2020-2021重庆市一中初二数学上期中一模试卷(附答案)

合集下载

2021秋重庆一中初二半期数学试卷

2021秋重庆一中初二半期数学试卷

323265822重庆一中初2022届2020-2021学年度上期半期考试数学试卷2020.12(全卷共四个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个选项,其中只有一个是正确的,请将正确答案的代号在答.题.卡.中对应的方框涂黑.1.下列实数中,属于无理数的是()22A.B.7C.0.1 D.-32.一次函数y=4x-3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175 B.600 C.25 D.625 3 题图4.在平面直角坐标系中,已知点A(2,4),点B(5,4),则线段AB的长度为()A.2 B.3 C.4 D.55.下列计算正确的是()A.+= B.+ 2 =2 C.2 -=1 D.-=6.若函数y=-2x+m-3是y关于x的正比例函数,则m的值为()A.-3 B.1 C.2 D.37.已知一次函数y=kx+b(k≠0)与y=mx+n(m≠0)图象的交点是(1,2),则方程组=kx+b=mx+n的解为()=1A=3=1B=-2=1C=2=2D=1 C y 8.如图,在平面直角坐标系中,△OBC 点O(0,0),B(-8,0),且∠OCB=90°,BC=OC,则点C 关于y 轴对称的点的坐标是()A.(-4,2)B.(-4,3)C.(4,4)D.(-4,4)BxO8 题图9.根据以下程序,当输入x=时,输出结果为()A. B. 2 C. 6 D. 2522522 2 22210.如图所示,在桌面ABCD 上建立平面直角坐标系(每个小正方形的边长为一个单位长度),小球从点P (0,4)出发,撞击桌面边缘(桌壁)发生反弹,反射角等于入射角.若小球以每秒 个单位长度的速度沿图中箭头方向运动,则第82秒时小球所在位置的横坐标为()A .2B .3C .-2D .-3CF EB D A 10 题图-ay =112 题图 16 题图 11.关于x ,y 的二元一次方程组 +2y =的解为正.整.数.,则满足条件的所有整数a 的和为( )5A .1B .-1C .2D .-312.如图,直线AB :y =kx + 3 (k ≠0)分别与x 轴、y 交于A 、B 点,将△ABO 沿AB 边翻折,点O 落到C (4, 2 ),直线CA 与y 轴交于点D ,则BD 的长度为( ) 7A .3+ 3B . 9C . 3+ 3 D . 6 二、填空题:(本题共 6 个小题,每小题 4 分,共 24 分)请把下列各题的正确答案填写在答.题.卡.中对应的横线上.13.64 的算术平方根为.14.将直线 y =3x +1 沿 y 轴向上平移 4 个单位所得到的一次函数解析式为 .15.己知点 P (m +2,8-m )在第四象限,化简 m + 2 - 的结果为.16.如图,在△ABC 中,点 D 是线段 AB 的中点,点 F 将线段 BC 分成 BF :FC =2:3,若四边形 BDEF 的面积是 8,则△CEF 的面积是.17.甲、乙两车在笔直的公路 AB 上行驶,甲车从 A 地,乙车从AB 之间的 C 地同时出发.甲车到达 B 地后立即以原速原路480y (千米)返回 C 地,乙车到达 B 地后停止行驶.在行驶过程中,两车均保持匀速,甲、乙两车之间的距离为 y (千米)与甲车行驶80 的时间 x (小时)之间的关系如图所示,甲、乙两车第二次相 O 遇时,甲车距 A 地千米.4 1317 题图x (小时) 2 2(8 - m )2y B C x O A DA43 2 1 P y B x – 2 ––1O 1 2 34 1–2 –3 D –4 C3– 4–6 54 人数00 908070 6060 50 40 30 20 10 FEG18.如图,在△ABC 中,∠C =30°,点 D 、E 、F 分别在边 BC 、AC 、AB 上,满足 BD =AE =AB ,连接 AD ,BE ,FD ,满足 2∠BDF =∠BAC ,线段 BE 与 FD 交于点 G ,若 BG = 2 ,则 BE =.ABD C18 题图三、解答题:(本大题共2个小题,每小题8分,共16分)请把答案写在答.题.卡.上对应的空白处,解答时每 小题必须给出必要的演算过程或推理步骤.19.计算下列各题:(1) - + 1- - ( 5)2(2) (a 2b - 4ab 2 + b 3 ) ÷ b - (2a + b )220.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少小时”,共有 4 个选项:A .1.5 小时以上;B .1 至 1.5 小时; C .0.5 至 1 小时;D .0.5 小时以下.根据调查结果绘制了图 1、图 2 两幅不完整的统计图:某校抽取的学生平均每天参加体育活动时间的条形统计图某校抽取的学生平均每天参加体育活动时间的扇形统计图1O A B C D 图 1图 2根据统计图,回答下列问题:(1)请将条形统计图补充完整;(2)扇形统计图中,选项 C 对应的圆心角度数是;(3)若该校有 2000 名学生,你估计该校有多少名学生平均每天参加体育活动的时间在 0.5 小时以下?3 - 8 6 B A 30%C D30203) 四、解答题:(本大题共 6 个小题,21 则至 25 题各 10 分,26 题 12 分,共 62 分)解答时每小题必须给出必要的演算过程或推理步骤.21.如图,点 C 在线段 AE 上,BC //DE ,AC =DE ,BC =CE ,延长 AB 分别交 CD 、ED 于点 G 、F .(1)试说明:AB =CD ;(2)若∠D =30°,∠E =65°,求∠FGC 的度数.21 题图22.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进-1(x <3)行应用的过程.小红对函数 y程并解答.(x ≥3) 的图象和性质进行了如下探究,请同学们认真阅读探究过(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象;(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于 y 轴对称;②此函数无最小值;③当 x <3 时,y 随 x 的增大而增大;当 x ≥3 时,y 的值不变. 1(3)若直线 y = x +b 与函数 y 2-1(x <3)(x ≥ 的图象只.有一个交点,求 b 的值.23.对于一个自然数 m = abc (1≤a ≤9,0≤b ≤9,0≤c ≤9 且 a 、b 、c 均为整数),若 3(a +b )+c 能被 13整除,则称 m 为“友好数”.(1)判断 124,356 是否为“友好数”,请说明理由;(2)求大于 170 且不超过 214 的所有“友好数”.24.某超市购进一款新商品,每件成本 10 元,下图是该商品 11 月份的销售图象,其中图 1 是 11 月份该商品日销售量 y (件)与日期 t (日)的函数关系,图 2 是 11 月份一.件.商品的销售利润 z (元)与日期 t (日)的函数关系(其.中.线.段.C .D .∥.x .轴.).经市场部调研,11 月 6 日和 11 月 30 日共销售 330 件,并 获利 3750 元.(注:日销售利润=日销售量×一件商品的销售利润)(1)求 11 月 6 日和 11 月 30 日这两天分别销售该商品多少件?(2)在 12 月 24 日会员日当天,超市决定对商品进行促销,计划在 11 月 24 日售价的基础上打八折销售,结果当天销量比 11 月 24 日销量提高了 50%,所获得的日销售利润比 11 月 30 日增加了 a %,求 a 的值.y (件) 360O624图 1t (日) 30图 2yB CEAxOD 25.如图,在平面直角坐标系中,直线 l 与 x 轴、y 轴分别交于点 A ,B (0,6),与直线 y =-x +3 交于点C (-1,4),直线 y =-x +3 与 x 轴、y 轴分别交于点D 、E ,连接 AE ,在直线 l 上有一动点 P . (1)求直线 l 的解析式;3(2)若 S △PCE = 2S △ACE ,求满足条件的点 P 坐标;(3)在直线 y =-x +3 上是否存在点 Q ,使△BEQ 为等腰三角形,若存在,请求出点 Q 的坐标;若不存在,请说明理由.备用图yB CEAxO D26.在△ABC 中,∠CBA =2∠A ,CD 平分∠ACB 交 AB 于点 D ,H 为 AC 上一点,E 为射线 CB 上一点,且 CH =CE ,速接 EH .(1)如图 1,若点 E 与点 B 重合,∠A =30°,BC =3,求 AH 的长度;(2)如图 2,若 E 为线段 CB 延长线上一点,EH 交 AB 于点 M ,若 M 为 AB 中点,求证:BD =2BE ;(3)如图 3,若点 E 与点 B 取合,∠ACB =120°,CD 与 EH 交于点 G ,ED =7,AD =a ,点 P ,Q 分别是射线 AB 、AC 上两个动点,当 P ,Q 运动时,直接写出(HP +PQ +QD )2 的最小值(用含 a 的代数式表示).(E )图 1图 3。

2020-2021重庆市八年级数学上期中一模试卷带答案

2020-2021重庆市八年级数学上期中一模试卷带答案

2020-2021重庆市八年级数学上期中一模试卷带答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .62.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是( )A .①B .②C .①②D .①②③ 3.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .145.计算()2x y xy x xy --÷的结果为( )A .1yB .2x yC .2x y -D .xy - 6.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形8.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 9.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-10.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 3 11.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4D .以上结果都不对 二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.若分式62m -的值是正整数,则m 可取的整数有_____. 16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有_____个18.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 19.观察下列各式的规律:()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a a b ab a b b b a +++=--…可得到()()2019201820182019a a b ab b a b ++++=-L ______.20.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.三、解答题21.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?22.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?23.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 24.解分式方程: 2216124x x x --=+-. 25.因式分解、计算:(1)a 3-4ab 2;(2)2a 3-8a 2+8a .(3)22142a a a ---(4)3155aa a-+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.3.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===x yxy x xyxy x y x x y xy x x y x yx y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.6.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7.C解析:C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10. 故选C .考点:多边形内角与外角.8.C解析:C【解析】连接OB ,OC ,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB ,∵∠BAC=50°,AO 为∠BAC 的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC ,∴∠ABC=∠ACB=65°.∵DO 是AB 的垂直平分线,∴OA=OB ,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC ,∴直线AO 垂直平分BC ,∴OB=OC ,∴∠OCB=∠OBC=40°,∵将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE 中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 10.C解析:C【解析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x 2•B=32x 5-16x 4,∴B=-8x 3+4x 2∴A+B=-8x 3+4x 2+(-4x 2)=-8x 3故选C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD ,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.15.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m-2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m-2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】解:∵分式62m-的值是正整数,∴m-2=1或2或3或6,∴m=3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m-2是6的约数是解题的关键.16.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm底边是9cm时:不满足三角形的三边关系因此舍去②当底边是4cm腰长是9cm时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.17.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=解析:3【解析】根据条件求出各个角的度数,由此确定哪个三角形是等腰三角形解答:∵在△ABC中,AB=BC,∠A=36°,∴∠ABC=∠ACB =72°,∵BD平分∠ABC,∴∠ABD=∠CBD =36°,∴∠ABD=∠A =36°,∠BDC =72°=∠C,∴△ABD和△BDC都是等腰三角形.故有三个等腰三角形故有三个.点睛:本题主要考查了等腰三角形的判定.利用已知条件求出等角是判断等腰三角形的关键. 18.a<-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a<-2且a≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.【详解】解:方程22x ax-+=1,去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a <-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.19.【解析】【分析】根据已知等式归纳总结得到一般性规律写出所求式子结果即可【详解】归纳总结得:(a−b)(a2019+a2018b+…+ab2019+b2019)=a2020−b2020故答案为:【点睛解析:20202020a b -【解析】【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【详解】归纳总结得:(a−b)(a 2019+a 2018b+…+ab 2019+b 2019)=a 2020−b 2020.故答案为:20202020a b -.【点睛】此题考查多项式乘多项式,平方差公式,解题关键在于找到运算规律.20.6cm 【解析】【分析】根据∠C =90°∠A =30°易求∠ABC =60°而BD 是角平分线易得∠ABD =∠DBC =30°根据△BCD 是含有30°角的直角三角形易求BD 然后根据等角对等边可得AD =BD 从而解析:6cm【解析】【分析】根据∠C =90°,∠A =30°,易求∠ABC =60°,而BD 是角平分线,易得∠ABD =∠DBC =30°,根据△BCD 是含有30°角的直角三角形,易求BD ,然后根据等角对等边可得AD =BD ,从而可求AC .【详解】解:∵∠C =90°,∠A =30°,∴∠ABC =60°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =30°,在Rt △BCD 中,BD =2CD =4cm ,又∵∠A =∠ABD =30°,∴AD =BD =4cm ,∴AC =6cm .故答案为6cm .【点睛】本题考查了角平分线定义、等角对等边、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD ,难度适中.三、解答题21.(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【解析】【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,{BP CQ B C BD PC=∠=∠=,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t=4.533BP==1.5(秒),此时V Q=61.5CQt= =4(cm/s).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P 运动了24×3=72(cm ) 又∵△ABC 的周长为33cm ,72=33×2+6, ∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇. 点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.22.所求的多边形的边数为7,这个多边形对角线为14条.【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n 的值,再根据对角线的计算公式即可得出答案.【详解】设这个多边形的边数为n ,根据题意,得:(n ﹣2)×180°=360°×2+180°,解得 n =7,则这个多边形的边数是7, 七边形的对角线条数为:12×7×(7﹣3)=14(条), 答:所求的多边形的边数为7,这个多边形对角线为14条.【点睛】本题考查了对多边形内角和定理和外角和的应用,注意:边数是n 的多边形的内角和是(n-2)•180°,外角和是360°.23.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去). 代入化简后的式子得原式1125x ==+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键24.原方程无解【解析】【分析】先找出方程的最简公分母,然后方程两边的每一项去乘最简公分母,化为整式方程,再求解,注意分式方程要检验.【详解】方程两边同乘以(x+2)(x-2)得:(x-2)2-(x+2)(x-2)=16 ,解得: x=-2,检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是原方程的增根,原方程无解.【点睛】本题考查了分式方程的解,分式方程的无解条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.25.(1)()()22a a b a b +- (2)()222a a - (3)12a + (4)15 【解析】【分析】(1)先提取公因式,再用平方差公式进行因式分解即可.(2)先提取公因式,再用完全平方公式进行因式分解即可.(3)先同分母,再提取公因式即可.(4)先同分母,再提取公因式即可.【详解】(1)a 3-4ab 2()224a a b =-()()22a a b a b =+-.(2)2a 3-8a 2+8a()2244a a a =-+()222a a =-.(3)22142a a a --- 2224a a a --=- ()()222a a a -=+-12a =+. (4)3155a a a-+15155a a +-= 5a a = 15=. 【点睛】本题考查了因式分解和计算的问题,掌握完全平方公式、平方差公式是解题的关键.。

2020年重庆一中八年级(上)期中数学试卷

2020年重庆一中八年级(上)期中数学试卷

期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.下列各数:-2,,0,π,-,其中无理数的个数是()A. 1B. 2C. 3D. 42.下列说法正确的是()A. 点(4,2)与点(2,4)是同一个点B. 点P(0,3)在x轴上C. 点M(a,a)一定在第一象限D. 坐标轴上的点不在任何一个象限内3.函数y=中自变量x的取值范围是()A. x≥3B. x>3C. x≤3D. x≠34.下列各图能表示y是x的函数的是()A. B.C. D.5.重庆某中学举行健美操比赛,甲、乙两个班各选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是S甲2=1.8,S乙2=2.5,则参赛学生身高比较整齐的班级是()A. 甲班B. 乙班C. 同样整齐D. 无法确定6.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A.B.C.D.7.我校综合实践课程中,手工制作课的同学们用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有56张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,需要y张做盒底,则下列所列方程正确的是()A. B.C. D.8.估计的运算结果应在哪两个连续自然数之间()A. 3和4B. 4和5C. 5和6D. 6和79.关于x、y的二元一次方程组的解满足x+2y=11-3m,则m的值是()A. 3B. -3C. -1D. 110.若点A(a,5)、B(b,-3)都在一次函数y=-(k2+2k+3)x+6(k为常数)的图象上,则a和b的大小关系是()A. a>bB. a<bC. a=bD. 不能确定11.如图所示,等边三角形的边长依次为2,4,6,8,……,其中A1(0,1),A2(-1,1-),A3(1,1-),A4(0,2),A5(-2,2-2),……,按此规律排下去,则A2019的坐标为()A. (673,673-673)B. (-673,673-673)C. (0,1009)D. (674,674-674)12.如图,已知点A的坐标为(-3,9),过点A作x轴的垂线交x轴于点B,连接AO,现将△ABO沿AO折叠,点B落在第一象限的B′处,则直线AB′与x轴的交点D的坐标为()A. (5,0)B. (,0)C. (3,0)D. (,0)二、填空题(本大题共6小题,共24.0分)13.计算7=______.14.若y=(a+3)x+a2-9是正比例函数,则a=______.15.已知一次函数y=3x-b与y=kx(k≠0)图象的交点的坐标是(1,2),则关于x,y的方程组的解为______.16.已知一次函数y=(m+3)x+(2m-5)的图象如图所示,则m的取值范围是______.17.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的倍返回甲地,小天相遇后继续以原速向甲地前行,到达甲地后立即原速返回,直至再次与小明相遇已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地______米.18.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共有______种销售方案.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(2)解不等式组:20.为活跃校园气氛,增强班集体凝聚力,培养学生团结协作意识,重庆一中举行了秋季趣味运动会.赛后为了了解初二年级的学生们对新增比赛项目“毛毛虫赛跑”的喜欢程度(以下称:喜欢度),对该年级的学生进行了调查,被调查的学生对该比赛项目的喜欢度分别记为:5分、4分、3分、2分、1分(其中5分为超喜欢、4分为很喜欢、3分为喜欢、2分为一般、1分为不喜欢),并将调查结果绘制成如下两幅不完整的统计图:请你根据图中提供的信息,回答下列问题:(1)被调查的学生总数是______人,并补全条形统计图;(2)写出被调查学生喜欢度分数的中位数是______分,众数是______分;(3)求这批被调查学生喜欢度分数的平均数.21.探究函数y=的图象和性质.洋洋同学根据学习函数的经验,对函数y=的图象和性质进行了探究,下面是洋洋的探究过程,请补充完成:(1)化简函数解析式:当x≥1时,y=______,当x<1时,y=______;(2)根据(1)的结果,请在所给坐标系中画出函数y=的图象;(直尺画图,不用列表)(3)观察函数图象,请写出该函数的一条性质:______.22.如图,在平面直角坐标系中,直线y=-x+2过点A(-3,m)且与y轴交于点B,点A关于y轴的对称点为点C.过点C且与直线y=x平行的直线交AB于点E,交y轴于点D,连接AD.(1)求直线CD的解析式;(2)求△ADE的面积.23.据农业农村部消息,国内受猪瘟与猪周期叠加影响,生猪供应量大幅减少,从今年6月起猪肉价格连续上涨.一品生鲜超市在6月1日若售出3kg五花肉和5kg排骨,销售额为366元;若售出1kg五花肉和3kg排骨,销售额为186元.(1)6月1日每千克五花肉和排骨的价格各是多少元?(2)6月1日五花肉和排骨的销售量分别为410kg、240kg.由于猪肉价格持续上涨,11月1日五花肉的销售价格在6月1日的基础上增长了2m%,销售量减少了110kg;排骨的销售价格在6月1日的基础上增加了m元,销售量下降了25%,结果11月1日的销售额比6月1日的销售额多5100元,求m的值.24.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到一个新的双子数m′,记F(m)=为“双子数”m的“双11数”.例,m=1313,m′=3131,则F(1313)==8.(1)计算2424的“双11数”F(2424)=______.(2)若“双子数”m的“双11数”的F(m)是一个完全平方数,求F(m)的值;(3)已知两个“双子数”p、q,其中p=,q=(其中1≤a<b≤9,1≤c≤9,1≤d≤9,c≠d且a、b、c、d都为整数),若p的“双11数”F(p)能被17整除,且p、q的“双11数”满足F(p)+2F(q)-(4a+3b+2d+c)=0,令G(p,q)=,求G(p,q)的值.25.在△ABC中,BC的垂直平分线DE交AB于点D,交BC于点E.(1)如图1,∠B=30°,BA=BC,AC=,求BD的长;(2)如图2,连接AE交CD于点F,若F为AE的中点,且满足DA+2DF=DB,求证:∠DAC=∠EFC.26.如图1,在平面直角坐标系中,直线l1:y=x+b与直线l2:y=-x-8交于点A,已知点A的横坐标为-5,直线l1与x轴交于点B,与y轴交于点C,直线l2与y轴交于点D.(1)求直线l1的解析式;(2)将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,过点E作y 轴的垂线l4,若点M为垂线l4上的一个动点,点N为x轴上的一个动点,当CM+MN+NA的值最小时,求此时点M的坐标及CM+MN+NA的最小值;(3)在(2)条件下,如图2,已知点P、Q分别是直线l1、l2上的两个动点,连接EP、EQ、PQ,是否存在点P、Q,使得△EPQ是以点P为直角顶点的等腰直角三角形,若存在,求点P的坐标,若不存在,说明理由.答案和解析1.【答案】B【解析】解:-2,0,都是整数,属于有理数.无理数有、π共2个.故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】D【解析】解:A、点(4,2)与点(2,4)不是同一个点,故此选项错误;B、点P(0,3)在y轴上,故此选项错误;C、点M(a,a)不一定在第一象限,故此选项错误;D、坐标轴上的点不在任何一个象限内,正确.故选:D.直接利用点的坐标性质分别判断得出答案.此题主要考查了点的坐标,正确掌握相关性质是解题关键.3.【答案】A【解析】解:根据题意得:x-3≥0,解得:x≥3.故选:A.根据二次根式的性质,被开方数大于或等于0,可以求出x的取值范围.考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.【答案】C【解析】解:A、对每一个x的值,不是有唯一确定的y值与之对应,不能表示y是x的函数;B、对每一个x的值,不是有唯一确定的y值与之对应,不能表示y是x的函数;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数;D、对每一个x的值,不是有唯一确定的y值与之对应,不能表示y是x的函数;故选:C.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得到结论.本题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.【答案】A【解析】解:∵两个班参赛学生的平均身高都是1.65米,其方差分别是S甲2=1.8,S乙2=2.5,∴S甲2<S乙2,∴参赛学生身高比较整齐的班级是甲班;故选:A.根据方差的定义,方差越小数据越稳定.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【答案】C【解析】【分析】本题考查等腰三角形的性质,以及等腰三角形的面积,可用面积大小关系来解决此题.知道三边的长,可求出BC边上的高,连接AD,△ABC的面积是△ABD面积的2倍,可用面积关系求出DE的长,【解答】解:连接AD,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=CD=×10=5∴AD==12.∵△ABC的面积是△ABD面积的2倍.∴2•AB•DE=•BC•AD,DE==.故选C.7.【答案】B【解析】解:设需要x张做盒身,需要y张做盒底,依题意,得:.故选:B.设需要x张做盒身,需要y张做盒底,根据现有56张这种彩色硬纸板且制作的盒底数是盒身数的2倍,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:(10-)×=10×-×=2-3,由于3<<4,所以6<2<7,所以3<2-3<4.故选:A.根据二次根式的运算法则和无理数的估算方法解答即可.此题主要考查了二次根式的运算和无理数的估算.解题的关键是掌握二次根式的运算法则和无理数的估算方法,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.【答案】B【解析】解:,①-②,得x+2y=2-6m,∵x+2y=11-3m,∴11-3m=2-6m,解得m=-3,故选:B.将已知二元一次方程组相减可得x+2y=2-6m,再由已知得到11-3m=2-6m即可求m的值.本题考查二元一次方程组的解;将二元一次方程组转化为二元一次方程的解是解题的关键.10.【答案】B【解析】解:k2+2k+3=(k+1)2+2.∵(k+1)2≥0,∴(k+1)2+2>0,∴-(k2+2k+3)<0,∴y值随x值的增大而减小.∵5>-3,∴a<b.故选:B.利用配方法可找出-(k2+2k+3)<0,由一次函数的性质可得出y值随x值的增大而减小,结合5>-3,即可得出a<b.本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大,函数从左到右上升”是解题的关键.11.【答案】A【解析】解:∵2019÷3=673,∴顶点A2019是第673个等边三角形的顶点,且在第四象限,横坐标为673,纵坐标为673-673,故选:A.根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A2019的坐标在第四象限即可得到结论.本题考查了规律型-点的坐标,解决本题的关键是观察点的坐标特征寻找规律.12.【答案】D【解析】解:根据翻折可知:∠BAO=∠CAO,∠ABO=∠AB′O=90°,AB′=AB=9,OB′=OB=3,∵AB⊥x轴,∴AB∥y轴,∴∠BAO=∠COA,∴∠CAO=∠COA,∴CA=CO,设CA=CO=x,则CB′=9-x,在Rt△OCB′中,根据勾股定理,得OC2=OB′2+B′C2,即x2=32+(9-x)2,解得x=5,∴OC=5,∴C(0,5),设直线AD解析式为y=kx+b,将A(-3,9),C(0,5)代入,得b=5,-3k+5=9,解得k=-,∴直线AD解析式为y=-x+5,当y=0时,x=,∴D点的坐标为(,0).故选:D.根据对称性得到∠BAO=∠CAO,由AB∥y轴得∠COA=∠BAO,可推出CA=CO,再根据勾股定理即可求得OC,进而求出直线AD解析式即可得结论.本题考查了翻折变换、坐标与图形变化-对称,解决本题的关键是根据勾股定理求得OC 的长.13.【答案】5【解析】解:原式=7-2=5.故答案为:5.直接化简二次根式进而计算得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.14.【答案】3【解析】解:由y=(a+3)x+a2-9是正比例函数,得a2-9=0且a+3≠0.解得a=3,故答案为:3.根据正比例函数的定义,可得方程,根据解方程,可得答案.本题考查了正比例函数的定义,利用正比例函数的定义得出方程是解题关键,注意比例系数不能为零.15.【答案】【解析】解:∵一次函数y=3x-b与y=kx(k≠0)图象的交点的坐标是(1,2),∴方程组的解为,即方程组的解是.故答案为.直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.16.【答案】m<-3【解析】解:∵一次函数y=(m+3)x+(2m-5)的图象在第二、三、四象限,∴,解得m<-3.故答案为m<-3.根据一次函数的图象经过第二、三、四象限判断出函数k及b的符号,得到关于m的不等式组,解不等式组即可.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.17.【答案】738【解析】解:由图象可得小明的速度==60米/分,∴小天的速度=-60=90米/分,∴第一次相遇时间=1+=6分,∵小天到达甲地的时间=+1=10分,∴小天到达甲地时,小明离甲地的距离=60×6-60××(10-7.2)=136米,∴第二次相遇的时间==分,∴在第二次相遇时两人距离乙地=810-90×=738米,故答案为:738.由图象分别求小明和小天的速度,由路程=速度×时间,可求小天到达甲地的时间,小天到达甲地时,小明离甲地的距离,即可求解.本题考查了一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【答案】五【解析】解:设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有,,,,五种方案.故答案为:五.设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.本题考查了三元一次方程和一元一次不等式的应用.分类讨论是解答本题的关键.19.【答案】解:(1)原式=2-1+9+2=12;(2)由①得x≥-1;由②得x<3.所以不等式组的解集为-1≤x<3.【解析】(1)实数的基本运算.搞清楚运算的先后顺序及各种运算的法则;(2)解不等式组.求每个不等式解集的公共部分.此题考查实数的运算、解不等式组等知识点,难度中等.20.【答案】300 3.5 4【解析】解:(1)被调查的学生总数是60÷20%=300(人),则4分的人数为300-(12+60+78+60)=90(人),补全条形图如下:故答案为:300;(2)被调查学生喜欢度分数的中位数是=3.5(分),众数是4分,故答案为:3.5、4;(3)这批被调查学生喜欢度分数的平均数=3.42(分).(1)由5分的人数及其所占百分比可得总人数,总人数减去其它分数度的人数求出4分的人数即可补全图形;(2)根据中位数和众数的概念求解可得;(3)根据加权平均数的定义求解可得.此题考查了扇形统计图和条形统计图,解题的关键是读懂统计图,获得有关信息,在获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】x--x+当x≥1时,y随x增大而增大【解析】解:(1)当x≥1时,y=x-;当x<1时,y=-x+;故答案为:x-;-x+;(2)如图所示;(3)当x≥1时,y随x增大而增大,(答案不唯一),故答案为:当x≥1时,y随x增大而增大.(1)根据绝对值的定义即可得到结论;(2)根据一次函数图象的画法即可得到结论;(3)根据函数的图象即可得到结论.本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确的画出图象是解题的关键.22.【答案】解:(1)∵直线y=-x+2过点A(-3,m),∴m=-×(-3)+2=3,∴A(-3,3),∵点A关于y轴的对称点为点C.∴C(3,3),∵直线CD与直线y=x平行,∴设直线CD的解析式为y=x+b,代入C(3,3)得,3=×3+b,解得b=-2,∴直线CD的解析式为y=x-2;(2)在直线y=-x+2中,令x=0,则y=2,∴B(0,2),在直线y=x-2中,令x=0,则y=-2,∴D(0,-2),∴BD=4,解得,∴E(2,),∴S△ADE=S△ABD+S△EBD==10.【解析】(1)先求得A的坐标,即可求得C的坐标,根据题意设直线CD的解析式为y=x+b,代入C的坐标,根据待定系数法求得即可;(2)根据图象坐标特征求得B、D的坐标,然后解析式联立求得E的坐标,根据S△ADE=S△ABD+S△EBD即可求得.本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,三角形面积等,求得交点坐标是解题的关键.23.【答案】解:(1)设6月1日每千克五花肉的价格为x元,每千克排骨的价格为y 元,依题意,得:,解得:.答:6月1日每千克五花肉的价格为42元,每千克排骨的价格为48元.(2)依题意,得:42(1+2m%)×(410-110)+(48+m)×240×(1-25%)=42×410+48×240+5100,整理,得:12600+252m+8640+168m=33840,解得:m=30.答:m的值为30.【解析】(1)设6月1日每千克五花肉的价格为x元,每千克排骨的价格为y元,根据“一品生鲜超市在6月1日若售出3kg五花肉和5kg排骨,销售额为366元;若售出1kg五花肉和3kg排骨,销售额为186元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.24.【答案】12(1)由题意知,2424的“双11数”F(2424)===12,【解析】解:故答案为12;(2)设“双子数”m的个位数字和十位数字分别为x,y,(0≤x≤9,0<y≤9)则数字m为1000y+100x+10y+x=1010y+101x,∴“双子数”m'为1010x+101y,∴F(m)===2(x+y),∵0≤x≤9,0<y≤9,∴0<x+y≤18,∵F(m)是一个完全平方数,∴2(x+y)是一个完全平方数,∴x+y=2或x+y=8或x+y=18,∴F(m)=2×2=4或16或36,即:F(m)的值为4或16或36;(3)∵“双子数”p,p=,∴F(p)=2(a+b),∵“双11数”F(p)能被17整除,∴a+b是17的倍数,∵1≤a<b≤9,∴3≤a+b<18,∴a+b=17,∴a=8,b=9,∴“双子数”p为8989,F(p)=34,∵“双子数”q,q=,∴F(q)=2(c+d),∵F(p)+2F(q)-(4a+3b+2d+c)=0,∴34+2×2(c+d)-(4×8+3×9+2d+c)=0,∴3c+2d=25,∴d=,∵1≤c≤9,1≤d≤9,c≠d,c、d都为整数,∴c为奇数,1≤c<9,当c=1时,d=11,不符合题意,舍去,当c=3时,d=8,∴“双子数”q为3838,∴G(p,q)====51,当c=5时,d=5,不符合题意,舍去,当c=7时,d=2,∴“双子数”q为7272,∴G(p,q)====17,∴G(p,q)的值为51或17.(1)直接根据“双子数”m的“双11数”的计算方法即可得出结论;(2)设出四位数,进而得出F(m)=2(x+y),再求出0<x+y≤18,再根据F(m)是一个完全平方数,求出x+y,即可得出结论;(3)先根据“双11数”F(p)能被17整除,进而判断出p为8989,求出F(q)=2(c+d),再根据F(p)+2F(q)-(4a+3b+2d+c)=0,得出d=,进而求出c,d,即可得出结论.此题是新定义题目,主要考查了完全平方数,整除问题,理解和运用新定义是解本题的关键.25.【答案】(1)解:作AF⊥CD于F,如图1所示:∵DE是BC的垂直平分线,∴BD=CD,∴∠DCB=∠B=30°,∵BA=BC,∴∠BAC=∠BCA=(180°-30°)=75°,∴∠ACF=75°-30°=45°,∵AF⊥CD,∴△ACF是等腰直角三角形,∴AF=CF=AC=1,∠FAC=45°,∴∠DAF=30°,∴DF=AF=,∴BD=CD=CF+DF=1+;(2)证明:作AG∥DE交CD于G,如图2所示:则∠GAF=∠DEF,∵F为AE的中点,∴AF=EF,在△AFG和△EFD中,,∴△AFG≌△EFD(ASA),∴AG=ED,GF=DF,∵AG∥ED,∴四边形ADEG是平行四边形,∴AD=EG,∠DAG+∠ADE=180°,∵DA+2DF=DB=DC,DC=DF+GF+CG,∴AD=CG=EG,∴∠GEC=∠GCE,∵∠GEC+∠DEG=∠GCE+∠GDE=90°,∴∠DEG=∠GDE,∴DG=EG=CG=AD,∴∠DAG=∠DGA,∵∠DGA+∠CGA=180°,∴∠ADE=∠CGA,在△ADE和△CGA中,,∴△ADE≌△CGA(SAS),∴∠DAE=∠GCA,∵∠DAC=∠DAE+∠CAF,∠EFC=∠GCA+∠CAF,∴∠DAC=∠EFC.【解析】(1)作AF⊥CD于F,由线段垂直平分线的性质得出BD=CD,由等腰三角形的性质得出∠DCB=∠B=30°,∠BAC=∠BCA=75°,求出∠ACF=45°,得出△ACF是等腰直角三角形,得出AF=CF=AC=1,∠FAC=45°,由直角三角形的性质得出DF=AF=,即可得出答案;(2)作AG∥DE交CD于G,则∠GAF=∠DEF,证明△AFG≌△EFD(ASA),得出AG=ED,GF=DF,证出四边形ADEG是平行四边形,得出AD=EG,∠DAG+∠ADE=180°,证明△ADE≌△CGA(SAS),得出∠DAE=∠GCA,进而得出结论.本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、平行四边形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.26.【答案】解:(1)∵点A的横坐标为-5,∴A(-5,-3),将点A代入y=x+b,∴b=4,∴直线l1的解析式y=x+4;(2)l2:y=-x-8与y轴的交点D(0,-8),∵将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,∴E(0,-2),∵过点E作y轴的垂线l4,点D是点C关于直线l4的对称点,作点A关于x轴的对称点A′(-5,3),连接AD′交x轴、l4于点N、M,则此时CM+MN+NA最小,最小值为:A′D,CM+MN+NA=MD+MN+A′N=A′D,A′D==;∴CM+MN+NA的值最小为;(3)存在,理由:设点P、Q的坐标分别为:(m,m+4)、(n,-n-8),过点Q作x轴的平行线交y轴于点M,过点P作PN⊥QM于点N,PN交l4于点K,则△PNQ≌△EKP(AAS),∴PN=KE,QN=PK,即:m+4+n+8=-m,m-n=m+4+2,解得:m=-3,故点P(-3,-).【解析】(1)点A的横坐标为-5,将点A代入y=x+b,即可求解;(2)点D是点C关于直线l4的对称点,作点A关于x轴的对称点A′(-5,3),连接AD′交x轴、l4于点N、M,则此时CM+MN+NA最小,最小值为A′D,即可求解;(3)证明△PNQ≌△EKP(AAS),则PN=KE,QN=PK,即可求解.本题考查的是一次函数综合运用,涉及到三角形全等和相似、点的对称性等等,其中(2),本题提供的用点的对称性,求线段和最值的方法是基本方法.。

2020-2021重庆市初二数学上期中试题及答案

2020-2021重庆市初二数学上期中试题及答案

B. 180 180 3 x x2
C. 180 180 3 x2 x
D. 180 180 3 x2 x
2.已知一个正多边形的内角是 140°,则这个正多边形的
D.6
3.下列关于 x 的方程中,是分式方程的是( ).
A. 3x 1 2
B. 1 2 x
C. x 2 3 x 54
约 2 吨煤,使储存的煤比原计划多用 15 天.若设改进技术前每天烧 x 吨煤,则可列出方程
________.
17.点 P(-2, 3)关于 x 轴对称的点的坐标为_________
18.观察下列各式的规律:
a ba b a2 b2
a b a2 ab b2 a3 b3 a b a3 a2b ab2 b3 a4 b4
D.3x-2y=1
4.李老师开车去 20km 远的县城开会,若 按原计划速度行驶,则会迟到 10 分钟,在保证
安全驾驶的前提下,如果将速度每小时加快 10km,则正好到达,如果设原来的行驶速度为
xkm/h,那么可列分式方程为
A. 20 20 10 x x 10
B. 20 20 10 x 10 x
10.A
解析:A 【解析】 分析: 根据分式的值为 0 的条件:分子为 0 且分母不为 0,得出混合组,求解得出 x 的值. 详解: 根据题意得 :x-2=0,且 x+5≠0,解得 x=2. 故答案为 A. 点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.
11.D
解析:D 【解析】 【分析】 根据轴对称的性质即可解答. 【详解】 ∵△ABC 与△A1B1C1 关于直线 MN 对称,P 为 MN 上任意一点, ∴△A A1P 是等腰三角形,MN 垂直平分 AA1、CC1,△ABC 与△A1B1C1 面积相等, ∴选项 A、B、C 选项正确; ∵直线 AB,A1B1 关于直线 MN 对称,因此交点一定在 MN 上. ∴选项 D 错误. 故选 D. 【点睛】 本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所 连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的 角、线段都相等.

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

2020-2021初二数学上期中一模试卷带答案(1)

2020-2021初二数学上期中一模试卷带答案(1)

2020-2021初二数学上期中一模试卷带答案(1)一、选择题1.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48°2.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .3.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .x x y -B .22x yC .2x yD .3232x y 5.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 6.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠7.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 38.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12± 9.若分式 25x x -+的值为0,则x 的值是( ) A .2B .0C .-2D .-5 10.把代数式2x 2﹣18分解因式,结果正确的是( ) A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9) 11.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xyB .24 x 2y 2C .12 x 2y 2D .6 x 2y 2 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.15.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.20.计算:0113()22-⨯+-=______. 三、解答题21.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =. 22.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.23.如图,P 和Q 为△ABC 边AB 与AC 上两点,在BC 边上求作一点M ,使△PQM 的周长最小.24.为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九()1班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.25.如图,在ABC 中,AB AC =,点D 在ABC 内,BD BC =,DBC 60∠︒=,点E 在ABC 外,BCE 150∠︒=,ABE 60∠︒=.(1)求ADB ∠的度数;(2)判断ABE 的形状并加以证明;(3)连接DE ,若DE BD ⊥,DE 8=,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.2.D解析:D【解析】【分析】根据同底等高判断△ABD 和△ACD 的面积相等,即可得到,即,同理可得△ABC 和△BCD 的面积相等,即. 【详解】∵△ABD 和△ACD 同底等高,,,即△ABC 和△DBC 同底等高,∴∴故A,B,C 正确,D 错误.故选:D.【点睛】 考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.3.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG =40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF ∥EG ,∴∠1=∠DFG =40°,又∵∠A =30°,∴∠2=∠A +∠DFG =30°+40°=70°,故选D .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.4.A解析:A【解析】【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x x x y x y x y=---, B 、224x 4x y y =, C 、()2222x 4222x x y y y == , D 、()()33322232x 243822x x y yy ⨯==, 故选A .本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.5.A解析:A【解析】【分析】A .利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B .利用同底数幂的乘法法则计算得到结果,即可做出判断;C .利用单项式乘单项式法则计算得到结果,即可做出判断;D .利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A .(﹣x 3)2=x 6,本选项正确;B .a 2•a 3=a 5,本选项错误;C .2a •3b =6ab ,本选项错误;D .a 6÷a 2=a 4,本选项错误.故选A .【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.6.D解析:D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.7.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.由题意可知:-4x 2•B=32x 5-16x 4,∴B=-8x 3+4x 2∴A+B=-8x 3+4x 2+(-4x 2)=-8x 3故选C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 9.A解析:A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x 的值. 详解: 根据题意得 :x-2=0,且x+5≠0,解得 x=2.故答案为A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.10.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.11.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.12.B解析:B【解析】【分析】先证得△ABE ≌△ACD ,可得AE =AD ,∠BAE =∠CAD =60°,即可证明△ADE 是等边三角形.【详解】∵△ABC 为等边三角形,∴AB =AC ,∵∠1=∠2,BE =CD ,∴△ABE ≌△ACD ,∴AE =AD ,∠BAE =∠CAD =60°,∴△ADE 是等边三角形,故选B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD =60°再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD ,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.9【解析】∵m −n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m −4mn=1+2(m −n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及 解析:9【解析】∵m −n =2,mn =−1,∴(1+2m )(1−2n )=1−2n +2m −4mn =1+2(m −n )−4mn =1+4+4=9.故答案为9.点睛: 本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数再根据角平分线的定义求出∠ABC+∠ACB 最后利用三角形内角和定理解答即可【详解】解:在△PBC 中∠BPC=130°∴∠PBC+解析:80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m ∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4-解析:4m ≤且2m ≠【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm 底边是9cm 时:不满足三角形的三边关系因此舍去②当底边是4cm 腰长是9cm 时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.18.cm 【解析】【分析】【详解】∵AD 是BC 边上的中线∴BD=CD∵△ABC 的周长为27cmAC =9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD 周长为19cm∴AB解析:cm .【解析】【分析】∵AD 是BC 边上的中线,∴BD=CD ,∵△ABC 的周长为27cm ,AC =9cm ,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅,由此推出50 4.545.5ADM ADF ADG EFD SS S S ==-=-=,从而得出 45.5 4.541AED ADF EFD S S S =-=-=.【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅,∴50 4.545.5ADM ADF ADG EFD SS S S ==-=-=, ∴45.5 4.541AED ADF EFD S S S =-=-=.故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅是解此题的关键.20.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4. 故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.三、解答题21.11x +. 【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷- =2(1)(1)(1)(1)x x x x x x +-⋅-+ =11x +,当1x =时,原式=2. 考点:分式的化简求值.22.问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,依题意,得:3000x-30001.2x=20,解得:x=25,经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.见解析【解析】【分析】利用轴对称图形的性质,作点P关于BC的对称点P′,连接P′Q,交BC于点M,则M是所求的点.【详解】如图,作点P关于BC的对称点P′,连接P′Q,交BC于点M,点M是所求的点.【点睛】本题考查了轴对称的性质,两点之间线段最短的性质.24.九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【解析】【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得: 40004000101.25x x-=, 解得:80x =,经检验,80x =是原方程的解,且符合题意,1.25100x ∴=.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.25.(1) 150°;(2) △ABE 是等边三角形,理由见解析;(3)4【解析】【分析】(1)首先证明△DBC 是等边三角形,推出∠BDC=60°,再证明△ADB ≌△ADC ,推出∠ADB=∠ADC 即可解决问题.(2)结论:△ABE 是等边三角形.只要证明△ABD ≌△EBC 即可.(3)首先证明△DEC 是含有30度角的直角三角形,求出EC 的长,理由全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形,∴DB=DC ,∠BDC=∠DBC=∠DCB=60°,在△ADB 和△ADC 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴△ADB ≌△ADC ,∴∠ADB=∠ADC ,∴∠ADB=12(360°﹣60°)=150°. (2)解:结论:△ABE 是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE ,在△ABD 和△EBC 中, 150AB EB ADB BCE ABD CBE =⎧⎪∠=∠=︒⎨⎪∠=∠⎩,∴△ABD ≌△EBC ,∴AB=BE ,∵∠ABE=60°,∴△ABE 是等边三角形.(3)解:连接DE .∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=12DE=4,∵△ABD≌△EBC,∴AD=EC=4.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质.。

2020-2021重庆第八中学八年级数学上期中一模试题(带答案)

2020-2021重庆第八中学八年级数学上期中一模试题(带答案)

2020-2021重庆第八中学八年级数学上期中一模试题(带答案)一、选择题1.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( ) A .4xB .4x -4C .4x 4D .4x -2.具备下列条件的△ABC 中,不是直角三角形的是( )A .∠A+∠B=∠CB .∠A=12∠B=13∠CC .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C3.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .4.化简2111x x x+--的结果是( ) A .x+1B .11x + C .x ﹣1 D .1x x - 5.如图,△ABC 中,∠BAC =60°,∠C =80°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .20°B .30°C .40°D .70° 6.等腰三角形的一个外角是100°,则它的顶角的度数为( ) A .80°B .80°或50°C .20°D .80°或20°7.若23m =,25n =,则322m n -等于 ( ) A .2725B .910C .2D .25278.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .119.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3B .2C .1D .1-10.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( ) A .﹣8x 3+4x 2 B .﹣8x 3+8x 2C .﹣8x 3D .8x 311.若分式 25x x -+的值为0,则x 的值是( ) A .2B .0C .-2D .-512.已知x m =6,x n =3,则x 2m ―n 的值为( ) A .9B .34C .12D .43二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。

2020-2021学年重庆市巴南区八年级(上)期中数学试卷(附答案详解)

2020-2021学年重庆市巴南区八年级(上)期中数学试卷(附答案详解)

2020-2021学年重庆市巴南区八年级(上)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.下列手机屏幕解锁图案中,不是轴对称图形的是()A. B. C. D.2.在△ABC中,AB=AC,若∠B=72°,则∠A=()A. 72°B. 45°C. 36°D. 30°3.已知△ABC的三边的长分别为3,5,7,△DEF的三边的长分别为3,7,2x−1,若这两个三角形全等,则x的值是()A. 3B. 5C. −3D. −54.一个等腰三角形的两边长分别为2和5,则它的周长为()A. 7B. 9C. 9或12D. 125.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A. 带①②去B. 带②③去C. 带③④去D. 带②④去6.下列说法错误的是()A. 三角形的三条高的交点一定在三角形内部B. 三角形的三条中线的交点一定在三角形内部C. 三角形的三条角平分线的交点一定在三角形内部D. 三角形的三条边的垂直平分线的交点可能在三角形内部,也可能在三角形外部7.如图,在等腰△ABC中,AB=AC,点D、E、F分别是边AB、BC、CA上的点,DE与EF相交于点G,BD=BC,BE=CF,若∠A=40°,则∠DGF的度数为()A. 40°B. 60°C. 70°D. 110°8.若一个正多边形的内角和等于720°,则这个正多边形的边数是()A. 五边B. 六边C. 七边D. 八边9.若等腰三角形的顶角为30°,腰长为6,则此等腰三角形的面积为()A. 36B. 18C. 9D. 310.如图,在等腰△ABC中,AB=AC=5,BC=6,腰上的高BE=4.8,则底边上的中线AD的长为()A. 3.6B. 4C. 4.2D. 4.511.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A. 28°B. 25°C. 22.5°D. 20°12.如图,AB⊥AF,∠B、∠C、∠D、∠E、∠F的关系为()A. ∠B+∠C+∠D+∠E+∠F=270°B. ∠B+∠C−∠D+∠E+∠F=270°C. ∠B+∠C+∠D+∠E+∠F=360°D. ∠B+∠C−∠D+∠E+CF=360°二、填空题(本大题共6小题,共24.0分)13.若点P(2,3)关于y轴的对称点是点P′(a+1,3),则a=______ .14.若等腰三角形的腰长为20,底边为x,则底边x的取值范围为______ .15.某等腰三角形一腰上的高与该腰上的中线重合,若该等腰三角形的顶角为n°,则n=______ .16.如图,∠ABC=58°,AD垂直平分BC,垂足为D,BE平分∠ABD交AD于E,连接CE,若∠AEC=m°,则m=______ .17.如图,点P在Rt△ABC的边BC上,从点P出发的光线PD经过边AC,AB两次反射后恰好回到点P,已知∠A=30°,∠B=90°,若∠CPD=4∠BPE=n°,则n=______ .18.如图,点E、F都在线段AB上,分别过点A、B作AB的垂线AD、BC,连接DE、DF、CE、CF,DF交CE于点G,已知AD=BE=7.5,AE=BF=CB=2.5.如果△DEG的面积为S1,△CFG的面积为S2,则S1−S2=______ .三、解答题(本大题共8小题,共78.0分)19.已知边数为n的多边形的一个外角是m°,内角和是x°,外角和是y°.(1)当x=2y时,求n的值;(2)若x+y+m=2380,求m的值.20.如图,AB=AD,BC=CD,AC与BD相交于点O.(1)求证:BO=DO;(2)若AC=4,BD=3,求多边形ABCD的面积.21.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2,AD、BC相交于点F.(1)求证:∠B=∠D;(2)若AB//DE,AE=3,DE=4,求△ACF的周长.22.如图,已知点A(−2,−2)、B(2,−1)、C(−3,2),△ABC与△A1B1C1关于x轴对称,点A1、B1、C1分别是点A、B、C的对应点,点P是AC与A1C1的交点.(1)画出△A1B1C1,并写出点A1、B1、C1的坐标;(2)连接BB1,求多边形PABB1A1的面积.23.如图,点E在△ABC的中线AD的延长线上,且DE=AD.(1)求证:BE=AC;(2)若AB=3,AC=7,求AD的取值范围.24.如图①,C、F分别为线段AD上的两个动点,BC⊥AD,垂足为C,EF⊥AD,垂足为F,且AB=DE,AF=CD,点G是AD与BE的交点.(1)求证:BG=EG;(2)当C、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.25.如图,在△ABC中,CG⊥AB,垂足为G,点D在CG的延长线上,且CD=AB,连接AD,过点D作AF⊥AD,且AF=AD,连接BF并延长交AC于E.(1)求证:∠1=∠2;(2)若AC=6,EF=1,求△ABC的面积.26.如图,在△ABC与△ADE中,AB⊥AD,AC⊥AE,AB=AD,AC=AE,连接CD、BE,取BE中点F,连接AF.(1)求证:BC=DE;(2)猜想线段AF、CD之间的数量关系,说明理由.答案和解析1.【答案】D【知识点】轴对称图形【解析】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】C【知识点】等腰三角形的性质【解析】解:∵AB=AC,∴∠C=∠B=72°,∴∠A=180°−72°×2=36°.故选:C.作出图形,根据等边对等角即可得到∠C的度数,进而得出∠A的度数.本题考查了等腰三角形的性质,主要利用了等边对等角.3.【答案】A【知识点】全等三角形的性质【解析】解:∵这两个三角形全等,∴2x−1=5,解得,x=3,故选:A.根据全等三角形的对应边相等列出方程,解方程即可..本题考查的是全等三角形的性质,掌握全等三角形对应边相等是解题的关键.4.【答案】D【知识点】三角形三边关系、等腰三角形的性质【解析】解:①若2为腰,则2+2<5,不能构成三角形,此种情况舍去;②若2为底,则5+2>5,能构成三角形,故周长是2+5+5=12.故选D.所给出的边2、5均可以作腰,也可以作底,分两种情况讨论,注意使用三角形三边的关系进行判断.本题考查了等腰三角形的性质、三角形三边的关系,解题的关键是注意分情况讨论.5.【答案】A【知识点】全等三角形的应用【解析】解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.可以采用排除法进行分析从而确定最后的答案.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.6.【答案】A【知识点】线段垂直平分线的概念及其性质、三角形的角平分线、中线和高【解析】解:A、三角形的三条高的交点在三角形内部、外部或顶点上,本选项说法错误,符合题意;B、三角形的三条中线的交点一定在三角形内部,本选项说法正确,不符合题意;C、三角形的三条角平分线的交点一定在三角形内部,本选项说法正确,不符合题意;D、三角形的三条边的垂直平分线的交点可能在三角形内部,也可能在三角形外部,本选项说法正确,不符合题意;故选:A.根据三角形的角平分线、高、中线的定义判断即可.本题考查的是线段垂直平分线的性质、三角形的角平分线、高、中线,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.【答案】C【知识点】等腰三角形的性质、全等三角形的判定与性质【解析】解:∵AB=AC,∠A=40°,∴∠DBE=∠C=12(180°−40°)=70°,在△DBE和△BCF中,{BD=CB∠DBE=∠C BE=CF,∴△DBE≌△BCF(SAS),∴∠BDE=∠CBF,∴∠DGF=∠DBG+∠BDE=∠DBG+∠CBF=∠DBE=70°,故选:C.先由等腰三角形的性质和三角形内角和定理得∠DBE=∠C=70°,再证明△DBE≌△BCF(SAS),得∠BDE=∠CBF,然后由三角形的外角性质即可得出答案.本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质以及三角形内角和定理;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.8.【答案】B【知识点】多边形内角与外角【解析】解:(n−2)×180°=720°,n−2=4,∴n=6.故选:B.根据正多边形的内角和公式(n−2)×180°列方程求解.此题主要考查了多边形的内角和,关键是掌握多边形的内角和为(n−2)×180°.9.【答案】C【知识点】含30°角的直角三角形、等腰三角形的性质【解析】解:如图所示,过B作BD⊥AC于D,∵∠A=30°,AB=6,∴BD=12AB=3,∴S△ABC=12AC×BD=12×6×3=9,故选:C.依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.10.【答案】B【知识点】勾股定理、等腰三角形的性质【解析】解:方法1:如图,∵在等腰△ABC中,AB=AC=5,BC=6,AD是底边上的中线,∴AD⊥BC,且BD=CD=3,在直角△ABD中,由勾股定理得到:AD=√AB2−BD2=√52−32=4.方法2:依题意有:12BC⋅AD=12AC⋅BE,即12×6AD=12×5×4.8,解得AD=4.故选:B.方法1:由等腰三角形的性质推知AD⊥BC,且BD=CD=3,在直角△ABD中,利用勾股定理求得AD的长度即可.方法2:根据三角形的面积是一定的,列出方程计算即可求解.本题主要考查了勾股定理和等腰三角形的性质,注意:此题中“腰上的高BE=4.8”是干扰条件.11.【答案】A【知识点】线段垂直平分线的概念及其性质【解析】解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°−∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.12.【答案】B【知识点】三角形内角和定理、多边形内角与外角【解析】解:连接AD,在△DMA中,∠DMA+∠MDA+∠MAD=180°,在△DNA中,∠DNA+∠NDA+∠NAD=180°,∴∠DMA+∠MDA+∠MAD+∠DMA+∠NDA+∠NAD=360°,∵∠MAD+∠NAD=360°−∠BAF,∴∠DMA+∠DNA+∠MDN+360°−∠BAF=360°,∵AB⊥AF,∴∠BAF=90°,∴∠DMA+∠DNA=90°−∠MDN,∵∠DMA=∠1,∠DNA=∠2,∵∠1=180°−∠B−∠C,∠2=180°−∠E−∠F,∴∠1+∠2=360°−(∠B+∠C+∠E+∠F),∴90°−∠MDN=360°−(∠B+∠C+∠E+∠F),∴∠B+∠C+∠E+∠F−∠MDN=270°.故选:B.分析题意∠DMA=∠1,∠DNA=∠2,然后利用三角形的内角和、等量代换求解即可.本题考查了多边形的内角和,将题目所求转化为三角形的内角和,再运用等量代换是解题的关键.13.【答案】−3【知识点】轴对称中的坐标变化【解析】解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,可得a+1=−2,∴a=−3.故答案为:−3.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a的值.本题主要考查了关于y轴的对称点的坐标特点,点P(x,y)关于y轴的对称点P′的坐标是(−x,y).14.【答案】0<x<40【知识点】三角形三边关系、等腰三角形的性质【解析】解:根据三边关系可知:20−20<x<20+20,即0<x<40.故答案为:0<x<40.由已知条件腰长是20,底边长为x,根据三角形三边关系列出不等式,通过解不等式即可得到答案.本题考查了等腰三角形的性质和三角形的三边关系的运用.列出不等式,通过解不等式求解是正确解答本题的关键.15.【答案】60【知识点】等腰三角形的性质【解析】解:∵等腰三角形一腰上的高与该腰上的中线重合,∴腰与底边相等,∴此三角形为等边三角形,∴等腰三角形的顶角为60°,故答案为:60.由等腰三角形的性质及等边三角形的判定可得出答案.本题考查了等腰三角形的性质及等边三角形的判定与性质,熟练掌握几何图形的性质是解题的关键.16.【答案】119【知识点】线段垂直平分线的概念及其性质【解析】解:∵BE平分∠ABD,∠ABC=58°,∠ABC=29°,∴∠EBC=12∵AD垂直平分BC,∴EB=EC,∠ADC=90°,∴∠C=∠EBC=29°,∴∠AEC=∠ADC+∠C=119°,即m=119,故答案为:119.∠ABC,根据线段垂直平分线的性质得到EB=EC,根据角平分线的定义得到∠EBC=12进而得到∠C=∠EBC=29°,根据三角形的外角性质计算,得到答案.本题考查的是线段垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.【答案】48【知识点】全等三角形的判定与性质【解析】解:由入射角等于反射角可知:∠ADE=∠CDP,∠AED=∠PEB,在Rt△ABC中,∵∠A=30°,∠B=90°,∴∠C=60°,设∠BPE=x,则∠CPD=4∠BPE=4x,∴∠ADE=∠CDP=180°−∠C−∠CPD=180°−60°−4x=120°−4x,∠AED=∠PEB=180°−∠B−∠BEP=180°−90°−x=90°−x,∵∠A+∠ADE+∠AED=180°,∴30°+120°−4x+90°−x=180°,∴4x=48,∴∠CPD=4∠BPE=48°,则n=48.故答案为:48.根据入射角等于反射角∠ADE=∠CDP,∠AED=∠PEB,设∠BPE=x,则∠CPD=4∠BPE=4x,列出等式30°+120°−4x+90°−x=180°,求出x的值,进而可得结论.本题考查了入射角等于反射角问题,解决本题的关键是掌握入射角等于反射角.18.【答案】252【知识点】三角形的面积【解析】解:∵AD=BE=7.5,AE=BF=CB=2.5.∴AF=BE,∴AD=AF=7.5,在△ADE和△BEC中,{AD=BE∠A=∠B=90°AE=BC,∴△ADE≌△BEC(SAS),∴S△DAE=S△CBE,∵S1=S△DAF−S△DAE−S△EFG,S2=S△CBE−S△EFG−S△CBF,∴S1−S2=S△DAE+S△CBF=12×7.5×2.5+12×2.5×2.5=252.故答案为252.由AD=BE=7.5,AE=BF=CB=2.5得出AF=BE=7.5,然后根据三角形面积公式得到S1−S2=S△DAE+S△CBF,计算即可求得结果.本题考查了三角形的面积,三角形全等的判定和性质,证得S1−S2=S△DAE+S△CBF是解题的关键.19.【答案】解:(1)∵多边形的外角和为360°,∴y=360,∵n边形的内角和为(n−2)×180°,∴x=(n−2)×180=180n−360,∵x=2y,∴180n−360=2×360,∴n=6.(2)∵x+y+m=2380,∴180n−360+360+m=2380,即180n+m=2380,∵n边形的一个外角是m°,∴m<180,∵n为正整数,∴n为2380÷180的整数部分,m为2380÷180的余数,∵2380÷180=13⋯⋯40,∴m=40.【知识点】列代数式、代数式求值、多边形内角与外角【解析】(1)根据多边形的外角和定理和多边形的内角和公式列代数式求解即可;(2)把多边形的内角和公式与外角和定理代入所给代数式求解即可,m是小于180的.本题考查了多边形的内角与外角,熟练掌握多边形的内角和公式与外角和定理是解题的关键.20.【答案】解:(1)证明:在△ABC和△ADC中,{AB=AD AC=AC BC=DC,∴△ABC≌△ADC(SSS),∴∠DAO=∠BAO,在△ADO和△ABO中,{AD=AB∠DAO=∠BAO AO=AO,∴△ADO≌△ABO(SAS),∴DO=BO;(2)∵△ADO≌△ABO,∴∠AOD=∠AOB,∵∠AOD+∠AOB=180°,∴∠AOD=∠AOB=90°,∴多边形ABCD的面积=S△ADC+S△ABC=12AC⋅DO+12AC⋅BO=12AC⋅BD=12×4×3=6.【知识点】全等三角形的判定与性质【解析】(1)根据已知条件利用SSS证明△ABC≌△ADC可得∠DAO=∠BAO,再利用SAS 证明△ADO≌△ABO,即可得结论;(2)结合(1)中△ADO≌△ABO可得∠AOD=∠AOB=90°,进而可得多边形ABCD的面积.本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.21.【答案】解:(1)证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠CAB=∠EAD,在△ABC和△ADE中,{AB=AD∠CAB=∠EAD AC=AE,∴△ABC≌△ADE(SAS),∴∠B=∠D;(2)∵AB//DE,∴∠D=∠1,∵∠B=∠D,∴∠1=∠B,∴FA=FB,∴FA+FC=FB+FC=BC,∵△ABC≌△ADE,∴AC=AE=3,BC=DE=4,∴△ACF的周长为:AC+AF+CF=AC+BC=7.【知识点】全等三角形的判定与性质【解析】(1)根据题意利用SAS证明△ABC≌△ADE,即可得结论;(2)根据已知条件可得FA=FB,FA+FC=FB+FC=BC,进而可得△ACF的周长为AC+BC.本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.22.【答案】解:(1)如图所示,△A1B1C1即为所求.由图知,A1(−2,2)、B1(2,1)、C1(−3,−2);(2)∵四边形AA1CC1是矩形,∴对角线交点P的坐标为(−2.5,0),则多边形PABB1A1的面积=S△PAA1+S梯形ABB1A1=12×4×12+12×(2+4)×4=1+12=13.【知识点】作图-轴对称变换【解析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)先根据矩形的性质得出矩形AA1CC1对角线交点P的坐标,再根据多边形PABB1A1的面积=S△PAA1+S梯形ABB1A1列式计算即可.本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.【答案】解:(1)证明:∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,{AD=ED∠ADC=∠EDB CD=BD,∴△ADC≌△EDB(SAS),∴AC=BE;(2)∵AB=3,BE=AC=7,∴7−3<AE<7+3,即4<2AD∠10.∴2<AD<5,∴AD的取值范围是2<AD<5.【知识点】三角形三边关系、全等三角形的判定与性质【解析】(1)根据全等三角形的判定与性质即可证明BE=AC;(2)结合(1)根据三角形三边关系即可得AD的取值范围.本题考查了全等三角形的判定与性质、三角形三边关系,解决本题的关键是掌握全等三角形的判定与性质、三角形三边关系.24.【答案】解:(1)证明:如图①,连接AE,BD,∵BC⊥AD,EF⊥AD,∴∠ACB=∠DFE=90°,∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在Rt△ABC和Rt△DFE中,{AB=DEAC=DF,∴Rt△ABC≌Rt△DFE(HL),∴∠BAC=∠EDF,∴AB//DE,∵AB=DE,∴四边形ABDE是平行四边形,∵平行四边形ABDE的对角线AD与BE相交于点G,∴BG=EG;(2)上述结论能成立,理由如下:如图②,连接AE,BD,∵BC⊥AD,EF⊥AD,∴∠ACB=∠DFE=90°,∵AF=CD,∴AF−FC=CD−FC,∴AC=DF,在Rt△ABC和Rt△DFE中,{AB=DEAC=DF,∴Rt△ABC≌Rt△DFE(HL),∴∠BAC=∠EDF,∴AB//DE,∵AB=DE,∴四边形ABDE是平行四边形,∵平行四边形ABDE的对角线AD与BE相交于点G,∴BG=EG.【知识点】全等三角形的判定与性质【解析】(1)如图①,连接AE,BD,根据AF=CD,可得AF+FC=CD+FC,即AC=DF,可以证明Rt△ABC≌Rt△DFE,再证明四边形ABDE是平行四边形,即可得结论;(2)如图②,连接AE,BD,根据AF=CD,可得AF−FC=CD−FC,即AC=DF,可以证明Rt△ABC≌Rt△DFE,再证明四边形ABDE是平行四边形,即可得结论.本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.25.【答案】(1)证明:∵CG⊥AB,∴∠AGD=90°,∴∠D+∠DAG=90°,∵AF⊥AD,∴∠DAF=90°,∴∠DAG+∠GAF=90°,∴∠ADG=∠GAF,在△ADC和△FAB中,{AD=AF∠ADG=∠GAF DC=AB,∴△ADC≌△FAB(SAS),∴∠1=∠2;(2)解:∵△ADC≌△FAB,∴AC=BF=6,∵EF=1,∴BE=BF+EF=7,∵∠1=∠2,∠BGC=90°,∴∠FEC=∠BGC=90°,∴BE⊥AC,∴S△ABC=12AC×BE=12×6×7=21.【知识点】等腰直角三角形、全等三角形的判定与性质【解析】(1)由直角三角形的性质得出∠ADG=∠GAF,证明△ADC≌△FAB(SAS),由全等三角形的性质得出∠1=∠2;(2)由全等三角形的性质得出AC=BF,求出BE的长,则可求出答案.本题考查了全等三角形的判定与性质,三角形的面积,直角三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.26.【答案】(1)证明:∵AB⊥AD,AC⊥AE,∴∠BAD=∠CAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,∴△BAC≌△DAE(SAS),∴BC=DE.(2)解:结论:CD=2AF.理由:延长F到H,使得FH=AF,连接BH,EH.∵AF=FH,BF=FE,∴四边形ABHE是平行四边形,∴AB=HE=AD,AB//EH,∵AB⊥AD,∴EH⊥AD,∴∠AEH+∠EAD=90°,∵∠EAD+∠CAD=90°,∴∠AEH=∠CAD,在△AEH和△CAD中,{EA=AC∠AEH=∠CAD EH=AD,∴△AEH≌△CAD(SAS),∴AH=CD,∵AH=2AF,∴CD=2AF.【知识点】等腰直角三角形、全等三角形的判定与性质【解析】(1)证明△BAC≌△DAE(SAS),可得结论.(2)结论:CD=2AF.延长F到H,使得FH=AF,连接BH,EH.利用全等三角形的性质证明CD=AH,即可解决问题.本题考查等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

2021重庆一中八年级(上)期中数学试卷

2021重庆一中八年级(上)期中数学试卷

2021-2022学年重庆一中八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑。

1.(4分)下列选项中,属于无理数的是()A.B.3.14C.D.﹣12.(4分)在平面直角坐标系中,点(﹣3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)计算2a2b÷ab的值为()A.2a B.a C.ab D.2b4.(4分)已知(a﹣1)x+2y|a|=3是二元一次方程,则a的值为()A.±1B.1C.﹣1D.25.(4分)估计()×的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间6.(4分)使函数有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0 7.(4分)某手机公司新推出了W10、X10、Y10、Z10四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是()W10X10Y10Z10平均成绩(分)95989698方差3322 A.W10B.X10C.Y10D.Z108.(4分)A、B、C三地位于同一条笔直的直线上,B在A、C之间,甲、乙两人分别从A、B两地同时出发赶往C地,甲、乙两人距C地的距离s(单位:m)与甲运动的时间t(单位:s)之间的关系如图所示.根据图象判断下列说法错误的是()A.A、B两地之间的距离为16mB.甲的速度比乙快4m/sC.甲、乙两人相遇的时间为6sD.2s时,甲、乙两人之间的距离为8m9.(4分)根据如图所示的程序计算函数y的值,若输入x的值为4时,输出的y的值为7,则输入x的值为2时,输出的y的值为()A.1B.2C.4D.510.(4分)直线l1:y=kx+b和l2:y=bx﹣k在同一平面直角坐标系中的图象可能是()A.B.C.D.11.(4分)关于x、y的二元一次方程组的解满足x﹣3y=10+k,则k的值是()A.2B.﹣2C.﹣3D.312.(4分)如图,直线AB:y=﹣x+b与坐标轴交于A、B两点,点C为第一象限内一点,连接BC且BC∥x轴,交直线x=3于点E,连接AC,AE,将△ABC沿着直线AB翻折,得到△ABD,点D正好落在直线x=3上,若S△BDE=2S△ACE=6,那么点C的坐标为()A.(5,3)B.(5,4)C.(,3)D.(,4)二、填空题(本大题共8小题,每小题3分,满分24分)请将正确答案填在答题卡中对应的横线上。

2020-2021学年重庆一中共同体八年级(上)期末数学试卷(附答案详解)

2020-2021学年重庆一中共同体八年级(上)期末数学试卷(附答案详解)

2020-2021学年重庆一中共同体八年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.81的算术平方根是()A. −9B. ±9C. 81D. 92.若分式6xx−5有意义,则x满足的条件是()A. x=5B. x≠5C. x=0D. x≠03.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A. ①B. ②C. ③D. ④4.下列计算正确的是()A. √2⋅√3=√6B. √2+√3=√5C. √4116=214D. √3−√2=15.实数2√6介于()A. 7和8之间B. 6和7之间C. 5和6之间D. 4和5之间6.如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,CE平分∠BCA交AB于点E,AD、CE相交于点F,则∠CFA的度数是()A. 100°B. 105°C. 110°D. 120°7.一个班有40名学生,在一次身体素质测试中,测试结果达到优秀的有18人,合格(但没达到优秀)的有17人,则在这次测试中,测试结果不合格人数的频率是()A. 0.125B. 0.30C. 0.45D. 1.258.下列各式分解因式正确的是()A. 4x2−1=(4x+1)(4x−1)B. a2−a+1=a(a−1+1a)C. 12a−16b+8=4(3a−4b+2)D. x24−x2+1=(x2−1)29.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A. a2−4b2B. (a+b)(a−b)C. (a+2b)(a−b)D. (a+b)(a−2b)10.若x2−2(m+1)x+16是完全平方式,则m的值是()A. 3B. −5C. 3或−5D. ±411.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC=2,BC=3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是()A. 4√13B. 8√10C. 4√13+12D. 8√10+1212.从−7、−5、−3、−1、3、6这六个数中,随机抽取一个数,记为k,若数k使关于x的分式方程k1−x +2=3x−1的解为非负数,那么这6个数中所有满足条件的k的值之和是()A. −4B. 0C. 3D. 6二、填空题(本大题共6小题,共24.0分)13.计算:(−2a3b)2=______.14.为提高服务质量,学校食堂对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序:①绘制扇形统计图;②收集最受学生欢迎菜品的数据;③利用扇形统计图分析出最受学生欢迎的菜品;④整理所收集的数据.请按正确的调查统计顺序重新排序(只填番号):______.15.用直尺和圆规作一个角等于已知角的示意图如图,则可说明∠A′O′B′=∠AOB,其中判断△COD≌△C′O′D′的依据是______(填判定简写,如SAS等).16.要使(x2−x+5)(2x2−mx−4)的展开式中不含x2项,则m的值为______.17.设x、y为实数,且y=4+√5−x+√x−5,则(x+y)(x−y)的平方根是______.18.已知m+n=10,则√m2+25+√n2+49的最小值=______.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(2√6+√12)×√3−12√1;2(2)(x+3)2−(x+2)(x−2).20.某校为进一步落实“素质教育”,决定在七、八两个年级开展面塑、刺绣、雕刻、川剧等四项特色选修课,每个学生必选且只能选一项.学校为了解选择各种特色选修课的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)若该校七、八两个年级的总人数是800人,请估计选择雕刻项目的学生人数.21.如图所示,在△ABC中,AB、AC的垂直平分线分别交BC于点D、E,垂足分别为点M、N.(1)若△ADE的周长为16,求BC的长;(2)若∠BAC=108°,求∠DAE的度数.22.先化简x2−4x+4x+1÷(3x+1+1−x),然后从−2≤x≤3中选择一个你最喜欢的整数作为x的值代入求值.23.对于一个各个数位上的数字均不为0且互不相同的三位自然数M,将该自然数各个数位上的数字两两交换后,得到4个新的三位数abc−=100a+10b+c(含原数)(a、b、c均为1至9之间的整数),当满足|2a+c−b|最大时,称此时的abc−为自然数M的“希望数”,并规定:K(M)=(a2−b2)(a2+c2).例:M=123,将各个数位上的数字两两交换后,得到4个新的三位数:123,213,321,132.因为|2×1+3−2|=3,|2×2+3−1|=6,|2×3+1−2|=5,|2×1+2−3|=1,6>5>3>1,所以213是原三位数123的“希望数”,此时K(M)=(22−12)(22+32)=39.(1)直接写出符合条件的最大的三位自然数M:______.并直接写出将该自然数各个数位上的数字两两交换后,得到的4个新三位数是:______、______、______、______.(2)求:K(168).24.如图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图.小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度.25.在落实“精准扶贫”战略中,三峡库区某驻村干部组织村民依托著名电商平台“拼多多”组建了某土特产专卖店,专门将进货自本地各家各户的A、B两款商品销售到全国各地.2020年10月份,该专卖店第一次购进A商品40件,B商品60件,进价合计8400元;第二次购进A商品50件,B商品30件,进价合计6900元.(1)求该专卖店10月份A、B两款商品进货单价分别为多少元?(2)10月底,该专卖店顺利将两次购进的商品全部售出.由于季节原因,B商品缺货,该专卖店在11月份和12月份都只能销售A商品,且A商品11月份的进货单价比10月份上涨了m元,进价合计49000元;12月份的进货单价又比11月份上涨了0.5m 元,进价合计61200元,12月份的进货数量是11月份进货数量的1.2倍.为了尽快回笼资金,A商品在11月份和12月份的销售过程中维持每件150元的售价不变,到2021年元旦节,该专卖店把剩下的50件A商品打八折促销,很快便售完,求该专卖店在A商品进货单价上涨后的销售总金额为多少元?26.如图,已知Rt△ABC中,∠C=90°,点D是AC上一点,点E、点F是BC上的点,且∠CDF=∠CEA,CF=CA.(1)如图1,若AE平分∠BAC,∠DFC=25°,求∠B的度数;(2)如图2,若过点F作FG⊥AB于点G,连接GC,求证:AG+GF=√2GC.答案和解析1.【答案】D【解析】解:√81=9,所以81的算术平方根是9,故选:D.根据算术平方根的意义求解即可.本题考查算术平方根,理解算术平方根的意义是正确解答的关键.2.【答案】B有意义,【解析】解:∵分式6xx−5∴x−5≠0,∴x≠5,故选:B.直接利用分式有意义的条件得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【答案】C【解析】解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.显然第③中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题转化为数学问题解答是关键.4.【答案】A【解析】解:A、原式=√2×3=√6,所以A选项正确;B、√3与√2不能合并,所以B选项错误;C、原式=√6516=√654,所以C选项错误;D、√3与√2不能合并,所以D选项错误.故选:A.根据二次根式的乘法法则对A进行判断;根据二次根式的性质对C进行判断;根据二次根式的加减法对B、D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.【答案】D【解析】解:∵2√6=√24,∵4<√24<5,∴4<2√6<5,故选:D.根据4<√24<5即可得解.此题考查了估算无理数的大小,正确估算4<√24<5是解题的关键.6.【答案】C【解析】解:在△ABC中,AB=AC,∠BAC=100°,∴∠ACB=(180°−100°)÷2=40°,∵CE平分∠BCA,∴∠BCE=20°,∵AD是BC边上的中线,∴∠ADC=90°,∴∠CFA=90°+20°=110°.故选:C.根据等腰三角形的性质可求∠ACB,根据角平分线的性质可求∠BCE,根据三角形三线合一的性质可求∠ADC,再根据三角形外角的性质可求∠CFA.本题考查了等腰三角形的性质,角平分线的性质,三角形外角的性质,关键是求得∠BCE.7.【答案】A【解析】解:不合格人数为40−18−17=5(人),∴不合格人数的频率是540=0.125,故选:A.先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.本题主要考查了频率与概率,频率是指每个对象出现的次数与总次数的比值(或者百分比).8.【答案】C【解析】解:A.4x2−1=(2x+1)(2x−1),因此选项A不符合题意;B.因式分解在整式的范围内,不能出现分式,因此选项B不符合题意;C.12a−16b+8=4(3a−4b+2),因此选项C符合题意;D.(x2−1)2=x24−x+1,因此选项D不符合题意;故选:C.利用平方差公式,完全平方公式逐个进行判断即可.本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.9.【答案】A【解析】解:根据题意得:(a+2b)(a−2b)=a2−4b2,故选:A.根据图形表示出拼成长方形的长与宽,进而表示出面积.此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.10.【答案】C【解析】解:∵x2−2(m+1)x+16是完全平方式,∴2(m+1)=±8,解得:m=3或m=−5,故选:C.利用完全平方公式的结构特征判断即可确定出m的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.11.【答案】D【解析】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=62+22=40,所以x=2√10,所以风车的外围周长为4(BD+AC)=4(2√10+3)=8√10+12.故选:D.由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.本题考查了勾股定理应用,并注意隐含的已知条件来解答此类题.12.【答案】C【解析】解:分式方程k1−x +2=3x−1变形为:−kx−1+2=3x−1,两边同时乘以(x−1)得:−k+2(x−1)=3,解得x=k+52,∵x−1≠0,即x≠1,∴k+52≠1,∴k≠−3,∵分式方程k1−x +2=3x−1的解为非负数,即k+52为非负数,∴k+52≥0,∴k≥−5,∵k从−7、−5、−3、−1、3、6这六个数中,随机抽取的一个数,∴k可以取−5、−1、3、6,∴所有满足条件的k的值之和是−5−1+3+6=3,故选:C.先解出分式方程,再由x−1≠0和分式方程k1−x +2=3x−1的解为非负数分别列出不等式,求得k的范围,即可知k在−7、−5、−3、−1、3、6这六个数中,可以取的值,从而可求得答案.本题考查解分式方程及不等式,解题的关键是用k的代数式表示x,容易忽略k≠−3.13.【答案】4a6b2【解析】解:(−2a3b)2=(−2)2⋅(a3)2⋅b2=4a6b2,故答案为:4a6b2.积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.本题主要考查了积的乘方,熟记幂的运算法则是解答本题的关键.14.【答案】②④①③【解析】解:正确的调查统计顺序为:②收集最受学生欢迎菜品的数据;④整理所收集的数据;①绘制扇形统计图;③利用扇形统计图分析出最受学生欢迎的菜品;故答案为:②④①③.根据收据的收集、整理及扇形统计图的制作步骤求解可得.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.【答案】SSS【解析】【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形全等的判定.【解答】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以△COD≌△C′O′D′(SSS).故答案为SSS.16.【答案】−6【解析】解:(x2−x+5)(2x2−mx−4)=2x4−mx3−4x2−2x3+mx2+4x+10x2−5mx−20=2x4+(−m−2)x3+(−4+m+10)x2+(4−5m)x−20,∵不含x2项,∴−4+m+10=0,∴m=−6.故答案为:−6.把多项式乘以多项式展开,合并同类项,不含x2项,就让这一项的系数等于0.本题考查了多项式乘以多项式的法则,不含某一项就让这一项前面的系数等于0是解题的关键.17.【答案】±3【解析】解:根据题意得,5−x≥0且x−5≥0,解得x≤5且x≥5,∴x=5,∴y=4,∴(x+y)(x−y)=(5+4)×(5−4)=9,∵±√9=±3,∴(x+y)(x−y)的平方根是±3,故答案为:±3.根据被开方数大于等于列式求出x的值,再求出y的值,然后代入代数式解答即可.本题考查的知识点为:二次根式的被开方数是非负数,平方根的定义,根据x的取值范围求出x的值是解题的关键.18.【答案】2√61【解析】解:如图,∠CAB=∠DBA=90°,AB=10,AC=5,BD=7,设AP=m,BP=n,则PC=√m2+25,PD=√n2+49,∵PC+PD≥CD(当且仅当C、P、D共线时取等号),∴PC+PD的最小值为CD,过D点作DE⊥AC于E,如图,易得四边形ABDE为矩形,∴AE=BD=7,DE=AB=10,在Rt△CDE中,CD=√DE2+CE2=√102+122=2√61,∴√m2+25+√n2+49的最小值为2√61.故答案为2√61.如图,∠CAB=∠DBA=90°,AB=10,AC=5,BD=7,设AP=m,BP=n,则PC=√m2+25,PD=√n2+49,由于PC+PD≥CD(当且仅当C、P、D共线时取等号),所以PC+PD的最小值为CD,过D点作DE⊥AC于E,如图,利用勾股定理计算出CD 得到√m2+25+√n2+49的最小值.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.运用整体代入的方法可简化计算.也考查了最短路径问题和勾股定理.19.【答案】解:(1)原式=2√6×3+√12×3−6√2=6√2+6−6√2=6;(2)原式=x2 +6x+9−(x2−4)=x2 +6x+9−x2 +4=6x+13.【解析】(1)先利用二次根式的乘法法则运算,然后化简后合并即可;(2)先利用乘法公式展开,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:(1)14÷35%=40(名),答:这次活动一共调查了40名学生;(2)选择“雕刻”的有40−14−2−8=16(人),补全的条形统计图如图所示:=320(人),(3)800×1640即该选择雕刻项目的学生约有320人.【解析】(1)从两个统计图可知,“面塑”的频数为14人,占调查人数的35%,可求出调查人数;(2)求出“雕刻”的频数即可补全条形统计图;(3)求出“雕刻”所占得百分比即可.本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是解决问题的关键.21.【答案】解:(1)∵DM和EN分别为AB、AC的垂直平分线,∴AD=BD,EA=EC,∵△ADE的周长为16,∴AD+DE+EA=16,∴BD+DE+EC=16,即BC=16;(2)∵DM和EN分别为AB、AC的垂直平分线,∴AD=BD,EA=EC,∴∠B=∠BAD,∠C=∠EAC,∵∠BAC=108°,∴∠B+∠C=180°−∠BAC=72°,∴∠BAD+∠CAE=∠B+∠C=72°,∴∠DAE=∠BAC−(∠BAD+∠CAE)=108°−72°=36°.【解析】(1)根据线段垂直平分线的性质得到AD=BD,EA=EC,根据三角形周长公式计算即可;(2)根据等腰三角形的性质得到∠B=∠BAD,∠C=∠EAC,根据三角形内角和定理求出∠B+∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.【答案】解:原式=(x−2)2x+1÷[3x+1+(1+x)(1−x)x+1]=(x−2)2x+1÷4−x2x+1=(2−x)2x+1×x+1(2+x)(2−x)=2−x2+x,不等式−2≤x≤3中的所有整数为−2,−1,0,1,2,3.要使分式有意义,则x≠−1,x≠±2,∴当x=0时,原式=2−02+0=1;当x=1时,原式=2−12+1=13;当x=3时,原式=2−32+3=−15.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算即可.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【答案】987 987 897 789 978【解析】解:(1)符合条件的最大的三位自然数M:987.将该自然数各个数位上的数字两两交换后,得到的4个新三位数是:987,897,789,978.故答案是:987; 987,897,789,978.(2)将自然数168各数位上的数字两两交换后得到的4个数分别是:168,618,861,186. ∵|2×1+8−6|=4,|2×6+8−1|=19,|2×8+1−6|=11,|2×1+6−8|=0,且19>11>4>0,∴168的“希望数”是618.∴K(168)=(62−12)(62+82)=3500.(1)最大的三位自然数M 是987,根据“将该自然数各个数位上的数字两两交换后,得到4个新的三位数”填空.(2)根据题意写出符合条件的4个数:168,618,861,186;然后由“希望数”的概念和K(M)=(a 2−b 2)(a 2+c 2)解答.本题考查了数的十进制和因式分解的应用,主要是考查对数字拆分组合的能力,这类题目多需要根据题设进行讨论求解.24.【答案】解:不正确;理由:如答图,延长FC 交AB 于点G ,则CG ⊥AB ,AG =CD =1米,GC =AD =15米,设BG =x 米,则BC =(26−1−x)米,在Rt △BGC 中,∵BG 2+CG 2=CB 2,∴x 2+152=(26−1−x)2,解得x =8,∴BA =BG +GA =8+1=9(米),∴小敏的猜想错误,立柱AB 段的正确长度长为9米.【解析】如答图,延长FC 交AB 于点G ,则CG ⊥AB ,AG =CD =1米,GC =AD =15米,设BG =x 米,则BC =(26−1−x)米,根据勾股定理列方程即可得到结论. 本题考查了勾股定理的应用,正确的作出辅助线是解题的关键.25.【答案】解:(1)设10月份A 商品的进货单价为x 元,B 商品的进货单价为y 元,由题意得:{40x +60y =840050x +30y =6900,解得:{x =90y =80, 答:该店A 、B 两款商品进货单价分别为90元和80元;(2)由题意可得:4900090+m ×1.2=6120090+m+0.5m ,解得:m =8,经检验,m =8是原分式方程的解,故11月份购进的A 商品数量为:4900090+8=500(件),12月份购进的A 商品数量为500×1.2=600(件),(500+600−50)×150+150×0.8×50=163500(元).答:该专卖店在A 商品进货单价上涨后的销售总金额为163500元.【解析】(1)设10月份A 商品的进货单价为x 元,B 商品的进货单价为y 元,根据题意列出二元一次方程组,解之即可得出结果;(2)根据题意列出分式方程,求出m ,进一步求出11月份、12月份购进的A 商品数量,即可得出结果.本题考查了分式方程的应用、二元一次方程组的应用等知识;解答本题的关键是明确题意,列出相应的方程组和分式方程,注意分式方程要检验.26.【答案】解:(1)在△AEC 和△FDC 中,{∠CDF =∠CEA CE =CD ∠C =∠C,∴△AEC≌△FDC(ASA),∴∠EAC =∠DFC =25°,∵AE 平分∠BAC ,∴∠BAC =2∠EAC =50°,∵∠C =90°,∴在Rt △ABC 中,∠B =90°−∠BAC =40°;(2)如图2,过点C 作GC 的垂线交GF 的延长线于点P ,∴∠GCF +∠PCF =90°,∵∠C =90°,∴∠GCF +∠GCA =90°,∴∠PCF =∠GCA ,∵∠C=90°,GF⊥AB,∴∠B+∠BAC=∠B+∠BFG=90°,∴∠BAC=∠BFG.又∵∠PFC=∠BFG,∴∠GAC=∠PFC,由(1)知,△AEC≌△FDC,∴CA=CF,∴△AGC≌△FPC,∴GC=PC,AG=FP,又∵PC⊥GC,∴△GCP是等腰直角三角形,∴GF+FP=GP=√2GC,∴AG+GF=√2GC.【解析】(1)根据全等三角形的性质得到∠EAC=∠DFC=25°,由角平分线的定义得到∠BAC=2∠EAC=50°,根据三角形的内角和定理即可得到结论;(2)如图2,过点C作GC的垂线交GF的延长线于点P,根据余角的性质得到∠PCF=∠GCA,得到∠B+∠BAC=∠B+∠BFG=90°,求得∠GAC=∠PFC,根据全等三角形的性质得到CA=CF,推出△GCP是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造直角三角形是解题的关键.。

2020-2021重庆育才中学八年级数学上期中第一次模拟试卷(带答案)

2020-2021重庆育才中学八年级数学上期中第一次模拟试卷(带答案)

2020-2021重庆育才中学八年级数学上期中第一次模拟试卷(带答案)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°4.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°5.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.40004000210x x-=+B.40004000210x x-=+C.40004000210x x-=-D.40004000210x x-=-6.如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠7.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 8.计算b a a b b a +--的结果是 A .a-bB .b-aC .1D .-1 9.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .1110.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .6 11.若正多边形的内角和是540︒,则该正多边形的一个外角为( ) A .45︒B .60︒C .72︒D .90︒ 12.式子:222123,,234x y x xy 的最简公分母是( )A .24x 2y 2xyB .24 x 2y 2C .12 x 2y 2D .6 x 2y 2二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 15.七边形的内角和为_____度,外角和为_____度. 16.多项式241a +加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 19.已知1m n -=,则222m n n --的值为______.20.在实数范围因式分解:25a -=________.三、解答题21.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?22.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.23.说明代数式2()()()(2)x y x y x y y y ⎡⎤--+-÷-+⎣⎦的值,与y 的值无关.24.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?25.将下列多项式分解因式:(1)22()2()a b a b c c ++++.(2)24()a a b b -+.(3)22344xy x y y --.(4)()2224116a a +-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x 人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x 人,可得:180180 3.2x x -=+ 故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.B解析:B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得, 40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2, ∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A 转化到同一个三角形中是解题的关键.7.C解析:C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.8.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --aa b-=b aa b--=-1,所以答案选择D.【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.9.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.解:∵ED 是AB 的垂直平分线,∴AD=BD ,∵△BDC 的周长=DB+BC+CD ,∴△BDC 的周长=AD+BC+CD=AC+BC=6+4=10.故选C .【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.10.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.11.C解析:C【解析】【分析】根据多边形的内角和公式()2180n -•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.12.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4, ∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y , ∴212xy 和214x y的最简公分母是224x y ,故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母.14.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0, ∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.15.360【解析】【分析】n 边形的内角和是(n ﹣2)•180°把多边形的边数代入公式就得到多边形的内角和任何多边形的外角和是360度【详解】(7﹣2)•180=900度外角和为360度【点睛】已知多边形解析:360【解析】【分析】n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.任何多边形的外角和是360度.【详解】(7﹣2)•180=900度,外角和为360度.【点睛】已知多边形的内角和求边数,可以转化为方程的问题来解决.外角和是一个定植,不随着边数的变化而变化.16.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a 或-4a②当4a2是乘积二倍项时4a4+解析:4a 或4a -或44a【解析】分①4a 2是平方项,②4a 2是乘积二倍项,然后根据完全平方公式的结构解答. 解:①4a 2是平方项时,4a 2±4a+1=(2a±1)2,可加上的单项式可以是4a 或-4a ,②当4a 2是乘积二倍项时,4a 4+4a 2+1=(2a 2+1)2,可加上的单项式可以是4a 4,综上所述,可以加上的单项式可以是4a 或-4a 或4a 4.本题主要考查了完全平方式,注意分4a 2,是平方项与乘积二倍项两种情况讨论求解,熟记完全平方公式对解题非常重要.17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a 由分式方程解为负数得到1-a<0且1-a≠-1解得:a >1且解析:12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析19.1【解析】【分析】利用平方差公式把变形再把m-n=1代入即可得答案【详解】∵m -n=1∴=(m+n)(m -n)-2n=(m+n)-2n=m-n=1故答案为:1【点睛】本题考查整式的运算熟练掌握平方差解析:1【解析】【分析】利用平方差公式把222m n n --变形,再把m-n=1代入即可得答案.【详解】∵m-n=1,∴222m n n --=(m+n)(m-n)-2n=(m+n)-2n=m-n=1,故答案为:1【点睛】本题考查整式的运算,熟练掌握平方差公式并运用整体代入的思想是解题关键.20.【解析】【分析】将5改成然后利用平方差进行分解即可【详解】==故答案为【点睛】本题考查了在实数范围内分解因式把5写成是利用平方差公式进行分解的关键 解析:(a a 【解析】【分析】将5改成2,然后利用平方差进行分解即可. 【详解】25a -=2a -2=(a a +,故答案为(a a .【点睛】本题考查了在实数范围内分解因式,把5写成2是利用平方差公式进行分解的关键. 三、解答题21.(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【解析】【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,{BP CQ B C BD PC=∠=∠=,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t=4.533BP==1.5(秒),此时V Q=61.5CQt= =4(cm/s).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC 的周长为33cm ,72=33×2+6, ∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇. 点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.22.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.23.说明见解析.【解析】试题分析:根据整式的混合运算的法则和顺序,先算完全平方和平方差,然后合并同类项化简,通过关化简可判断.试题解析:原式=()()222222x xy y x yy y -+-+÷-+=x-y+y=x∴代数式的值与y 无关.24.(1)28和2012是神秘数(2)84k +是4的倍数(3)8k 不能整除8k+4【解析】【分析】(1)根据“神秘数”的定义,设这两个连续偶数分别为2m ,2m+2,列方程求出m 的值即可得答案;(2)根据“神秘数”的定义可知(2n)2-(2n-2)2=4(2n-1),即可得答案;(3)由(2)可知“神秘数”是4的倍数,但一定不是8的倍数,而连续两个奇数的平方差一定是8的倍数,即可得答案.【详解】(1)设设这两个连续偶数分别为2m ,2m+2,则根据题意得:(2m+2)2-(2m)2=28,8m+4=28,m=3,∴2m=6,2m+2=8,即82-62=28,∴28是“神秘数”.(2m+2)2-(2m)2=2012,8m+4=2012,m=501,∴2m=1002∴2012是“神秘数”.(2)是;理由如下:∵(2n)2-(2n-2)2=4(2n-1),∴由这两个连续偶数构造的神秘数是4的倍数.(3)由(2)可知“神秘数”可表示为4(2n-1),∵2n-1是奇数,∴4(2n-1)是4的倍数,但一定不是8的倍数,设两个连续的奇数为2n-1和2n+1,则(2n+1)2-(2n-1)2=8n.∴连续两个奇数的平方差是8的倍数,∴连续两个奇数的平方差不是“神秘数”.【点睛】本题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用25.(1)2()a b c ++;(2)()22a b -;(3)()22y x y --;(4)()()222121a a +-.【解析】【分析】 (1)利用完全平方公式进行因式分解;(2)先展开,再利用完全平方公式进行因式分解;(3)先提取公因式-y ,再利用完全平方公式进行因式分解;(4)先利用平方差公式进行分解,再利用完全平方公式继续分解.【详解】解:(1)原式2()a b c =++;(2)原式()222424a ab b a b =-+=-;(3)原式()()222442y x xy yy x y =--+=--; (4)原式()()()()22224144142121a aa a a a =+++-=+-. 【点睛】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

2020-2021重庆市初二数学上期中试题(含答案)

2020-2021重庆市初二数学上期中试题(含答案)

2020-2021重庆市初二数学上期中试题(含答案)一、选择题1.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =12.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .25.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .87.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .x x y -B .22x yC .2x yD .3232x y8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-110.下列图形中,周长不是32 m 的图形是( )A .B .C .D .11.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xyB .24 x 2y 2C .12 x 2y 2D .6 x 2y 2 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4D .以上结果都不对 二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)15.如图,在Rt △ABC 中,∠ACB =90°,∠B=30°,CD 是斜边AB 上的高,AD=3,则线段BD 的长为___.16.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 17.使分式的值为0,这时x=_____.18.若x 2+2mx +9是一个完全平方式,则m 的值是_______19.已知22139273m ⨯⨯=,求m =__________.20.因式分解:x2y﹣y3=_____.三、解答题21.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.22.已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用50天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前18天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键. 2.C解析:C【解析】设原来的行驶速度为xkm/h,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x-=+,故选C.点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP 的等边三角形,则AE=AP=2,在直角△AEB 中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C .【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.7.A解析:A【解析】【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x x x y x y x y=---, B 、224x 4x y y =, C 、()2222x 4222x x y y y == , D 、()()33322232x 243822x x y yy ⨯==, 故选A .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8.A解析:A【解析】分析:先把23m ﹣2n 化为(2m )3÷(2n )2,再求解.详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2.9.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --a a b - =b a a b--=-1,所以答案选择D. 【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.10.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4, ∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y , ∴212xy 和214x y的最简公分母是224x y , 故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母.14.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.15.9【解析】【分析】利用三角形的内角和求出∠A 余角的定义求出∠ACD 然后利用含30度角的直角三角形性质求出AC=2ADAB=2AC 即可【详解】解:∵CD⊥AB∠ACB=90°∴∠ADC=∠ACB=90解析:9【解析】【分析】利用三角形的内角和求出∠A ,余角的定义求出∠ACD ,然后利用含30度角的直角三角形性质求出AC=2AD ,AB=2AC 即可..【详解】解:∵CD ⊥AB ,∠ACB=90°,∴∠ADC= ∠ACB=90°又∵在三角形ABC 中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=12AC,即AC=6 ∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】 本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.16.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0,∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 18.±3【解析】【分析】完全平方公式的灵活应用这里首末两项是x 和3的平方那么中间项为加上或减去x 和3的乘积的2倍【详解】∵是完全平方式∴解得故答案是:【点睛】本题主要考查完全平方公式属于基础题关键是根据 解析:±3【解析】【分析】完全平方公式的灵活应用,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∵229x mx ++是完全平方式,∴223?mx x =±⨯,解得3m =±.故答案是:3±【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.19.8【解析】【分析】根据幂的乘方可得再根据同底数幂的乘法法则解答即可【详解】∵即∴解得故答案为:8【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法熟练掌握幂的运算法则是解答本题的关键解析:8【解析】【分析】根据幂的乘方可得293m m =,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m 创=,∴22321m ++=,解得8m =,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.证明见解析.【解析】【分析】证出AC=DF,由SAS推出△ABC≌△DEF,由全等三角形的性质推出即可.【详解】证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,AB DFA D AC DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS),∴BC=EF.【点睛】本题考查了全等三角形的判定与性质,根据题意找出全等三角形的条件是解决此题的关键.22.2b【解析】【分析】首先根据三角形三边之间的关系得出绝对值里面的数的正负性,然后再进行去绝对值计算,得出答案.【详解】∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|=(b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b23.原计划每天加工20套.【解析】【分析】设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.(1)75天;(2)30天【解析】【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】解:(1)设二号施工队单独施工需要x 天,根据题意得501850518150x---+= 解得:x =75经检验,x =75是原方程的解答:由二号施工队单独施工,完成整个工期需要75天.(2)设此项工程一号、二号施工队同时进场施工,完成整个工程需要y 天,根据题意得 111+=y 5075⎛⎫÷ ⎪⎝⎭, 解得y=30(天)经检验y=30是原方程的根,∴此项工程一号、二号施工队同时进场施工,完成整个工程需要30天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.见解析【解析】试题分析:(1)根据角平分线性质可证ED =EC ,从而可知△CDE 为等腰三角形,可证∠ECD =∠EDC ;(2)由OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,OE =OE ,可证△OED ≌△OEC ,可得OC =OD ;(3)根据ED =EC ,OC =OD ,可证OE 是线段CD 的垂直平分线.试题解析:证明:(1)∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴ED =EC ,即△CDE 为等腰三角形,∴∠ECD =∠EDC ;(2)∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴∠DOE =∠COE ,∠ODE =∠OCE =90°,OE =OE ,∴△OED ≌△OEC (AAS ),∴OC =OD ;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.点睛:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.。

2020-2021八年级数学上期中试卷附答案(5)

2020-2021八年级数学上期中试卷附答案(5)

2020-2021八年级数学上期中试卷附答案(5)一、选择题1.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 2.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠ 3.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 4.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .25.化简2111x x x+--的结果是( ) A .x+1 B .11x + C .x ﹣1 D .1x x - 6.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°7.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .710.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b11.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 12.已知a b 3132==,,则a b 3+的值为( ) A .1B .2C .3D .27 二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是_____.16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.18.若分式67x--的值为正数,则x 的取值范围_____. 19.计算:0113()22-⨯+-=______.20.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____. 三、解答题21.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)22.某地有两所大学和两条相交叉的公路,如图所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;25.已知a =23b =23求下列各式的值:(1)a 2+2ab +b 2 (2)a 2-b 2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.2.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】 解:要使分式13a +有意义, 则a +3≠0,解得:a ≠-3.故选:B .【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键. 3.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===xy xy x xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.A解析:A【解析】 试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A .5.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】解:原式=2211(1)(1)1 1111x x x xxx x x x-+--===+ ----故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.6.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.7.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.10.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.11.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.12.B解析:B【解析】分析:由于3a×3b=3a+b,所以3a+b=3a×3b,代入可得结论.详解:∵3a×3b=3a+b∴3a+b=3a×3b=1×2=2故选:B.点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.二、填空题13.60【解析】【分析】首先连接AB由题意易证得△AOB是等边三角形根据等边三角形的性质可求得∠AOB的度数【详解】连接AB根据题意得:OB=OA=AB∴△AOB是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC的距离都相等从而可得到△ABC的面积等于周长的一半乘以OD然后列式进行计算即可求解【详解】解:如图连接OA作OE⊥AB解析:33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S △ABC =S △BOC +S △AOB +S △AOC =111222BC OD AC OF AB OE ⋅+⋅+⋅ =()12BC AC AB OD ++⋅ =12×22×3=33. 故答案为:33.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a 由分式方程解为负数得到1-a<0且1-a≠-1解得:a >1且解析:12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析17.180°【解析】∵将△ABC 三个角分别沿DEHGEF 翻折三个顶点均落在点O 处∴∠B=∠HOG∠A=∠DOE∠C=∠EOF∠1+∠2+∠HOG+∠EOF+∠DOE=360°∵∠HOG+∠EOF+∠DO解析:180°【解析】∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°, ∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.19.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4. 故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.20.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶 解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS ); ③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此, 只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.三、解答题21.(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.22.见解析【解析】【分析】作∠AOB 的角平分线与线段MN 的垂直平分线的交点即所求仓库的位置.【详解】如图所示:点P 即为所求,【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—应用与设计作图,解题关键在于掌握作图法则.23.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.证明见解析.【解析】试题分析:欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了. 试题解析:证明:∵在△ABD 和△CBD 中,AB=CB ,AD=CD ,BD=BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .25.(1)16;(2)【解析】【分析】(1)用完全平方公式将原式变形为2()a b +,然后代入求值;(2)用平方差公式将原式变形为()()a b a b +-,然后代入求值.【详解】解:(1)a 2+2ab +b 22()a b =+2(22=++-16=(2)a 2-b 2()()a b a b =+-(222=++-+-+4=⨯=【点睛】本题考查代数式求值及二次根式的混合运算,掌握完全平方公式和平方差公式将原式正确变形,然后代入计算是解题关键.。

2020-2021学年重庆市沙坪坝区八年级上期中考试数学模拟试卷及答案解析

2020-2021学年重庆市沙坪坝区八年级上期中考试数学模拟试卷及答案解析

第 1 页 共 29 页
2020-2021学年重庆市沙坪坝区八年级上期中考试数学模拟试卷
一.选择题(共12小题,满分48分,每小题4分)
1.(4分)在3.14159,4,1.1010010001…,4.2⋅1⋅,π,
132中,无理数有( ) A .1个
B .2个
C .3个
D .4个 2.(4分)函数y =x √x+3的自变量x 的取值范围是( ) A .x >﹣3 B .x ≠﹣3 C .x ≥﹣3 D .x >﹣3且x ≠0
3.(4分)点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的
坐标为( )
A .(5,﹣3)
B .(﹣5,3)
C .(3,﹣5)
D .(﹣3,5)
4.(4分)如图,一架云梯AB 长为25米,顶端A 靠在墙AC 上,此时云梯底端B 与墙角C
距离为7米,云梯滑动后停在DE 的位置上,测得AE 长为4米,则云梯底端B 在水平方向滑动了( )米
A .4
B .6
C .8
D .10 5.(4分)估计√15×(3√5+2√15)的值应在( )
A .5和6之间
B .6和7之间
C .7和8之间
D .8和9之间
6.(4分)同一平面直角坐标系中,一次函数y =mx +n 与y =nx +m (mn 为常数)的图象可
能是( )
A .
B .。

2020-2021初二数学上期中一模试卷及答案

2020-2021初二数学上期中一模试卷及答案

2020-2021初二数学上期中一模试卷及答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 2.下列各式中,分式的个数是( )2x ,22a b +,a b π+,1a a +,(1)(2)2x x x -++,b a b+.A .2B .3C .4D .53.分式可变形为( )A .B .C .D .4.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .85.一个多边形的每个内角均为108º,则这个多边形是( ) A .七边形 B .六边形 C .五边形 D .四边形 6.已知x 2+mx+25是完全平方式,则m 的值为( ) A .10B .±10 C .20D .±20 7.化简2111x x x+--的结果是( ) A .x+1B .11x + C .x ﹣1 D .1x x - 8.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A 29B 34C .2D 419.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为 A .()16040018x 120%x++= B .()16040016018x 120%x-++= C .16040016018x 20%x-+= D .()40040016018x 120%x-++= 10.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( ) A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 311.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( ) A .x+y+z=0 B .x+y-2z=0 C .y+z-2x=0 D .z+x-2y=0 12.已知a b 3132==,,则a b 3+的值为( ) A .1B .2C .3D .27二、填空题13.在代数式11,,52x xx +中,分式有_________________个. 14.若分式方程1133a x x x -+=--有增根,则 a 的值是__________________. 15.使分式的值为0,这时x=_____.16.若x 2+2mx +9是一个完全平方式,则m 的值是_______ 17.当x =_________时,分式33x x -+的值为零. 18.若关于x 的分式方程111x xm +--=2有增根,则m =_____. 19.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 20.如图,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD =2,AD =3,则图中阴影部分的面积是_______.三、解答题21.已知a 、b 、c 是三角形三边长,试化简:|b +c ﹣a |+|b ﹣c ﹣a |+|c ﹣a ﹣b |﹣|a ﹣b +c |.22.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =-.23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套? 24.尺规作图:用直尺和圆规作图,不写作法,保留痕迹. 已知:如图,线段a ,h .求作:△ABC ,使AB=AC ,且∠BAC=∠α,高AD=h .25.已知a =23b =23求下列各式的值: (1)a 2+2ab +b 2 (2)a 2-b 2【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形; B 选项中该图形是轴对称图形不是中心对称图形; C 选项中既是中心对称图形又是轴对称图形; D 选项中是中心对称图形又是轴对称图形. 故选B .考点: 1.轴对称图形;2.中心对称图形.2.B解析:B 【解析】 【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】22a b +, a bπ+的分母中均不含有字母,因此它们是整式,而不是分式;bab+的分子不是整式,因此不是分式.2 x ,1aa+,()()122x xx-++的分母中含有字母,因此是分式.故选B.【点睛】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以a bπ+不是分式,是整式.3.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.4.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.5.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.6.B解析:B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.7.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】解:原式=2211(1)(1)1 1111x x x xxx x x x-+--===+ ----故选:A.本题考查了分式的加减法,掌握计算法则是解题关键.8.D解析:D 【解析】解:设△ABP 中AB 边上的高是h .∵S △P AB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =22AB AE + =2254+=41,即P A +PB的最小值为41.故选D .9.B解析:B 【解析】试题分析:由设原计划每天加工x 套运动服,得采用新技术前用的时间可表示为:160x天,采用新技术后所用的时间可表示为:()400160120%x -+天。

重庆市2020-2021学年上期第一阶段考试八年级数学试题

重庆市2020-2021学年上期第一阶段考试八年级数学试题

重庆市2020-2021学年上期第一阶段考试八年级数学试题一、选择题:(本大题12个小题,每小题4分,共48分)。

1.等腰三角形的两边长分别为3和6,则其周长为()A. 12B. 15C. 12或15D.不确定2.如图所示,三角形纸片被正方形纸片挡住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A. SSSB. SASC. AASD.ASA3.一个n边形的每一个外角都是45°,则n等于()A. 5B. 6C. 7D.84.如图,∠1=45°,∠3=100°,则∠2的度数为()A.45°B.50°C.55°D.60°5.如图,ΔABC≌ΔDEF,BC=7,EC=4,则CF的长为()A.2B. 3C. 5D. 72题图4题图5题图6.在ΔABC中,若一个内角等于另外两个内角的差,则这个三角形必定是()A.锐角三角形B.直角三角形C.钝角三角形D.以上三个都不是7.如图,ΔABBC≌ΔCDE,则线段AC和线段CE的关系是()A. 既不相等也不互相垂直B. 相等但不一定垂直C. 互相垂直但不相等D. 相等且互相垂直8.如图,已知AE=AC,∠C=∠E,下列条件中无法判定ΔABC≌ΔADE的是()A. ∠B=∠DB. BC=DEC. ∠1=∠2D. AB=AD9.如图,ΔABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A. 80°B. 82.5°C. 90°D. 85°7题图8题图9题图10.如图,点C、E分别在BD、AC上,AC⊥BD,且AB=DE,AC=CD,则下列结论错误的是()A.AE=CEB. ∠A=∠DC. ∠EBC=45°D. AB⊥D11.将ΔABC纸片沿DE按如图的方式折叠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021重庆市一中初二数学上期中一模试卷(附答案)一、选择题1.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°2.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定 3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .144.计算()2x y xy x xy --÷的结果为( )A .1yB .2x yC .2x y -D .xy - 5.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 7.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°8.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º9.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.510.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .11 11.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 12.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.如图,在ABC ∆中,B Ð与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 18.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 19.若关于x 的分式方程111x xm +--=2有增根,则m =_____. 20.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.三、解答题21.如图,点A ,F ,C ,D 在同一直线上,点B 与点E 分别在直线AD 的两侧,且AB =DE,∠A=∠D,AF=DC,求证:BC=EF.22.已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.23.先化简,再求值:222444211x x x xxx x⎛⎫-++++-÷⎪--⎝⎭,其中x满足2430x x-+=.24.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.25.先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中a=3,b=﹣13.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.2.C解析:C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.考点:三角形的面积;三角形的角平分线、中线和高.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===x y xyx xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.5.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式. 6.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.8.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.9.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.10.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键. 11.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.12.D解析:D【分析】根据轴对称的性质即可解答.【详解】∵△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,∴△A A1P是等腰三角形,MN垂直平分AA1、CC1,△ABC与△A1B1C1面积相等,∴选项A、B、C选项正确;∵直线AB,A1B1关于直线MN对称,因此交点一定在MN上.∴选项D错误.故选D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n <2且3n 2≠- 【解析】分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数再根据角平分线的定义求出∠ABC+∠ACB 最后利用三角形内角和定理解答即可【详解】解:在△PBC 中∠BPC=130°∴∠PBC+解析:80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m ∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠ 【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k 解得x=6-k≠3解析:k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键. 18.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.19.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m 的值【详解】解:去分母得:m ﹣1=2x ﹣2由分式方程有增根得到x ﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m 的值.【详解】解:去分母得:m ﹣1=2x ﹣2,由分式方程有增根,得到x ﹣1=0,即x =1,把x =1代入得:m ﹣1=0,解得:m =1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅V V V V ,由此推出50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,从而得出45.5 4.541AED ADF EFD S S S=-=-=V V V .【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅V V V V ,∴50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,∴45.5 4.541AED ADF EFD S S S=-=-=V V V .故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅V V V V 是解此题的关键.三、解答题21.证明见解析.【解析】【分析】证出AC =DF ,由SAS 推出△ABC ≌△DEF ,由全等三角形的性质推出即可.【详解】证明:∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,在△ABC 和△DEF 中,AB DF A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BC =EF .【点睛】本题考查了全等三角形的判定与性质,根据题意找出全等三角形的条件是解决此题的关键.22.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解:①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系. 综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.23.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去). 代入化简后的式子得原式1125x ==+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键24.问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】【分析】问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,依题意,得:3000x-30001.2x=20,解得:x=25,经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.-2.【解析】试题分析:解题关键是化简,然后把给定的值代入求值.试题解析:(a+b)(a-b)+(a+b)2-2a2,=a2-b2+a2+2ab+b2-2a2,=2ab,当a=3,b=-13时,原式=2×3×(-13)=-2.考点:整式的混合运算—化简求值.。

相关文档
最新文档