)
(2) , ,
.
17.(本小题满分13分)
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
④给定正数 和 ,总存在单位向量 和单位向量 ,使 ;
上述命题中的向量 , 和 在同一平面内且两两不共线,则真命题的个数是
A.1B.2C.3D.4
【解析】本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则.
利用向量加法的三角形法则,易知①是对的;利用平面向量的基本定理,易知②是对的;以 的终点作长度为 的圆,这个圆必和向量 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须 ,所以④是假命题.综上,本题选B.
(3)设这4个苹果中 分段的为1, 分段的为2、3、4,从中任取两个,可能的情况有:
(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在 和 中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以 .
18.(本小题满分13分)
如图4,在边长为1的等边三角形 中, 分别是 边上的点, , 是 的中点, 与 交于点 ,将 沿 折起,得到如图5所示的三棱锥 ,其中 .
19.(本小题满分14分)
设各项均为正数的数列 的前 项和为 ,满足 且 构成等比数列.
(1)证明: ;
(2)求数列 的通项公式;
(3)证明:对一切正整数 ,有 .
【解析】(1)当 时, ,
(2)当 时, ,
,
当 时, 是公差 的等差数列.
构成等比数列, , ,解得 ,
由(1)可知,
是首项 ,公差 的等差数列.
(1)证明: //平面 ;
(2)证明: 平面 ;
(3)当 时,求三棱锥 的体积 .
【解析】(1)在等边三角形 中,
,在折叠后的三棱锥 中
也成立, , 平面 ,
平面 , 平面 ;
(2)在等边三角形 中, 是 的中点,所以 , .
在三棱锥 中, ,
;
(3)由(1)可知 ,结合(2)可得 .
【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.
9.已知中心在原点的椭圆C的右焦点为 ,离心率等于 ,则C的方程是
A. B. C. D.
【解析】基础题, ,选D.
10.设 是已知的平面向量且 ,关于向量 的分解,有如下四个命题:
①给定向量 ,总存在向量 ,使 ;
②给定向量 和 ,总存在实数 和 ,使 ;
③给定单位向量 和正数 ,总存在单位向量 和实数 ,使 ;
抛物线 的方程为 ;
(2)设点 , , ,
由 ,即 得 .
∴抛物线 在点 处的切线 的方程为 ,
即 .
∵ ,∴ .
∵点 在切线 上,∴ .①
同理, .②
综合①、②得,点 的坐标都满足方程 .
∵经过 两点的直线是唯一的,
∴直线 的方程为 ,即 ;
(3)由抛物线的定义可知 ,
所以
联立 ,消去 得 ,
当 时, 取得最小值为
【解析】画出可行域如图,最优解为 ,故填5;
(二)选做题(14、15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)
已知曲线 的极坐标方程为 .以极点为原点,极轴为 轴的正半轴建立直角坐标系,则曲线 的参数方程为.
【解析】先化成直角坐标方程 ,易得曲线C的参数方程为 ( 为参数)。
15.(几何证明选讲选做题)
A. B. C. D.
【解析】:先解两个一元二次方程,再取交集,选A!
2.函数 的定义域是
A. B. C. D.
【解析】:对数真数大于零,分母不等于零,选C!
3.若 , ,则复数 的模是
A.2 B.3 C.4 D.5
【解析】:通过复数的运算和复数相等,得 ,模为5,选D.
4.已知 ,那么
A. B. C. D.
设函数 .
(1)当 时,求函数 的单调区间;
(2)当 时,求函数 在 上的最小值 和最大值 .
【解析】:
(1)当 时
, 在 上单调递增.
(2)当 时, ,其开口向上,对称轴 ,且过
(i)当 ,即 时, , 在 上单调递增,
从而当 时, 取得最小值 ,
当 时, 取得最大值 .
7.垂直于直线 且与圆 相切于第Ⅰ象限的直线方程是
A. B.
C. D.
【解析】直接法可设所求的直线方程为: ,再利用圆心到直线的距离等于 ,求得 .选A.
8.设 为直线, 是两个不同的平面,下列命题中正确的是
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
【解析】借助长方体判断,可知B正确..
分组(重量)
频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在 的频率;
(2)用分层抽样的方法从重量在 和 的苹果中共抽取4个,其中重量在 的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在 和 中各有1个的概率.
【解析】(1)苹果的重量在 的频率为 ;
(2)重量在 的有 个;
【解析】:考查三角函数诱导公式, ,选C.
5.执行如图1所示的程序框图,若输入 的值为3,则输出 的值是
A.1 B.2 C.4 D.7
【解析】根据程序框图,s=1+0+1+2=4.选C.
6.某三棱锥的三视图如图2所示,则该三棱锥的体积是
A. B. C. D.
【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则 ,选B.
(ii)当 ,即 时,令
解得: ,注意到 ,
(注:可用韦达定理判断 , ,从而 ;或者由对称结合图像判断)
的最小值 ,
的最大值
综上所述,当 时, 的最小值 ,最大值
解法2(2)当 时,对 ,都有 ,故
故 ,而 , ,
所以 , .
数列 的通项公式为 .
(3)
20.(本小题满分14分)
已知抛物线 的顶点为原点,其焦点 到直线 的距离为 .设 为直线 上的点,过点 作抛物线 的两条切线 ,其中 为切点.
(1)求抛物线 的方程;(2)当点 为直来自 上的定点时,求直线 的方程;
(3)当点 在直线 上移动时,求 的最小值.
【解析】(1)依题意 ,解得 (负根舍去)
2013年普通高等学校招生全国统一考试
文科(文科A卷)数学
(广东卷)
本试卷共4页,21小题,满分150分.考试用时120分钟.
锥体的体积公式: .其中S表示锥体的底面积,h表示锥体的高.
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 , ,则
二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分.
(一)必做题(11~13题)
11.设数列 是首项为 ,公比为 的等比数列,则
【解析】依题意得a1=1,a2=-2,a3=4,a4=-8.所以
12.若曲线 在点 处的切线平行于 轴,则 .
【解析】本题考查切线方程、方程的思想.依题意
13.已知变量 满足约束条件 ,则 的最大值是.
如图3,在矩形 中, , ,垂足为 ,则 .
【解析】由 ,可知
从而 ,
.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分12分)
已知函数 .
(1)求 的值;
(2)若 ,求 .
【解析】(1)
(2) , ,
.
17.(本小题满分13分)
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
④给定正数 和 ,总存在单位向量 和单位向量 ,使 ;
上述命题中的向量 , 和 在同一平面内且两两不共线,则真命题的个数是
A.1B.2C.3D.4
【解析】本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则.
利用向量加法的三角形法则,易知①是对的;利用平面向量的基本定理,易知②是对的;以 的终点作长度为 的圆,这个圆必和向量 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须 ,所以④是假命题.综上,本题选B.
(3)设这4个苹果中 分段的为1, 分段的为2、3、4,从中任取两个,可能的情况有:
(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在 和 中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以 .
18.(本小题满分13分)
如图4,在边长为1的等边三角形 中, 分别是 边上的点, , 是 的中点, 与 交于点 ,将 沿 折起,得到如图5所示的三棱锥 ,其中 .
19.(本小题满分14分)
设各项均为正数的数列 的前 项和为 ,满足 且 构成等比数列.
(1)证明: ;
(2)求数列 的通项公式;
(3)证明:对一切正整数 ,有 .
【解析】(1)当 时, ,
(2)当 时, ,
,
当 时, 是公差 的等差数列.
构成等比数列, , ,解得 ,
由(1)可知,
是首项 ,公差 的等差数列.
(1)证明: //平面 ;
(2)证明: 平面 ;
(3)当 时,求三棱锥 的体积 .
【解析】(1)在等边三角形 中,
,在折叠后的三棱锥 中
也成立, , 平面 ,
平面 , 平面 ;
(2)在等边三角形 中, 是 的中点,所以 , .
在三棱锥 中, ,
;
(3)由(1)可知 ,结合(2)可得 .
【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.
9.已知中心在原点的椭圆C的右焦点为 ,离心率等于 ,则C的方程是
A. B. C. D.
【解析】基础题, ,选D.
10.设 是已知的平面向量且 ,关于向量 的分解,有如下四个命题:
①给定向量 ,总存在向量 ,使 ;
②给定向量 和 ,总存在实数 和 ,使 ;
③给定单位向量 和正数 ,总存在单位向量 和实数 ,使 ;
抛物线 的方程为 ;
(2)设点 , , ,
由 ,即 得 .
∴抛物线 在点 处的切线 的方程为 ,
即 .
∵ ,∴ .
∵点 在切线 上,∴ .①
同理, .②
综合①、②得,点 的坐标都满足方程 .
∵经过 两点的直线是唯一的,
∴直线 的方程为 ,即 ;
(3)由抛物线的定义可知 ,
所以
联立 ,消去 得 ,
当 时, 取得最小值为
【解析】画出可行域如图,最优解为 ,故填5;
(二)选做题(14、15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)
已知曲线 的极坐标方程为 .以极点为原点,极轴为 轴的正半轴建立直角坐标系,则曲线 的参数方程为.
【解析】先化成直角坐标方程 ,易得曲线C的参数方程为 ( 为参数)。
15.(几何证明选讲选做题)
A. B. C. D.
【解析】:先解两个一元二次方程,再取交集,选A!
2.函数 的定义域是
A. B. C. D.
【解析】:对数真数大于零,分母不等于零,选C!
3.若 , ,则复数 的模是
A.2 B.3 C.4 D.5
【解析】:通过复数的运算和复数相等,得 ,模为5,选D.
4.已知 ,那么
A. B. C. D.