51单片机中断编程
MCS-51单片机的中断系统

MCS-51单⽚机的中断系统单⽚机中断技术概述在任何⼀款事件驱动型的CPU⾥⾯都应该会有中断系统,因为中断就是为响应某种事件⽽存在的。
中断的灵活应⽤不仅能够实现想要的功能,⽽且合理的中断安排可以提⾼事件执⾏的效率,因此中断在单⽚机应⽤中的地位是⾮常重要的。
单⽚机中断(Interrupt)是硬件驱动事件,它使得CPU暂停当前的主程序,转⽽去执⾏⼀个中断服务⼦程序。
为了更形象地理解中断,下⾯以学⽣上⾃习时接电话为例阐述⼀下中断的概念。
单⽚机的中断系统有5个中断源、2个中断优先级,可实现两级中断服务程序嵌套。
如果单⽚机没有中断系统,单⽚机的⼤量时间可能会浪费在查询是否有服务请求发⽣的定时査询操作上。
采⽤中断技术完全消除了单⽚机在査询⽅式中的等待现象,⼤⼤地提⾼了单⽚机的⼯作效率和实时性。
单⽚机中断系统结构及中断控制中断系统结构图如图5-2所⽰。
由图5-2可见,MCS-51中断系统共有5个中断请求源:INT0——外部中断请求0,中断请求信号由INT0引脚输⼊。
定时/计数器T0计数溢出发出的中断请求。
INT1——外部中断请求1,中断请求信号由INT1引脚输⼊。
定时/计数器T1计数溢出发出的中断请求。
串⾏⼝中断请求。
中断优先级从⾼到底排列。
单⽚机如何知道有中断请求信号?是否能够响应该中断?若5个中断源请求信号同时到来,单⽚机如何响应?这些问题都可以由中断寄存器来解决。
单⽚机中断寄存器有中断标志寄存器TCON和SCON、中断使能寄存器IE和中断优先级寄存器IP,这些寄存器均为8位。
中断标志寄存器5个中断请求源的中断请求标志分别由TCON和SCON的相应位锁存,单⽚机通过这些中断标志位的状态便能知道具体是哪个中断源正在申请中断。
TCON寄存器TCON寄存器为定时/计数器的控制寄存器,字节地址为88H,可位寻址。
特殊功能寄存器TCON的格式如图5-3所⽰。
TCON各标志位功能如下。
TF1——定时/计数器T1的溢出中断请求标志位。
MCS-51单片机的中断系统

其各位格式为: D7 D6 D5 D4 D3 D2 D1 D0 -- -- -- PS PT1 PX1 PT0 PX0
如果CPU接收到几个相同优先级的中断请求源时,响应哪一个 中断申请要取决于一个内部的硬件查询序列,此时应按照下表所 示的优先权结构先后响应中断请求。
中断源 外部中断0(IE0) 定时器T0中断(TF0) 外部中断1(IE1) 定时器T1中断(TF1) 串行口中断(RI、TI)
主程序的中断处理
1.2 CPU响应及处理中断机制
一般来说,根据中断源的轻重缓急排序,CPU优先处理最 紧急事件的中断请求源。也就是说,需要对各个中断源设定 相应的优先级,CPU总是最先响应级别最高的中断。中断源可 以分为两个中断优先级:高优先级和低优先级。用户可以用 关中断指令或复位指令来屏蔽所有中断请求,也可以用开中 断指令使CPU接收中断申请。
SM0 SM1 SM2 REN TB8 RB8 TI RI
1.4 中断控制及中断优先级
1.中断允许控制寄存器IE(字节地址A8H)
D7 D6 D5 D4 D3 D2 D1 D0 EA -- ET2 ES ET1 EX1 ET0 EX0
使用汇编语言程序控制中断请求信号的允许 或禁止的程序示例如下:
CLR EA ; 禁止所有中断请求
MOV SP, #60H SETB PX0 SETB IT0 SETB ET0 SETB EX0 SETB EA
【例2】若要求外部中断引脚 采用边沿触发方式,处于高优先 级,初始化程序可以采用位操作指令,也可以用字节型指令进行编 制。
位操作指令: SETB EA SETB EX1 SETB PX1 SETB IT1
送/接收后引起。
2.中断请求标志 1)TCON寄存器中的中断标志 TCON是定时/计数器T0、T1的控制寄存器,格式如下:
51单片机汇编中断程序调用子程序

文章标题:深度解析:51单片机汇编中断程序调用子程序一、介绍在51单片机的汇编编程中,中断程序和子程序的调用是非常重要的内容。
本文将深入讨论51单片机汇编中断程序如何调用子程序的相关知识,帮助读者更加深入地理解这一主题。
二、51单片机汇编中断程序调用子程序的基本原理在51单片机中,中断是指在程序运行过程中,由硬件或者软件主动触发的一种事件,当中断发生时,CPU会立即暂停正在执行的程序,转而去执行与该中断相关的处理程序,当处理完毕后再返回原程序继续执行。
子程序则是一段独立的代码,可以被主程序或其他子程序调用执行。
中断程序调用子程序的基本原理是,当中断发生时,CPU会跳转到中断服务程序进行处理,在中断服务程序中可以调用需要的子程序进行处理,处理完毕后再返回中断服务程序,最终返回到原来的程序中继续执行。
三、中断程序调用子程序的具体实现方法1. 中断程序的编写首先需要编写中断程序,并向51单片机的中断向量表中注册相应的中断号。
在中断程序中,可以调用需要的子程序进行处理。
2. 子程序的编写编写需要被调用的子程序,并保证其能够正确地处理需要的任务。
子程序的调用和返回是通过特定的指令来实现的。
3. 调用和返回在中断程序中,通过特定的指令调用需要的子程序,等待子程序执行完成后再进行返回。
这里需要特别注意子程序调用的参数传递和返回值的处理。
四、中断程序调用子程序的实际应用中断程序调用子程序在实际应用中有着广泛的用途,比如在实时系统中,可以利用中断程序调用子程序来实现即时响应;在通信系统中,可以利用中断程序调用子程序来实现数据处理和通信协议的处理等。
五、个人观点和总结中断程序调用子程序是51单片机汇编编程中的重要内容,掌握了这一技术可以让我们更加灵活地进行程序设计和开发。
通过本文的深度解析,希望读者能够更加深入地理解和掌握这一知识,并在实际应用中发挥其作用。
完整的文章已经写好并按照知识的文章格式进行了排版,总字数超过3000字。
51单片机中断程序例子

51单片机中断程序例子
1. 外部中断:当外部信号引脚检测到高电平时,单片机会触发外部中断服务程序。
可以利用外部中断实现按键扫描功能,当按键按下时,触发中断程序对按键进行处理。
2. 定时器中断:利用定时器中断可以实现精确的时间控制。
例如,我们可以设置定时器中断为1秒,当定时器溢出时,触发中断程序,实现1秒钟执行一次的任务。
3. 串口中断:当接收到串口数据时,单片机会触发串口中断服务程序,可以利用串口中断实现串口通信功能。
4. ADC中断:当模数转换器完成一次转换时,单片机会触发ADC中断服务程序,可以利用ADC中断实现模拟信号的采集和处理。
5. 看门狗中断:看门狗定时器溢出时,单片机会触发看门狗中断服务程序,可以利用看门狗中断实现系统复位或其他相关功能。
6. 外部中断优先级:当多个外部中断同时触发时,可以通过设置外部中断的优先级来确定触发的顺序和优先级。
7. 定时器中断优先级:当多个定时器中断同时触发时,可以通过设置定时器中断的优先级来确定触发的顺序和优先级。
8. 中断嵌套:单片机支持中断嵌套,即在一个中断服务程序中触发
另一个中断服务程序,可以通过中断嵌套实现复杂的任务处理。
9. 中断屏蔽:单片机支持对中断的屏蔽,即可以通过设置中断屏蔽标志位来屏蔽某些中断,使其暂时不被触发。
10. 中断标志位:单片机提供中断标志位,用于标识中断是否被触发。
在中断服务程序中,可以通过读取和清除中断标志位来判断中断是否发生。
以上是根据51单片机中断程序的例子进行的描述,这些例子涵盖了常见的中断类型和相关功能。
通过学习和理解这些例子,可以更好地掌握51单片机中断编程的原理和方法。
51单片机中断系统编程

if (counter==200) //一秒时间到
{
counter=0; //重新计数5毫秒的个数
P1_0=~P1_0; //P1.1引脚输出电平反相,使灯光闪烁
}
}
在上面的程序中,定时器0工作在方式0,定时时间为5ms。再借助无符号变量counter计数
中断的次数,当计数到counter=200时,表示时间已经1s,此时将计数变量counter清零,
来打开或关断各中断源的中断请求,基本格式如下:
上传的图片
抱歉,您所在的组无权下载附件,请注册或登陆
Ø EA:全局中断允许位。EA=0,禁止一切中断;EA=1,打开全局中断控制,此时,由各
个中断控制位确定相应中断的打开或关闭。
Ø×:无效位。
Ø ES:串行I/O中断允许位。ES=1,允许串行I/O中断;ES=0,禁止串行I/O中断。
51单片机中断系统编程
51单片机中断系统编程
上传的图片
抱歉,您所在的组无权下载附件,请注册或登陆中断是指如下过程(如下图所示):CPU
与外设同时工作,CPU执行主程序,外设做准备工作。当外设准备好时向CPU发中断请求信
号,若条件满足,则CPU终止主程序的执行,转去执行中断服务程序。在中断服务程序中
CPU与外设交换信息,待中断服务程序执行完后,CPU再返回刚才终止的主程序继续执行。
按如下顺序确定响应的先后顺序:
INT0→T0→INT1→T1→RI/T1
3中断的响应过程
8051单片机的CPU在每一个机器周期顺序检查每一个中断源,并按优先级处理所有被激活
了的中断请求。如果没有被下列条件所阻止,将响应激活了的最高级中断请求。
51单片机C语言程序定时-计数器 中断

51单片机C语言程序定时/计数器中断程序一利用定时/计数器T0从P1.0输出周期为1s的方波,让发光二极管以1HZ闪烁,#include<reg52.h> //52单片机头文件#include <intrins.h> //包含有左右循环移位子函数的库#define uint unsigned int //宏定义#define uchar unsigned char //宏定义sbit P1_0=P1^0;uchar tt;void main() //主函数{TMOD=0x01;//设置定时器0为工作方式1TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;//开总中断ET0=1;//开定时器0中断TR0=1;//启动定时器0while(1);//等待中断产生}void timer0() interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;tt++;if(tt==20){tt=0;P1_0=~P1_0;}}程序二利用定时/计数器T1产生定时时钟,由P1口控制8个发光二极管,使8个指示灯依次一个一个闪动,闪动频率为10次/秒(8个灯依次亮一遍为一个周期),循环。
#include<reg52.h> //52单片机头文件#include <intrins.h> //包含有左右循环移位子函数的库#define uint unsigned int //宏定义#define uchar unsigned char //宏定义sbit P1_0=P1^0;uchar tt,a;void main() //主函数{TMOD=0x01;//设置定时器0为工作方式1TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;//开总中断ET0=1;//开定时器0中断TR0=1;//启动定时器0a=0xfe;while(1);//等待中断产生}void timer0() interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;tt++;if(tt==2){tt=0;P1=a;a=_crol_(a,1);}}程序三同时用两个定时器控制蜂鸣器发声,定时器0控制频率,定时器1控制同个频率持续的时间,间隔2s依次输出1,10,50,100,200,400,800,1k(hz)的方波#include<reg52.h> //52单片机头文件#include <intrins.h> //包含有左右循环移位子函数的库#define uint unsigned int //宏定义#define uchar unsigned char //宏定义sbit beep=P2^3;uchar tt;uint fre,flag;void main() //主函数{fre=50000;beep=0;TMOD=0x11;//设置定时器0,定时器1为工作方式1TH0=(65536-fre)/256;TL0=(65536-fre)%256;TH1=(65536-50000)/256;TL1=(65536-50000)%256;EA=1;//开总中断ET0=1;//开定时器0中断ET1=1;TR1=1;TR0=1;//启动定时器0while(1);//等待中断产生}void timer0() interrupt 1 //定时器0中断{TR0=0; //进中断后先把定时器0中断关闭,防止内部程序过多而造成中断丢失TH0=(65536-fre)/256;TL0=(65536-fre)%256;tt++;if(flag<40) //以下几个if分别用来选取不同的频率 if(tt==10){tt=0;fre=50000;beep=~beep;}if(flag>=40&&flag<80){tt=0;fre=50000;beep=~beep;}if(flag>=80&&flag<120){tt=0;fre=10000;beep=~beep;}if(flag>=120&&flag<160){tt=0;fre=5000;beep=~beep;}if(flag>=160&&flag<200){tt=0;fre=2500;beep=~beep;}if(flag>=200&&flag<240){tt=0;fre=1250;beep=~beep;}if(flag>=240&&flag<280){tt=0;fre=625;beep=~beep;}if(flag>=280&&flag<320){tt=0;fre=312;beep=~beep;}if(flag>=320&&flag<360){tt=0;fre=156;beep=~beep;}TR0=1;}void timer1() interrupt 3 //定时器1中断用来产生2秒时间定时{TH1=(65536-50000)/256;TL1=(65536-50000)%256;flag++;if(flag==360){flag=0;fre=50000;}}程序四用定时器以间隔500MS在6位数码管上依次显示0、1、2、3....C、D、E、F,重复。
第3章MCS-51单片机的中断系统

3.3 MCS-51的中断系统 的中断系统
4、中断响应过程 、 关中断:屏蔽其它中断请求信号。 关中断:屏蔽其它中断请求信号。 保护断点:将断点地址压入堆栈保存,即当前 值入栈 值入栈。 保护断点:将断点地址压入堆栈保存,即当前PC值入栈。 寻找中断源:中断服务程序入口地址送 ,转入中断服务。 寻找中断源:中断服务程序入口地址送PC,转入中断服务。 保护现场:将中断服务程序使用的所有寄存器内容入栈。 保护现场:将中断服务程序使用的所有寄存器内容入栈。 中断处理:执行中断源所要求的程序段。 中断处理:执行中断源所要求的程序段。 恢复现场:恢复被使用寄存器的原有内容。 恢复现场:恢复被使用寄存器的原有内容。 开中断:允许接受其它中断请求信号。 开中断:允许接受其它中断请求信号。 中断返回:执行 指令, 中断返回:执行RETI指令,栈顶内容 指令 栈顶内容→PC,程序跳转回断点。 ,程序跳转回断点。
当前PC入栈 书中作记号 当前 入栈
主程序 执行主程序 中断请求 断点 继续执行主程序 中断返回 执行中断 处理程序 中断响应
中断与转子的区别 中断是随机的, 中断是随机的,转子事先编程决定
3.3.1 中断的定义 2、几个术语 、 主程序:原来正常运行的程序称为主程序。 主程序:原来正常运行的程序称为主程序。 断点: 主程序被断开的位置(或地址)称为“断点” 断点 主程序被断开的位置(或地址)称为“断点”。 中断源:引起中断的原因,或发出中断申请的来源。 中断源 引起中断的原因,或发出中断申请的来源。 引起中断的原因 中断请求:中断源要求服务的请求称为“中断请求” 中断请求 中断源要求服务的请求称为“中断请求” 。 中断源要求服务的请求称为 中断响应: 终止当前执行的程序, 中断响应:CPU终止当前执行的程序,去执行相应中断源 终止当前执行的程序 的中断请求。 的中断请求。 中断服务或中断处理程序: 中断服务或中断处理程序: “中断”之后所执行的相应的处理程序。 中断”之后所执行的相应的处理程序。 中断系统:能够实现中断处理功能的部件。 中断系统:能够实现中断处理功能的部件。
51单片机中断程序大全

//实例42:用定时器T0查询方式P2口8位控制LED闪烁#include<> // 包含51单片机寄存器定义的头文件void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0@TF0=0;P2=0xff;while(1)//无限循环等待查询{while(TF0==0);TF0=0;P2=~P2;TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值|//实例43:用定时器T1查询方式控制单片机发出1KHz音频#include<> // 包含51单片机寄存器定义的头文件sbit sound=P3^7; //将sound位定义为引脚void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x10; //使用定时器T1的模式1TH1=(65536-921)/256; //定时器T1的高8位赋初值TL1=(65536-921)%256; //定时器T1的高8位赋初值TR1=1; //启动定时器T1—TF1=0;while(1)//无限循环等待查询{while(TF1==0);TF1=0;sound=~sound; //将引脚输出电平取反TH1=(65536-921)/256; //定时器T0的高8位赋初值TL1=(65536-921)%256; //定时器T0的高8位赋初值}}://实例44:将计数器T0计数的结果送P1口8位LED显示#include<> // 包含51单片机寄存器定义的头文件sbit S=P3^4; //将S位定义为引脚void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x02; //使用定时器T0的模式2TH0=256-156; //定时器T0的高8位赋初值TL0=256-156; //定时器T0的高8位赋初值#TR0=1; //启动定时器T0while(1)//无限循环等待查询{while(TF0==0) //如果未计满就等待{if(S==0) //按键S按下接地,电平为0P1=TL0; //计数器TL0加1后送P1口显示}TF0=0; //计数器溢出后,将TF0清0}}//实例45:用定时器T0的中断控制1位LED闪烁)#include<> // 包含51单片机寄存器定义的头文件sbit D1=P2^0; //将D1位定义为引脚void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式2TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0^while(1);}函数功能:定时器T0的中断服务程序**************************************************************/void Time0(void) interrupt 1 using 0寄存器{D1=~D1; //按位取反操作,将引脚输出电平取反TH0=(65536-46083)/256; //定时器T0的高8位重新赋初值TL0=(65536-46083)%256; //定时器T0的高8位重新赋初值}|//实例46:用定时器T0的中断实现长时间定时#include<> // 包含51单片机寄存器定义的头文件sbit D1=P2^0; //将D1位定义为引脚unsigned char Countor; //设置全局变量,储存定时器T0中断次数void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式2;TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0Countor=0; //从0开始累计中断次数while(1);}/**************************************************************函数功能:定时器T0的中断服务程序**************************************************************/ void Time0(void) interrupt 1 using 0{@Countor++; //中断次数自加1if(Countor==20) //若累计满20次,即计时满1s{D1=~D1; //按位取反操作,将引脚输出电平取反Countor=0; //将Countor清0,重新从0开始计数}TH0=(65536-46083)/256; //定时器T0的高8位重新赋初值TL0=(65536-46083)%256; //定时器T0的高8位重新赋初值}//实例47:用定时器T1中断控制两个LED以不同周期闪烁#include<> // 包含51单片机寄存器定义的头文件)sbit D1=P2^0; //将D1位定义为引脚sbit D2=P2^1; //将D2位定义为引脚unsigned char Countor1; //设置全局变量,储存定时器T1中断次数unsigned char Countor2; //设置全局变量,储存定时器T1中断次数void main(void){EA=1; //开总中断ET1=1; //定时器T1中断允许TMOD=0x10; //使用定时器T1的模式1TH1=(65536-46083)/256; //定时器T1的高8位赋初值—TL1=(65536-46083)%256; //定时器T1的高8位赋初值TR1=1; //启动定时器T1Countor1=0; //从0开始累计中断次数Countor2=0; //从0开始累计中断次数while(1);}void Time1(void) interrupt 3 using 0{Countor1++; //Countor1自加1Countor2++; //Countor2自加1。
第六章 MCS-51单片机的中断

TF1
T1 请求
TR1
T1 工作
TF0
T0 请求
TR0
T0 工作
IE1
INT1 请求
IT1
INT1 方式
IE0
INT0 请求
IT0
INT0 方式
有 /无
启 /停
有 /无
启 /停
有 /无
下沿/ 低
电平
有 /无
下沿/低
电平
2、在每条指令结束时,CPU检测各个中断标志位,若中断标志位置1,则认为有 中断请求。 3、外中断有2种触发方式:低电平和下降沿,由TCON中的IT0和 IT1决定。
PC
4.2.2 MCS-51中断处理全过程
返回
4.2.2 MCS-51中断处理全过程
1、中断请求
⑴ MCS51单片机内部的中断检测电路随时检测各个中断源,检测到有中断
申请后,将相应的中断标志位置1。
⑵ CPU在每条指令结束时,检测各个中断标志位,若中断标志位置1,则认 为有中断请求。
⑶ CPU读取IE和IP的内容,若中断允许且满足如下条件,则在下一个机器
返回
复位后IP=00H,说明各个中断源都处于低级。 注意: 1、当五个中断源在同一个优先级的情况下INT0优先权最高,串行口优先权最低。 在同一个优先级中,对五个中断源的优先次序安排如下: INT0→T0→INT1→T1→串口 (中断优先级从高到低) 2、对于外中断来说,可以用软件查询法和硬件排队电路法确定优先级。 3、通过对IP寄存器的编程,可以把五个中断源分别定义在两个优先级中,软件 可以随时对IP的各位清0或置1。 例如 某软件中对寄存器IE、IP设置如下:MOV IE,#10001111B MOV IP,#00000110B
51单片机中断程序例子

51单片机中断程序例子1. 外部中断程序:外部中断是指由外部设备或外部信号触发的中断。
在51单片机中,通过设置中断允许位和中断优先级来实现对外部中断的响应。
例如,当外部设备发出一个信号时,单片机可以立即停止当前任务,转而执行外部中断程序。
外部中断程序的编写需要根据具体的外部设备和信号进行相应的处理,如读取设备状态、处理数据等。
通过外部中断程序,可以实现单片机与外部设备的互动和数据交换。
2. 定时器中断程序:定时器中断是指通过设置定时器的计数值和中断允许位,使得在指定的时间间隔内触发中断。
在51单片机中,可以通过定时器中断来实现定时任务的执行。
例如,可以设置一个定时器,在每隔一定的时间就触发中断,然后在中断程序中执行相应的任务,如数据采集、数据处理等。
通过定时器中断程序,可以实现定时任务的自动执行,提高系统的实时性和可靠性。
3.串口中断程序:串口中断是指通过串口通信接口接收或发送数据时触发的中断。
在51单片机中,可以通过设置串口中断允许位和中断优先级来实现对串口数据的中断处理。
例如,当接收到一个完整的数据包时,单片机可以立即停止当前任务,转而执行串口中断程序,对接收到的数据进行处理。
通过串口中断程序,可以实现单片机与外部设备的数据交换和通信。
4. ADC中断程序:ADC(模数转换器)中断是指在进行模数转换时触发的中断。
在51单片机中,可以通过设置ADC中断允许位和中断优先级来实现对模数转换结果的中断处理。
例如,当模数转换完成后,单片机可以立即停止当前任务,转而执行ADC中断程序,对转换结果进行处理和分析。
通过ADC中断程序,可以实现对模拟信号的采集和处理,用于实时监测和控制。
5. 外部中断优先级设置:在51单片机中,可以通过设置外部中断的中断优先级来确定中断的响应顺序。
中断优先级越高,优先级越高的中断会先被响应。
通过合理设置中断优先级,可以确保关键任务的及时响应和执行。
例如,当多个外部设备同时发出中断信号时,可以通过设置优先级,确保先响应优先级高的设备,保证系统的正常运行。
51单片机c语言中断程序

51单片机c语言中断程序51单片机是一种常用的微控制器,广泛应用于各个领域,包括电子产品、工业控制以及通信等。
其中,中断程序是51单片机中一项关键的功能,它具有重要的指导意义。
中断是指在程序运行过程中,根据外部事件的发生而导致程序的跳转执行其他的代码段。
相比于常规的程序执行方式,中断程序能够实现即时响应、提高程序的实时性以及降低功耗,因此非常有用。
在C语言中,我们可以通过编写中断服务函数来实现对中断事件的处理。
中断服务函数是由编程人员提前定义好的一段代码,在中断事件触发时自动执行。
它可以读取中断源的状态、清除中断标志、保存关键数据等操作,然后采取相应的措施。
为了编写一个生动的中断程序,我们需要明确中断的触发条件以及需要完成的任务。
以一个简单的例子来说明,假设我们需要设计一个温度监测系统,当温度超过设定的阈值时,系统会触发中断程序,通过LED灯进行报警。
首先,我们需要初始化相关的硬件,包括ADC模块用于温度的模拟量转数字量转换,以及LED灯的GPIO口配置等。
然后,我们需要编写一个中断服务函数,命名为“TemperatureAlarm”,用于处理温度超过阈值的情况。
在“TemperatureAlarm”中,我们可以使用ADC模块读取当前的温度数值,并进行判断是否超过阈值。
如果超过阈值,则点亮LED灯,表示报警状态。
同时,我们还可以通过串口打印相关信息,以便后续的调试和记录。
当中断触发后,中断服务函数会自动执行,然后返回到原来的程序执行点继续运行。
在设计中断程序时,我们需要注意以下几个方面:首先,要保证中断服务函数的执行时间尽量短,避免影响正常的程序运行。
这是因为在中断执行期间,其他中断可能会被屏蔽,导致系统的响应速度降低。
其次,要合理选择中断优先级,以确保紧急性较高的中断能够得到及时处理。
对于多个中断源同时触发的情况,我们可以通过设置优先级进行区分。
最后,要注意中断服务函数的执行次数,避免重复执行同一段代码,提高代码的效率。
51单片机串行口中断服务程序

51单片机串行口中断服务程序单片机串行口中断服务程序是指在单片机进行串行通信时,当接收到数据时会触发中断,然后执行相应的中断服务程序。
下面是一个示例的单片机串行口中断服务程序,共计1200字以上。
#include <reg51.h> // 引入reg51.h头文件//定义串行口中断标志sbit RI_FLAG = P3^0; // 数据接收中断标志sbit TI_FLAG = P3^1; // 数据发送中断标志//定义串行口接收数据缓冲区unsigned char receiveBuffer[10];unsigned char receiveCount = 0;//定义串行口发送数据缓冲区unsigned char sendBuffer[10];unsigned char sendCount = 0;//串行口中断服务函数void serialInterrupt( interrupt 4if(RI_FLAG) // 判断是否是数据接收中断receiveBuffer[receiveCount] = SBUF; // 读取串行口接收数据receiveCount++; // 接收计数加1RI_FLAG=0;//清除中断标志位}if(TI_FLAG) // 判断是否是数据发送中断if(sendCount < 10) // 判断是否还有数据需要发送SBUF = sendBuffer[sendCount]; // 发送串行口数据sendCount++; // 发送计数加1}elsesendCount = 0; // 重置发送计数TI_FLAG=0;//清除中断标志位}}//主函数void mainES=1;//允许串行口中断TMOD=0x20;//设置定时器1为模式2,串行口使用定时器1 TH1=0xFD;//设置波特率为9600,定时器初值为0xFDTL1=0xFD;//定时器初值为0xFDSCON=0x50;//设置串行口工作在方式1,允许接收TR1=1;//启动定时器1while(1)//主程序逻辑//将数据存入发送缓冲区sendBuffer[0] = 'H';sendBuffer[1] = 'e';sendBuffer[2] = 'l';sendBuffer[3] = 'l';sendBuffer[4] = 'o';sendBuffer[5] = '\r'; // 发送回车符sendBuffer[6] = '\n'; // 发送换行符while(sendCount != 0) //等待数据发送完毕//主程序逻辑}}。
51单片机interrupt用法

51单片机interrupt用法
Interrupt是指中断,指计算机在执行一段程序时,突然停下来去执行另外一个程序的过程。
在51单片机中,Interrupt也是一种非常重要的编程概念。
它可以让程序在执行的过程中,根据外部的信号来中断当前的执行,去执行一些其他的操作,待操作完成后再回到原来的程序中继续执行。
在51单片机中,Interrupt的使用非常简单。
我们可以通过以下步骤来配置Interrupt:
1.选择使用哪个Interrupt:在51单片机中,有多个Interrupt 可以使用,比如Timer Interrupt、External Interrupt等。
我们需要根据具体的需求来选择需要使用的Interrupt。
2.配置Interrupt的优先级:在多个Interrupt同时发生时,需要按照一定的优先级来执行。
在51单片机中,我们可以通过设置Interrupt的优先级来实现。
3.设置Interrupt的触发方式:在51单片机中,Interrupt可以按照电平触发或者边沿触发来执行。
我们需要根据具体的需求来设置Interrupt的触发方式。
4.编写Interrupt服务程序:在Interrupt被触发时,需要执行一段特定的程序来处理中断。
我们需要编写一个Interrupt服务程序来实现。
5.开启Interrupt:最后,我们需要在程序中开启Interrupt,让它能够正常运行。
总之,Interrupt是51单片机编程中非常重要的一个概念。
掌
握了Interrupt的使用方法,可以为我们的程序提供更加强大的功能。
51单片机串口中断的两种写法

单片机串口通信在嵌入式系统中具有非常重要的作用,而其中串口中断的编写方式更是至关重要。
今天我们来讨论一下51单片机串口中断的两种写法。
1. 外部中断写法在51单片机中,串口通信一般使用串口中断来实现。
外部中断写法是一种常见的串口中断编写方式。
其具体步骤如下:1)需要设置串口工作参数,包括波特率、数据位、停止位和校验位等。
2)在主程序中使能串口中断,并设置中断优先级。
3)在中断服务函数中进行接收数据的处理,可以通过接收缓冲区、中断标志位等来判断接收数据的情况,并进行相应的处理。
2. 定时器中断写法除了外部中断写法,定时器中断也是一种常见的串口中断编写方式。
其具体步骤如下:1)同样需要设置串口工作参数,包括波特率、数据位、停止位和校验位等。
2)在主程序中初始化定时器,并使能定时器中断。
3)在定时器中断服务函数中进行接收数据的处理,同样可以通过接收缓冲区、中断标志位等来判断接收数据的情况,并进行相应的处理。
总结无论是外部中断写法还是定时器中断写法,都是实现51单片机串口通信的常见方式。
在选择具体的编写方式时,需要根据具体的应用场景和需求来进行选择。
在实际应用中,可以根据具体情况来灵活选择合适的串口中断编写方式,以便更好地满足系统的需求。
在实际编写中断服务函数时,需要注意以下几点:1)处理数据时需要考虑数据的完整性和准确性,可以通过校验位等手段来验证数据的正确性。
2)在中断服务函数中应尽量减少对全局变量的访问,以避免出现数据冲突和竞争的情况。
3)合理设置中断优先级,避免产生中断嵌套和冲突。
通过合理的中断编写方式和注意事项,可以更好地实现串口通信功能,提高系统的稳定性和可靠性,为嵌入式系统的应用提供良好的技术支持。
对于外部中断写法和定时器中断写法,两者各有优缺点。
外部中断写法在串口数据到达时能够即刻响应中断、处理数据。
但是,如果数据传输速率较快或需要高精度的数据处理,外部中断写法可能无法满足要求。
在这种情况下,定时器中断写法显得更加合适。
51单片机外部中断INT0实例(汇编程序)

51单⽚机外部中断INT0实例(汇编程序);普中51开发板;单⽚机的P3.2(INT0)引脚与按键K3脚连接;⽤汇编语⾔实现:按⼀次K1外部中断INT0响应⼀次,LED显⽰值加1(⼗进制),;前提是共阴数码LED第⼀位,需要设定,由P0⼝控制。
ORG 0000HLJMP STARTORG 0003HLJMP INTT0ORG 0600HSTART: SETB EASETB EX0 ; 打开外部中断0SETB IT0 ; 跳变沿出发⽅式(下降沿)这个⽅法⽐较稳定;CLR IT0 ; 令中断0为电平触发,这个⽅式需要有延时程序,;否则,单⽚机处理速度快,按⼀下按键,;已经处理了很多个低电平中断了。
CLR P2.2 ;段位选择第⼀位CLR P2.3CLR P2.4CLR1: MOV R0,#00HDISPLAY: MOV DPTR,#TAB ;给字形表的初地址MOV A,R0 ;将要显⽰的数给A;/////////////////////////MOV B, A ;save a valueCLR CSUBB A, #10H ;如果已计数到15,说明⼀次循环结束MOV A, B ;load a valueJNC CLR1 ;C=1,重新开始,R0=00H,若等于0,回displayMOVC A,@A+DPTR ;在字形表中取数放到AMOV P0,A ;假设是P0⼝输出要显⽰的数据把A放到P0中SJMP DISPLAY ;循环显⽰等待中断INTT0: INC R0 ;中断中有按键着加1RETITAB: DB 3FH,06H,5BH,4FH,66H ;字形表0-15DB 6DH,7DH,07H,7FH,6FHDB 77H,7CH,39H,5EH,79H,71HEND。
第四章_2 MCS-51单片机的内部资源及其编程 外部中断zxl

中断端口不够用(8051只有2个中断INT0、 INT1);
更换MPU 会扩展
INT0中断方式执行流程
#include "reg51.h" unsigned char i=0; /**********int0中断服务程序**********/ void INT0_ISR(void) interrupt 0 { delay(200);
中断服务函数与寄存器的定义
函数类型 函数名(形式参数表)[ interrupt n ] [ using n ] 关键字interrupt后面的n是中断号,n的范围为0-31。编译器从8n+3处 产生中断向向量,具体的中断号n和中断向量取决于8051单片机芯片型号, 常用中断源和中断向量如表所示。
–若INT0中断未允许,则程序不能跳转到INT0中断入口,不执行中断
服务程序(中断标志IE0不能自动清0)。 • 问提:中断标志IE0的产生与中断使能是否有关?
中断服务程序常见问题
中断服务程序代码过长,占了过多的进程;
定义全局标志变量:中断里设置标志,主程序根据标 志执行程序,完成后清除该标志
中断服务函数与寄存器的定义
为了满足在 C语言源程序中直接编写中断服务程序的要求, C51 编 译器对函数的定义进行了扩展,增加了一个扩展关键字 interrupt。 它是函数定义时的一个选项,加上这个选项即可将一个函数定义 成中断服务函数。 定义格式为:
函数类型 函数名(形式参数表)[ interrupt n ] [ using n ]
中断服务函数与寄存器的定义
void void void void void INT0_ISR(void) interrupt 0 TIMER0_ISR(void) interrupt 1 INT1_ISR(void) interrupt 2 TIMER1_ISR(void) interrupt 3 UART_ISR(void) interrupt 4 { { { { { } } } } }
51单片机汇编中断程序调用子程序

51单片机汇编中断程序调用子程序(原创实用版)目录1.51 单片机汇编中断程序概述2.中断程序的调用方式3.子程序的定义与调用4.中断程序调用子程序的实例分析5.总结正文一、51 单片机汇编中断程序概述在 51 单片机汇编语言编程中,中断是一种常见的编程方式,可以实现在特定条件下程序的跳转和执行。
通过中断程序,可以实现对硬件设备的实时控制,提高程序的执行效率。
二、中断程序的调用方式中断程序的调用方式主要有两种:1.通过外部中断引脚(如 P1.0、P2.0 等)触发中断。
这种方式下,当外部中断引脚的状态发生改变时,单片机会立即跳转到中断程序的入口地址执行。
2.通过软件中断实现中断程序的调用。
这种方式下,程序员可以通过设置特定的寄存器值来触发中断,使程序跳转到中断程序的入口地址执行。
三、子程序的定义与调用子程序,也称为子例程,是程序中一段可独立执行的代码段。
子程序可以通过以下方式定义和调用:1.使用“SUB”伪指令定义子程序。
在需要调用子程序的地方,编写“CALL 子程序名”,即可实现子程序的调用。
2.使用“PROG”伪指令定义子程序。
在需要调用子程序的地方,直接编写子程序名,即可实现子程序的调用。
四、中断程序调用子程序的实例分析假设我们有一个 51 单片机汇编语言程序,当外部中断引脚 P1.0 触发时,需要执行一个子程序以完成特定功能。
程序如下:```ORG 00HMOV P1, #00HMOV R4, #0FFHSTART: NOPINT0: MOV R3, #0FFHCALL INT_SUBROUTINESJMP STARTINT_SUBROUTINE: MOV R5, R3// 子程序执行的内容MOV R3, R5SJMP RETURNRETURN: MOV R4, R3SJMP RETURN_SUBROUTINERETURN_SUBROUTINE: MOV R3, #00HSJMP START```在上述程序中,当 P1.0 引脚触发中断时,程序会跳转到“INT0”标签所在的位置,执行子程序“INT_SUBROUTINE”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章中断系统在CPU与外设交换信息时,存在一个快速的CPU与慢速的外设间的矛盾。
为解决这个问题,采用了中断技术。
良好的中断系统能提高计算机实时处理的能力,实现CPU 与外设分时操作和自动处理故障,从而扩大了计算机的应用范围。
当CPU正在处理某项事务的时候,如果外界或内部发生了紧急事件,要求CPU暂停正在处理的工作转而去处理这个紧急事件,待处理完以后再回到原来被中断的地方,继续执行原来被中断了的程序,这样的过程称为中断。
向CPU提出中断请求的源称为中断源。
微型计算机一般允许有多个中断源。
当几个中断源同时向CPU发出中断请求时,CPU应优先响应最需紧急处理的中断请求。
为此,需要规定各个中断源的优先级,使CPU 在多个中断源同时发出中断请求时能找到优先级最高的中断源,响应它的中断请求。
在优先级高的中断请求处理完了以后。
再响应优先级低的中断请求。
当CPU正在处理一个优先级低的中断请求的时候,如果发生另一个优先级比它高的中断请求,CPU能暂停正在处理的中断源的处理程序,转去处理优先级高的中断.请求,待处理完以后,再回到原来正在处理的低级中断程序,这种高级中断源能中断低级中断源的中断处理称为中断嵌套。
MCS-51系列单片机允许有五个中断源,提供两个中断优先级(能实现二级中断嵌套)。
每一个中断源的优先级的高低都可以通过编程来设定。
中断源的中断请求是否能得到响应,受中断允许寄存器IE的控制;各个中断源的优先级可以由中断优先级寄存器IP 中的各位来确定;同一优先级中的各中断源同时请求中断时,由内部的查询逻辑来确定响应的次序。
这些内容都将在本节中讨论。
6 . 1 中断请求源和中断请求标志1、中断请求源MCS-51中断系统可用图6-1来表示。
五个中断源是:INT来自P3.2引脚上的外部中断请求(外中断0)。
◆0INT来自P3.3引脚上的外部中断请求(外中断1)。
◆1◆T0 片内定时器/计数器0溢出(TF0)中断请求。
◆T1片内定时器/计数器1溢出(TF1)中断请求。
◆串行口片内串行口完成一帧发送或接收中断请求源TI或RI。
每一个中断源都对应有一个中断请求标志位,它们设置在特殊功能寄存器TCON和SCON中。
当这些中断源请求中断时,分别由TCON和SCON中的相应位来锁存。
INT0硬件查询INT1高级中断请求低级中断请求图6-1 中断系统2、中断标志⑴ 定时器控制寄存器TCONTCON 是定时器/计数器0和1(T 0,T 1)的控制寄存器,它同时也用来锁存T 0,T 1的溢出中断请求源和外部中断请求源。
TCON 寄存器中与中断有关的位如下图所示。
其中:① TF 1 定时器/计数器1(T 1)的溢出中断标志。
当T 1从初值开始加1计数到计数满,产生溢出时,由硬件使TF 1置“1”,直到CPU 响应中断时由硬件复位。
② TF 0 定时器/计数器0(T 0)的溢出中断标志。
其作用同TF 1。
③ IE 1 外中断1中断请求标志。
如果IT 1=1,则当外中断1引脚1INT 上的电平由1变0时,IE1由硬件置位,外中断1请求中断。
在CPU 响应该中断时由硬件清0。
④ IT 1 外部中断1(1INT )触发方式控制位。
如果IT 1为1,则外中断1为负边沿触发INT脚的输入电平,如果在一个周期中采样到方式(CPU在每个机器周期的S5P2采样1高电平,在下个周期中采样到低电平,则硬件使IE1置1,向CPU请求中断);如果IT1INT端的输入电平(低电为0,则外中断1为电平触发方式。
此时外部中断是通过检测1INT的外部中断源必须保持低电平有效,直到平)来触发的。
采用电平触发时,输入到1该中断被响应。
同时在中断返回前必须使电平变高,否则将会再次产生中断。
INT上的电平由1变0时,IE0⑤IE0外中断0中断请求标志。
如果IT0置1,则当0由硬件置位。
在CPU把控制转到中断服务程序时由硬件使IE0复位。
⑥IT0外部中断源0触发方式控制位。
其含义同IT1。
⑵、串行口控制寄存器SCON串行口控制寄存器SCON中的低2位用作串行口中断标志,如下图所示。
其中:RI 串行口接收中断标志。
在串行口方式0中,每当接收到第8位数据时,由硬件置位RI;在其他方式中,当接收到停止位的中间位置时置位RI。
注意,当CPU转入串行口中断服务程序入口时不复位RI,必须由用户用软件来使RI清0。
TI 串行口发送中断标志。
在方式0中,每当发送完8位数据时由硬件置位TI;在其他方式中于停止位开始时置位。
TI也必须由软件来复位。
6 . 2 中断控制1、中断允许和禁止在MCS-51中断系统中,中断允许或禁止是由片内的中断允许寄存器IE(IE为特殊功能寄存器)控制的,IE中的各位功能如下:其中:EA CPU中断允许标志。
EA=0,CPU禁止所有中断,即CPU屏蔽所有的中断请求;EA=1,CPU开放中断。
但每个中断源的中断请求是允许还是被禁止,还需由各自的允许位确定(见D4~D0位说明)。
ES 串行口中断允许位。
ES=1,允许串行口中断;ES=0,禁止串行口中断。
ET1 定时器/计数器1(T1)的溢出中断允许位。
ET1=1,允许T1中断;ET1=0,禁止T1中断。
EX1 外部中断1中断允许位。
EX1=1,允许外部中断1中断;EX1=0,禁止外部中断1中断。
ET0 定时器/计数器0(T0)的溢出中断允许位。
ET0=1,允许T0中断;ET0=0,禁止T0中断。
EX0 外部中断0中断允许位。
EX0=1,允许外部中断0中断;EX0=0,禁止外部中断0中断。
中断允许寄存器中各相应位的状态,可根据要求用指令置位或清0,从而实现该中断源允许中断或禁止中断,复位时IE寄存器被清0。
2、中断优先级控制MCS-51中断系统提供两个中断优先级,对于每一个中断请求源都可以编程为高优先级中断源或低优先级中断源,以便实现二级中断嵌套。
中断优先级是由片内的中断优先级寄存器IP(特殊功能寄存器)控制的。
IP寄存器中各位的功能说明如下:其中:PS 串行口中断优先级控制位。
PS=1,串行口定义为高优先级中断源;PS=0,串行口定义为低优先级中断源。
PT1 T1中断优先级控制位。
PT1=1,定时器/计数器1定义为高优先级中断源;PT1=0,定时器/计数器1定义为低优先级中断源。
PX1 外部中断1中断优先级控制位。
PX1=1,外中断1定义为高优先级中断源;PX1=0,外中断1定义为低优先级中断源。
PT0 定时器/计数器0(T0)中断优先级控制位,功能同PT1。
PX0 外部中断0中断优先级控制位。
功能同PX1。
中断优先级控制寄存器IP中的各个控制位都可由编程来置位或复位(用位操作指令或字节操作指令),单片机复位后IP中各位均为0,各个中断源均为低优先级中断源。
3 中断优先级结构MCS-51中断系统具有两级优先级(由IP寄存器把各个中断源的优先级分为高优先级和低优先级),它们遵循下列两条基本规则:(1)低优先级中断源可被高优先级中断源所中断,而高优先级中断源不能被任何中断源所中断;(2)一种中断源(不管是高优先级或低优先级)一旦得到响应,与它同级的中断源不能再中断它。
为了实现上述两条规则,中断系统内部包含两个不可寻址的优先级状态触发器。
其中一个用来指示某个高优先级的中断源正在得到服务,并阻止所有其它中断的响应;另一个触发器则指出某低优先级的中断源正得到服务,所有同级的中断都被阻止,但不阻止高优先级中断源。
当同时收到几个同一优先级的中断时,响应哪一个中断源取决于内部查询顺序。
其优先级排列如下:中断源同级内的中断优先级外部中断0 最高定时器/计数器0溢出中断外部中断1定时器/计数器1溢出中断串行口中断最低6 . 3 中断响应1、中断响应过程CPU在每个机器周期的S5P2时刻采样中断标志,而在下一个机器周期对采样到的中断进行查询。
如果在前一个机器周期的S5P2有中断标志,则在查询周期内便会查询到并按优先级高低进行中断处理,中断系统将控制程序转入相应的中断服务程序。
下列三个条件中任何一个都能封锁CPU对中断的响应:(1)CPU正在处理同级的或高一级的中断;(2)现行的机器周期不是当前所执行指令的最后一个机器周期;(3)当前正在执行的指令是返回(RETI)指令或是对IE或IP寄存器进行读/写的指令。
上述三个条件中,第二条是保证把当前指令执行完,第三条是保证如果在当前执行的是RETI指令或是对IE,IP进行访问的指令时,必须至少再执行完一条指令之后才会响应中断。
中断查询在每个机器周期中重复执行,所查询到的状态为前一个机器周期的S5P2时采样到的中断标志。
这里要注意的是:如果中断标志被置位,但因上述条件之一的原因而未被响应,或上述封锁条件已撤消,但中断标志位已不再存在(已不再是置位状态)时,被拖延的中断就不再被响应,CPU将丢弃中断查询的结果。
也就是说,CPU对中断标志置位后,如未及时响应而转入中断服务程序的中断标志不作记忆。
CPU响应中断时,先置相应的优先级激活触发器,封锁同级和低级的中断。
然后根据中断源的类别,在硬件的控制下,程序转向相应的向量入口单元,执行中断服务程序。
硬件调用中断服务程序时,把程序计数器PC的内容压入堆栈(但不能自动保存程序状态字PSW 的内容),同时把被响应的中断服务程序的入口地址装入PC 中。
五个中断源服务程序的入口地址是:中断源 入口地址外部中断0 0003H定时器0溢出 000BH外部中断1 0013H定时器1溢出 001BH串行口中断 0023H通常,在中断入口地址处安排一条跳转指令,以跳转到用户的服务程序入口。
中断服务程序的最后一条指令必须是中断返回指令RETI 。
CPU 执行完这条指令后,把响应中断时所置位的优先级激活触发器清0,然后从堆栈中弹出两个字节内容(断点地址)装入程序计数器PC 中,CPU 就从原来被中断处重新执行被中断的程序。
2、中断响应时间 外部中断0INT 和1INT 的电平在每个机器周期的S5P2时被采样并锁存到IE0和IE1中,这个置入到IE0和IE1的状态在下一个机器周期才被查询电路查询,如果产生了一个中断请求,而且满足响应的条件,CPU 响应中断,由硬件生成一条长调用指令转到相应的服务程序入口。
这条指令是双机器周期指令。
因此,从中断请求有效到执行中断服务程序的第一条指令的时间间隔至少需要三个完整的机器周期。
如果中断请求被前面所述的三个条件之一所封锁,将需要更长的响应时间。
若一个同级的或高优先级的中断已经在进行,则延长的等待时间显然取决于正在处理的中断服务程序的长度,如果正在执行的一条指令还没有进行到最后一个周期,则所延长的等待时间不会超过三个机器周期,这是因为MCS-51指令系统中最长的指令(MUL 和DIV)也只有四个机器周期;假若正在执行的是RETI 指令或者是访问IE 或IP 指令,则延长的等待时间不会超过五个机器周期(为完成正在执行的指令还需要一个周期,加上为完成下一条指令所需要的最长时间——四个周期,如MUL 和DIV 指令)。