[经济学]第三章 时间序列分析法
《计量经济学》3.3时间序列分析
3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。
它是系统中某一变量受其它各种因素影响的总结果。
(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。
它不研究事物之间相互依存的因果关系。
(3)假设基础:惯性原则。
即在一定条件下,被预测事物的过去变化趋势会延续到未来。
暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。
近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。
(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。
时间序列的预测和评估技术相对完善,其预测情景相对明确。
尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。
2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。
(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
(3)随机性:个别为随机变动,整体呈统计规律。
(4)综合性:实际变化情况一般是几种变动的叠加或组合。
预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。
3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。
(1)随机性:均匀分布、无规则分布,可能符合某统计分布。
(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。
)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。
样本序列的自相关函数只是时间间隔的函数,与时间起点无关。
其具有对称性,能反映平稳序列的周期性变化。
特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。
时间序列分析法
于是可得t=21时的直线趋势预测模型为:
预测1999年该商场的年销售额为:
二次移动平均预测法的特点: 1、对有明显趋势变动的市场现象,二次移动平均 预测法是很适应。 2、二次移动平均预测模型其截距at和斜率bt的确 定,是以一次和二次移动平均值为依据的,且 各期的截距和斜率是变化的,这样就保留了市 场现象客观存在的波动。 3、最后一个at和bt值是固定的,不但可以用于短 期预测,也可用于远期预测,因此比一次移动 平均法的适用面更广。
一次移动平均预测法
是对时间序列按一定跨越期,移动计算观察值的 算术平均数,其平均数随着观察值的移动而向后 移动,并作为下一期的预测值。
预测模型:
X t X t 1 X t 2 X t n 1 i t n 1 Ft 1 n n
一次移动平均预测法适用于: 基本呈水平型变动,又有些波动的时间序列。
t n 1
n
t t
F a bT
t T
二次移动平均法参数Fra biblioteka 2 M t Mt
(1)
( 2)
(1) (2) 2 (M M ) b t n 1 t
一次与二次移动平均预测值及其误差比较
(1) (2) (3) 期数 实际值 M(1)
n=3
(4) (5) (6) (7) (8) 误差 M(2) 误差 总预测 误差 值 (2)-(3) n=3 (3)-(5) (2)-(7) (3)+(6)
算术平均法
算术平均法是求出一定观察期内预测目标的时间数列的算术平均数作 为下期预测值的一种最简单的时序预测法。 常用的有简单算术平均法和加权算术平均法。 算术平均法是简易平均法中的一种。 设:X1,X2,X3,... ,Xn为观察期的n个资料,求得n个资料的 算术平均数的公式为: X=(X1+X2+X3+...Xn)÷n 或简写为: X(平均数)=∑x÷n 式中:n为资料期数(数据个数) 运用算术平均法求平均数,进行市场预测有两种形式: (一)以最后一年的每月平均值或数年的每月平均值,作为次年 的每月预测值。 (二)以观察期的每月平均值作为预测期对应月份的预测值。
计量经济学中的时间序列分析
计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。
通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。
本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。
一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。
在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。
时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。
通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。
二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。
在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。
趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。
三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。
移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。
四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。
在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。
时间序列分析第三章平稳时间序列分析
注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。
所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。
目前对平稳序列最常用的预测方法是线性最小方差预测。
线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。
在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。
二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。
时间序列数据分析的方法与应用
时间序列数据分析的方法与应用时间序列数据是指按照时间顺序记录的一系列数据,根据时间序列数据可以分析出数据的趋势、周期和季节性等特征。
时间序列数据分析是一种重要的统计方法,广泛应用于经济学、金融学、气象学、交通运输等领域。
时间序列数据的特点是有时间的先后顺序,时间上的变化会对数据产生影响。
时间序列数据分析一般包括两个主要步骤:模型识别与模型估计。
模型识别是指根据时间序列数据的特点来选择适当的模型,而模型估计是指利用已有的时间序列数据对模型中的参数进行估计。
下面主要介绍时间序列数据分析的方法和应用。
一、时间序列数据分析的方法1.时间序列图时间序列图是最简单、直观的分析方法,通过画出时间序列数据随时间的变化趋势,可以直观地观察到数据的趋势、季节性和周期性等信息。
2.平稳性检验平稳性是时间序列数据分析的基本假设,平稳时间序列具有恒定的均值和方差,不随时间而变化。
平稳性检验是为了验证时间序列数据是否平稳,常用的平稳性检验方法有ADF检验和KPSS检验等。
3.拟合ARIMA模型在时间序列数据分析中,ARIMA模型是一种常用的预测模型,它是自回归移动平均模型的组合,用来描述时间序列数据的自相关和滞后相关关系。
通过对已有的时间序列数据进行拟合ARIMA模型,可以得到时间序列数据的参数估计,从而进行未来的预测。
4.季节性调整时间序列数据中常常存在季节性变动,为了剔除季节性影响,可以进行季节性调整。
常用的季节性调整方法有季节性指数法和X-11法等。
5.平滑法平滑法是一种常用的时间序列数据分析方法,通过计算移动平均值或指数平滑法对数据进行平滑处理,可以减小数据的波动性,更好地观察到数据的趋势和周期性。
二、时间序列数据分析的应用1.经济学领域时间序列数据在宏观经济学和微观经济学中有广泛的应用。
例如,对GDP、通胀率、失业率等经济指标进行时间序列数据分析,可以发现经济的周期性波动和长期趋势,为经济政策的制定提供参考。
2.金融学领域金融市场中的价格、交易量等数据都是时间序列数据,通过时间序列数据分析可以揭示金融市场的规律。
经济学毕业论文中的时间序列分析方法
经济学毕业论文中的时间序列分析方法时间序列分析是经济学研究中常用的一种方法,用于分析经济数据中的时间变化趋势和周期性。
在经济学毕业论文中,时间序列分析方法被广泛应用于研究经济变量的发展趋势、预测未来趋势以及评估政策的效果。
本文将介绍几种常用的时间序列分析方法,并以一个具体的经济学例子来说明其应用。
一、移动平均法移动平均法是一种常见的时间序列分析方法,常用于平滑并展示时间序列的趋势。
该方法通过对观测值进行平均计算,得到移动平均值,从而消除随机波动和短期波动对趋势分析的干扰。
移动平均法可以分为简单移动平均和加权移动平均两种。
简单移动平均是对一定时间段内的数据进行求和平均,例如我们可以计算过去5年的简单移动平均来观察某个经济变量的长期趋势。
加权移动平均则是对不同时间段内的数据进行加权平均,常用于对近期数据赋予更高的权重。
二、指数平滑法指数平滑法也是常用的时间序列分析方法,用于对时间序列的趋势进行预测。
该方法基于历史数据赋予不同权重,通过不断调整权重来预测未来的趋势。
简单指数平滑是最常见的一种指数平滑法,它通过对观测值进行加权平均来估计下一个时期的值。
简单指数平滑法的核心公式如下:\[\hat{Y}_{t}=\alpha Y_{t-1}+(1-\alpha)\hat{Y}_{t-1}\]其中,\(\hat{Y}_{t}\)表示预测值, \(Y_{t-1}\)表示上一个观测值,\(\hat{Y}_{t-1}\)表示上一个时期的预测值,\(\alpha\)表示平滑系数。
三、自回归移动平均模型(ARMA)自回归移动平均模型是一种更为复杂的时间序列分析方法,用于描述时间序列变量的动态特征。
ARMA模型结合了自回归模型(AR)和移动平均模型(MA),可以更准确地描述时间序列的变化。
AR模型是指时间序列变量与其自身的滞后值之间存在相关性。
MA模型是指时间序列变量与其滞后的随机误差之间存在相关性。
ARMA模型的核心思想是通过计算滞后值和误差来建立预测模型。
经济学技巧分析经济数据的方法
经济学技巧分析经济数据的方法经济学作为一门社会科学,研究着人类社会中生产、分配和消费等经济活动的规律。
经济数据是经济学研究中不可或缺的重要资源,它们反映了经济现象的发展和变化。
如何准确分析经济数据,发现其中的规律与趋势,是经济学者和决策者必须具备的关键能力。
本文将介绍几种经济学技巧,帮助读者更好地分析经济数据。
一、时间序列分析时间序列分析是一种常用的经济学技巧,用于研究同一经济变量在时间上的演变规律。
通过构建数学模型,分析历史数据的趋势、周期性和季节性等特征,可以预测未来的经济走势。
时间序列分析常用的工具包括移动平均法、指数平滑法、趋势分析法等。
1. 移动平均法移动平均法是一种平滑时间序列数据的方法,通过计算一定时间段内的均值来消除随机波动,关注数据的长期趋势。
常用的移动平均法包括简单移动平均法和加权移动平均法。
简单移动平均法适用于数据波动较小的情况,而加权移动平均法则能更好地反映数据的变动趋势。
2. 指数平滑法指数平滑法是一种较为简单有效的时间序列分析方法,它基于最近数据的权重较大,随着时间的推移,旧数据的权重逐渐减小。
通常采用的指数平滑法包括简单指数平滑法和双指数平滑法,可以灵活地预测未来的数据走势。
3. 趋势分析法趋势分析法是一种通过拟合趋势线来判断时间序列数据变化趋势的方法。
常用的趋势线包括线性趋势线、指数趋势线和多项式趋势线等。
趋势分析法能够揭示出数据的长期变动趋势,并对趋势进行预测。
二、横截面分析横截面分析是一种通过搜集和比较不同个体在同一时间点上的数据来研究经济问题的方法。
横截面数据一般反映了某一时期内各个经济个体的特征和状况。
横截面分析常用的方法包括相关分析、回归分析和因子分析等。
1. 相关分析相关分析是一种用来研究两个或多个变量之间相关关系的统计方法。
通过计算相关系数,可以判断变量之间的线性关系强度和方向。
相关分析能够帮助经济学家发现变量之间的关联性和影响。
2. 回归分析回归分析是一种通过建立经济模型,研究因变量与自变量之间的关系的方法。
时间序列分析法概述
时间序列分析法概述时间序列分析是指对时间序列数据进行统计建模和预测的一种方法。
时间序列数据是指按照一定时间顺序排列的数据,通常是在相等时间间隔下连续观测到的数据。
时间序列分析的目的是从数据中发现特定模式或趋势,并利用这些模式和趋势进行预测。
它通常用于经济学、金融学、气象学等领域,例如股票价格预测、销售量预测、天气预测等等。
时间序列分析方法主要包括以下几个步骤:1. 数据处理:首先需要对时间序列数据进行预处理,包括去除趋势、季节性和不稳定性等因素,以使数据满足稳定性和平稳性的假设。
这通常可以通过差分、平滑和变换等方式来实现。
2. 模型选择:根据时间序列数据的特性,选择合适的模型来进行建模和预测。
常用的模型包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
模型的选择通常需要借助统计指标和图形分析的方法来确定。
3. 参数估计:在选择好模型之后,需要对模型的参数进行估计。
参数估计可以通过最大似然估计、最小二乘估计或贝叶斯估计等方法来实现。
估计得到的参数可以用于模型的建立和预测。
4. 模型诊断:对模型进行诊断,检查模型是否符合数据的统计特性和假设。
常用的诊断方法包括自相关函数(ACF)和偏自相关函数(PACF)的分析,以及白噪声检验等。
如果模型存在问题,则需要对模型进行修正或调整。
5. 模型预测:根据已经估计好的模型和参数,对未来的数据进行预测。
预测可以基于滚动窗口逐步预测,也可以直接进行多步预测。
常用的预测方法包括常规预测、指数平滑预测和季节性预测等。
总的来说,时间序列分析是一种基于时间序列数据的统计建模和预测方法。
通过对时间序列数据进行处理、模型选择、参数估计、模型诊断和模型预测等步骤,可以得到对未来数据的预测结果,并用于决策和规划。
然而,需要注意的是,时间序列分析方法需要满足一定的数据假设和模型假设,以及对模型的合理性和可靠性进行评估。
计量经济学:平稳时间序列分析-差分方程与延迟算子
f (t)
11 0
f (t1)
11
1
f (1)
11 t 1
t
, , 给出初值y-1, y-2,…,y-p以及 0 1
t 的值,即可得到yt。
定理:矩阵F的特征根满足的特征方程为
p 1 p1 2 p2 p1 p 0
1、具有相异特征根的p阶差分方程的通解
如果矩阵F的特征根是相异的,那么存在一个非奇异矩阵
1
0
0
F 0 1 0
0 0 0
p1 p
0
0
0 0 ,
1 0
t
0
Vt
0
0
则原p阶差分方程变为一阶向量差分方程
t Ft1 Vt
参照一阶向量差分方程的递归解法有
t
F
t
1 1
F tV0
F t1V1
F t2V2
FVt1 Vt
即
yt
yt 1
y1
y2
0
0
t 21
1
2 1 2 3
1 p 2 p
t p1
1
p 1 p 2
p p1
将此结果代入 ci t1iti1 即得
ci
p
p1 i
k1(i k )
k i
如果从t期开始迭代,则有
yt j
f ( j1)
11
yt 1
f y ( j1)
12
t2
f y ( j1)
11 0
f (t1)
11
1
f (1)
11 t 1
t
其中
f ( j)
11
c11j
c22j
cppj
时间序列分析法
时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。
时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。
时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。
时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。
均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。
移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。
2. 趋势分析趋势分析用于识别时间序列中的长期趋势。
常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。
这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。
3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。
常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。
这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。
4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。
AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。
ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。
5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。
ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。
差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。
以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。
在实际应用中,根据具体情况选择合适的方法进行分析和预测。
时间序列分析第三章平稳时间序列分析
应用时间序列分析实验报告实验名称第三章平稳时间序列分析一、上机练习data example3_1;input x;time=_n_;cards;;proc gplot data=example3_1;plot xtime=1;symbol c=red i=join v=star;run;建立该数据集,绘制该序列时序图得:根据所得图像,对序列进行平稳性检验;时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳;proc arima data=example3_1;identify var=x nlag=8;run;图一图二样本自相关图图三样本逆自相关图图四样本偏自相关图图五纯随机检验图实验结果分析:1由图一我们可以知道序列样本的序列均值为,标准差为,观察值个数为84个;2根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向衰减的速度非常快,延迟5阶之后自相关系数即在值附近波动;这是一个短期相关的样本自相关图;所以根据样本自相关图的相关性质,可以认为该序列平稳;3根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小<,所以我们可以以很大的把握置信水平>%断定该序列样本属于非白噪声序列;proc arima data=example3_1;identify var=x nlag=8minic p= 0:5q=0:5;run;IDENTIFY命令输出的最小信息量结果某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;为了尽量避免因个人经验不足导致的模型识别问题,SAS系统还提供了相对最优模型识别;最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMRp,q模型中,BIC信息量相对最小的是ARMR0,4模型,即MA4模型;需要注意的是,MINIC只给出一定范围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常会出现MINIC给出的模型阶数依然偏高的情况;estimate q=4;run;本例参数估计输出结果显示均值MU不显著t的检验统计量的P值为,其他参数均显著t检验统计量的P值均小于,所以选择NOINT选项,除去常数项,再次估计未知参数的结果,即可输入第二条ESTIMATE 命令:estimate q=4 noint;run;参数估计部分输出结果如图六所示:图六ESTIMATE命令消除常数项之后的输出结果显然四个未知参数均显著;拟合统计量的值这部分输出五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC信息量、SBC信息量及残差个数,如图七所示:图七ESTIMATE命令输出的拟合统计量的值系数相关阵这部分输出各参数估计值的相关阵,如图八所示:图八ESTIMATE命令输出的系数相关阵残差自相关检验结果这部分的输出格式图九和序列自相关系数白噪声检验部分的输出结果一样;本例中由于延迟各阶的LB统计量的P值均显著大于aa=,所以该拟合模型显著成立;图九ESTIMATE命令输出的残差自相关检验结果拟合模型的具体形式ESTIMA TE命令输出的拟合模型的形式序列预测forecast lead=5id=time out=results;run;其中,lead是指定预测期数;id是指定时间变量标识;out是指定预测后的结果存入某个数据集;该命令运行后输出结果如下:FORECAST命令输出的预测结果该输出结果从左到右分别为序列值的序号、预测值、预测值的标准差、95%的置信下限、95%的置信上限;利用存储在临时数据集RESULTS里的数据,我们还可以绘制漂亮的拟合预测图,相关命令如下:proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;输出图像如下:拟合效果图注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限;所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计;目前对平稳序列最常用的预测方法是线性最小方差预测;线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小;在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的;二、课后习题第十七题:根据某城市过去63年中每年降雪量数据单位:mm得:书本P94程序:data example17_1;input x;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= 0:5q=0:5;run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图a图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图b图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图c图c根据图c的检验结果我们知道,在6阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选择适当模型拟合该序列的发展;模型识别如下图图d图d假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3:估计模型中未知参数的值;4:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该城市未来5年的降雪量.由2可以知道该模型是AR1模型;预测结果如下图图e由图得未来564-68年的降雪量分别为、、、、;18. 某地区连续74年的谷物产量单位:千吨data example18_1;input x;time=_n_;cards;;proc gplot data=example18_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example18_1;identify var=x nlag=18minic p= 0:5q=0:5;run;estimate q=1;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay; symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图f图f时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;由时序图显示过去74年中每年谷物产量数据围绕早千吨附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图g图g样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图h图h根据图h的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;选择适当模型拟合该序列的发展;如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图i图i假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该地区未来5年的谷物产量,预测结果如下图图j 由2可知,该模型为AR1模型;图j未来5年的谷物产量一次为,,,;19. 现有201个连续的生产记录data example19_1;input x;time=_n_;cards;图l时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟1阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图m根据图m的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图n某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1、求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2、根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3、估计模型中未知参数的值;4、检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5、模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6、利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA0,1模型,即MA1模型;利用拟合模型,预测该城市下一时刻95%的置信区间;由2可得,该模型为MA1模型;下一时刻95%的置信区间,;实验小结:给定一个序列,我们首先应该判断平稳性,如果平稳,再检查是否是纯随机序列,如果序列平稳且非白躁声,选折适当模型拟合序列的发展,选择AR,MA,或ARMA模型,然后可以对该序列进行预测;三、实验体会通过本次实验使我掌握了一些对时间序列的处理,运用不同的语句对一个样本序列的平稳性检验和随机性检验,这对我们处理数据有很大的帮助;在生活中我们往往会遇到这样的现象,当我们所得到的样本信息太少,并且没有其他的辅助信息时,通常这种数据结构式没法进行分析的,但是序列平稳性的概念的提。
时间序列分析法
3. 生长曲线法
① 逻辑曲线 曲线在其单调区间内的y=k/2处有唯一的拐点。 记拐点处的y值为yr,则
对应于拐点的时间点tr
因此,logistic曲线对于点(yr,tr)是对称的。
3. 生长曲线法
② 龚珀兹曲线
•Gompertz曲线是双层指数函数。对于模 型参数的不同取值,Gompertz曲线有四 种不同的类型。其中满足条件K>0,0<a<1 ,0<b<1的Gompertz曲线适用于某些技术 、经济、社会现象发展过程的模拟。
用递推公式可以大大减少计算量。同时,
当获得新数据时,无需像回归分析那样重
新估算方程,而可以根据先期计算出来的
移动平均值,很容易求出新的移动平均值
。
1. 移动平均法
① 一次移动平均
合理地选择周期数n是用好移动平均法的关键 。在n取较大值时,移动平均值对于随机影响的 敏感性弱些,平滑作用强,但适应新数据水平的 时间要长些,容易落后于可能的发展趋势;而当 n 取较小值时,移动平均值对于随机影响的敏感 性较强,平滑作用差,适应数据新水平的时间短 ,因而容易对随机干扰反映过度灵敏而造成错觉 。一般可以根据实际时间序列数据的特征和经验 选择参数n。
在时间序列数据散点图的倾向线大致 是一次指数曲线时可用一次指数曲线去 拟合它。
2. 指数平滑法
一般形式:
y a •bt
2. 指数平滑法
两边取对数:
lg y lg a lg b • t
记Y lgy,A lga, B lgb,则有 Y AB•t
可将指数曲线转化为直线, 再求a和b的。其预测模型为:3. 生长曲线法
生长曲线是增长曲线的一大类,是 描绘各种社会、自然现象的数量指标依 时间变化而变化的某种规律性的曲线。 由于生长曲线形状大致呈“S”型,故又 称“S”曲线。在信息分析与预测中利用 生长曲线模型来描述事物发生、发展和 成熟的全过程的方法就是生长曲线法。
时间序列分析法概述
时间序列分析法概述时间序列分析(Time Series Analysis)是一种对时间序列数据进行统计分析和预测的方法。
时间序列数据是以时间顺序排列的、按一定时间间隔收集到的一系列数据观测值。
时间序列分析通过对过去的数据进行分析,揭示出数据内部的规律和变化趋势,从而对未来的数据进行预测和模拟。
时间序列分析方法广泛应用于经济学、金融学、工程学、气象学等领域,可以用于分析和预测股票价格、销售数据、气温变化等各种现象。
时间序列分析方法包括描述性统计分析、平稳性检验、自相关与偏相关分析、谱分析、移动平均模型和自回归模型等。
描述性统计分析是时间序列分析的起点,其目的是对时间序列数据的基本特征进行描述和总结。
描述性统计分析通常包括计算数据的均值、方差、极值等指标,以及绘制数据的线图、直方图等图形。
通过对描述性统计分析的结果进行观察和比较,可以初步了解数据的分布和趋势。
平稳性检验是时间序列分析的基础,其目的是判断时间序列数据是否具有平稳性。
平稳性是指时间序列数据的统计特性在不同时间段内是相似的,即均值和方差不随时间的变化而变化。
常用的平稳性检验方法有ADF检验和KPSS检验。
如果时间序列数据不具有平稳性,需要进行平稳化处理,以满足时间序列分析的前提条件。
自相关与偏相关分析是时间序列分析中的重要内容,其目的是研究时间序列数据之间的相关性和连接性。
自相关是指时间序列数据与其在不同时间点上的滞后值之间的相关性,反映了时间序列数据的时间间隔相关性。
偏相关是在控制其他变量的影响下,研究两个时间序列数据之间的相关性。
通过自相关与偏相关分析,可以揭示时间序列数据内部的规律和关系。
谱分析是时间序列分析的重要方法之一,其目的是研究时间序列数据的频率特征和功率谱密度。
谱分析基于傅里叶变换,将时间序列数据转换到频域分析。
谱分析可以揭示时间序列数据的周期性和趋势性,为进一步的数据分析和预测提供依据。
移动平均模型是一种常用的时间序列预测方法,它基于过去若干个时间点的数据,预测未来一个时间点的数据。
时间序列分析
时间序列分析时间序列分析是一种统计方法,用于研究随时间变化的数据。
它可以帮助我们揭示数据背后的趋势、周期性和季节性等模式,帮助我们做出有意义的预测和决策。
本文将介绍时间序列分析的基本原理、常用的方法和应用领域等内容。
一、时间序列分析的基本原理时间序列是按时间顺序排列的数据序列。
时间序列分析的基本原理是假设数据是由趋势、周期性、季节性和随机波动组成的。
通过分解时间序列,可以将数据分解为这些组成部分,进而对每个部分进行建模和分析。
趋势是时间序列长期变化的方向。
通过趋势分析,可以判断数据的增长或下降趋势,并预测未来的发展方向。
常用的趋势分析方法有移动平均法、指数平滑法和回归分析法等。
周期性是时间序列在一定时间范围内变化的重复模式。
周期性分析可以帮助我们了解数据的周期性波动,并进行周期性预测。
常用的周期性分析方法有傅里叶级数分析、谱分析和周期性指数平滑法等。
季节性是时间序列在一年内循环出现的固定模式。
季节性分析可以揭示数据中的季节性变化规律,并进行季节性预测。
常用的季节性分析方法有季节性指数平滑法、季节性回归模型和季节性自回归移动平均模型等。
随机波动是时间序列中无法由趋势、周期性和季节性解释的部分。
随机波动的分析可以帮助我们评估模型的准确性和稳定性。
常用的随机波动分析方法有自相关函数和偏自相关函数的分析等。
二、常用的时间序列分析方法1. 移动平均法移动平均法是一种常用的趋势分析方法,通过计算一定时间段内数据的平均值来平滑时间序列。
移动平均法能够过滤数据的随机波动,较好地反映数据的趋势。
2. 指数平滑法指数平滑法是一种适用于短期预测的方法,通过赋予过去观测值不同的权重来预测未来的值。
指数平滑法能够灵活地适应数据的变化,并能够较好地捕捉数据的趋势。
3. 季节性指数平滑法季节性指数平滑法是一种适用于季节性数据的方法,通过对每个季节的数据赋予不同的权重来进行季节性预测。
季节性指数平滑法能够很好地反映季节性数据的变化规律。
经济学中的时间序列分析
经济学中的时间序列分析时间序列分析是经济学中一种重要的数据分析方法,通过对一系列按照时间顺序排列的数据进行统计分析和预测,揭示出其中的规律和趋势性。
时间序列分析在经济学领域中被广泛应用,涵盖了宏观经济、微观经济和金融市场等多个领域。
本文将介绍时间序列分析的基本概念、方法和实际应用。
一、时间序列分析的基本概念时间序列是指在不同时间点上观测到的数据,如每月的失业率、每季度的国内生产总值、每日的股票价格等。
时间序列分析的目的是通过对这些数据的统计学方法来描述和分析它们的性质、变动和规律。
时间序列分析的基本概念包括平稳性、周期性、趋势性和季节性。
平稳性是指时间序列的均值和方差在不同时期保持不变;周期性是指时间序列在一定时间范围内出现周期性波动;趋势性是指时间序列呈现出逐渐增长或逐渐下降的趋势;季节性是指时间序列在同一年内以及不同年份之间呈现出相似的规律性。
二、时间序列分析的方法时间序列分析的方法主要包括数据可视化、平稳性检验、模型拟合和预测等。
1. 数据可视化通过绘制时间序列图可以直观地观察数据的趋势和变动情况。
时间序列图通常横轴表示时间,纵轴表示观测值,通过线图、柱状图等形式展示数据。
2. 平稳性检验平稳性是时间序列分析的基础,对于非平稳的时间序列需要进行平稳性转化。
常用的平稳性检验方法包括单位根检验、ADF检验和KPSS 检验等。
3. 模型拟合时间序列分析常用的模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归总体移动平均模型(SARIMA)等。
根据数据的特点和目的选择合适的模型,利用参数估计的方法求解模型参数。
4. 预测时间序列分析的一个重要应用是预测未来的数值。
通过已有的数据和建立的模型,可以对未来一段时间内的数值进行预测,提供决策依据。
三、时间序列分析的实际应用时间序列分析在经济学中的应用广泛,下面将介绍几个实际应用案例。
1. 宏观经济预测时间序列分析可以用于宏观经济预测,例如预测国内生产总值(GDP)的增长趋势、通货膨胀率的变动等。
时间序列分析法
3. 时间序列分析法对于预测,有定性和定量两类方法,定性的方法主要是作一些趋势性或转折点的判定。
常用的方法有专家座谈会法,德尔菲法等。
常用的定量预测方法有两种,一种是回归分析法,另一种常用方法就是时间序列分析法。
这一章主要介绍有关时间序列分析法的有关内容。
3.1 基本概念所谓时间序列就是一组按照一定的时间间隔排列的一组数据。
这一组数据可以表示各种各样的含义的数值,如对某种产品的需求量、产量,销售额,等。
其时间间隔可以是任意的时间单位,如小时、日、周、月等。
通常,对于这些量的预测,由于很难确定它与其他因变量的关系,或收集因变量的数据非常困难,这时我们就不能采用回归分析方法进行预测,或者说,有时对预测的精度要求不是特别高,这时我们都可以使用时间序列分析方法来进行预测。
当然,时间序列分析法并非只是一种简单的预测分析方法,其实,基本的时间序列分析法确实很简单,但是也有一些非常复杂的时间序列分析方法。
采用时间序列分析进行预测时需要用到一系列的模型,这种模型统称为时间序列模型。
在使用这种时间序列模型时,总是假定某一种数据变化模式或某一种组合模式总是会重复发生的。
因此可以首先识别出这种模式,然后采用外推的方式就可以进行预测了。
采用时间序列模型时,显然其关键在于假定数据的变化模式(样式)是可以根据历史数据识别出来;同时,决策者所采取的行动对这个时间序列的影响是很小的,因此这种方法主要用来对一些环境因素,或不受决策者控制的因素进行预测,如宏观经济情况,就业水平,某些产品的需求量;而对于受人的行为影响较大的事物进行预测则是不合适的,如股票价格,改变产品价格后的产品的需求量等。
这种方法的主要优点是数据很容易得到。
相对说来成本较低。
而且容易被决策者所理解。
计算相对简单。
(当然对于高级时间序列分析法,其计算也是非常复杂的。
)此外,时间序列分析法常常用于中短期预测,因为在相对短的时间内,数据变化的模式不会特别显着。
1.关于在预测中误差的一些常用表示方法:i i i F x e -=其中x i 表示i 时刻的真实值或观察值;F i 表示i 时刻的预测值;e i 表示i 时刻的误差。
时间序列分析
时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。
它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。
本文将介绍时间序列分析的基本概念、常用方法和实际应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。
它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。
时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。
二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。
这些指标可以帮助我们了解数据的分布情况和相关性。
2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。
趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。
通过对组成部分的分析,可以更好地理解时间序列的内在规律。
3. 平稳性检验法平稳性是时间序列分析的基本假设之一。
平稳时间序列的统计特性不随时间变化而改变。
平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。
4. 预测方法时间序列分析的一个重要应用是预测未来的数值。
常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。
这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。
三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。
在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。
除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。
通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。
结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。
通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。
时间序列分析法
时间序列分析法时间序列分析是一种重要的统计分析方法,用于研究时间序列数据中的模式和趋势。
它可应用于多个领域,包括经济学、金融学、气象学等。
本文将介绍时间序列分析的基本原理和常用方法。
时间序列是按照时间顺序排列的一系列数据观测值的集合。
它可以是连续的,如每天的股票收盘价;也可以是离散的,如每月的销售额。
时间序列分析的目标是通过对数据的观察和建模,揭示数据中的规律和趋势,以便进行预测和决策。
时间序列分析的第一步是对数据进行可视化和描述性统计分析。
通过绘制时间序列图,可以直观地看到数据的变化趋势和周期性。
此外,还可以计算数据的均值、方差和自相关性等统计指标,以了解数据的基本特征。
接下来,需要对数据进行平稳性检验。
平稳性是指数据在时间上的均值和方差保持不变,且自相关性也不随时间变化。
如果数据不平稳,就需要进行差分操作,以使数据变得平稳。
在数据平稳后,可以对时间序列模型进行建模。
常用的时间序列模型有自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
这些模型基于时间序列数据的自相关性和移动平均性建立,可以较好地描述数据的趋势和周期性。
另外,时间序列分析还可以使用傅里叶变换进行频域分析。
傅里叶变换将时域数据转换为频域数据,可以揭示数据中的周期性成分和频率分布。
通过分析傅里叶变换的结果,可以找到数据中的主要周期和频率,从而进行周期性预测和滤波处理。
最后,时间序列分析还可以进行预测和模拟。
常用的预测方法包括移动平均法、指数平滑法和回归分析法等。
这些方法基于历史数据的模式和趋势,对未来的数据进行预测。
模拟方法则是通过生成符合某种分布的随机数序列,模拟时间序列数据的变化。
综上所述,时间序列分析是一种重要的统计分析方法,可以揭示数据中的模式和趋势,对未来进行预测和决策。
它的应用领域广泛,可以帮助我们更好地理解时间序列数据的特征和规律。
接下来,我们将继续探讨时间序列分析的一些相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值和二次移动平均值所构成时间序列的最后一
个数据为依据,通过建立线性预测模型进行预测。
注意,一次移动平均值和二次移动平均值并不直
33
第三节 移动平均法
接用于预测,只是用以求出线性预测模型的平滑
系数和修正滞后偏差。
二次移动平均值的公式为:
M
(1) t
Yt Yt 1 Yt 2 Yt ( n 1)均期数随预
测期的增加而增加。
事实上,当加进一个新数据时,远离现在的
第一个数据作用已不大。移动平均市场预测法是
对时间序列观察值由远及近按一定跨越期计算平 均值的一种预测方法。它保持期数不变。随着观
察期向后推移,平均值也跟着向后移动,形成一
个有平均值组成的新的时间序列。最后一个移动
市场预测与决策
制作:安徽大学管理学院 洪文
2
市场预测与决策
版权所有,未经准许,不得翻制
第三章 时间序列分析法
第一节 时间序列分析法特点和步骤 第二节 简易平均法
第三节 移动平均法
第四节 指数平滑法 第五节 趋势延伸法 第六节 季节变动预测法
3
第一节 时间序列分析法特点和步骤
时间序列是指将市场现象的统计指数数值, 按时间先后顺序排列而成的数列。时间序列分析 法是通过对时间序列的分析和研究,运用科学方
1997 120.00
1999 147.00
2002 156.00
2000 150.00
2001 149.00
25
第二节 简易平均法
几何平均市场预测法适合用于有明显趋势的
市场现象时间序列,其趋势变动规律表现为发展 速度大致相同。此预测模型用于近期预测比较适 合,若用于中期预测则必须充分考虑现象在预测 期的变化情况,并对预测值加以调整。
法建立预测模型,使市场现象的数量向未来延伸,
预测市场现象未来的发展变化趋势,确定市场预 测值。因此,时间序列分析法也称为历史延伸法 或趋势外推法。 时间序列分析法具有以下特点:
4
第一节 时间序列分析法特点和步骤
一、时间序列分析法是根据市场过去的变化
趋势来预测未来的发展,它的前提是假定事物的 过去同样会延续到未来
较后选定。
移动平均法既适合于有趋势变动又有随机波
动的时间序列。
28
第三节 移动平均法
移动平均的具体方法有一次移动平均法、二
次移动平均法和加权移动平均法。
一、一次移动平均法
一次移动平均法也称为简单移动平均法。它
是指由连续移动形成的各组数据,用算术平均法 计算各组数据的移动平均值,并将其作为下一期 预测值。其公式为:
的转换,才能建立应用性很强的预测方法。
23
第二节 简易平均法
三、几何平均法
预测公式为:
ˆ G X
n
X1 X 2 X n
式中,G为几何平均数;Xi为观察期内环比发展速
度或逐期增长率;n为数据的个数。 此公式用观察期内各期实际数据ai还可以表示 为:
ˆ X
n
an a1 a 2 a0 a1 a n 1
这种方法是考虑问题的一种思路,它为一些
时间序列具体预测方法的建立提供一定的基础。
但在实践中一般不直接应用这种预测方法。这是 因为,对于无趋势变动的时间序列,可以采用序 时平均数法进行预测;而对于趋势变动明显的时 间序列,无论怎样加大全数,均值也跟不上实际
值的变动,它小于后期的实际观察值,更不能作
为预测值。只有根据加权平均法的思路进行相应
和生产生活条件的影响,在一年内随着季节的更
换而引起的比较有规律的变动。
7
第一节 时间序列分析法特点和步骤
(三)循环变动(C)
循环变动是近乎规律性的周而复始的变动。
它表现为整个市场经济活动水平的不断的周期性
的但非定期的变动。循环变动不同于趋势变动,
它不是朝着单一方向的持续变动,而是涨落相间 的交替波动;它不同于季节变动,季节变动有比 较固定的规律,且变动周期多为一年,而循环变 动则无固定规律,变动周期多在1年以上,且周
对象无显著长期趋势变动和季节变动时,采用此
法其预测结果大致可以令人满意。缺点是所有观
察值不论新旧在预测中一律同等看待,这是不符
合市场发展实际情况的。为了克服此缺点,在预 测中可根据每个观察值的重要性赋予不同的权数。
这就有了加权平均法。
二、加权平均法
预测公式为:
21
第二节 简易平均法
ˆ X X W
24
第二节 简易平均法
例3-2 某商场过去12年的销售资料如下表
所示,试用几何平均法预测该商场下年的销售额
(数据存放在文件例3-2中)。
1990 87.00 1991
1994
92.00
95.00
1992
96.00
1993 100.00 1996 105.00
1995 125.00 1998 142.00
而不是像简易平均法那样,仅用若干个观察值的
一个平均数作为预测值。另外,每个移动平均值
只需要几个观察值就可计算,需要存贮数据很少。
30
第三节 移动平均法
12.5
12.0
11.5
11.0 观察期季末库存 一次移动平均值(n=3 10.5
Value
一次移动平均值(n=5 10.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Analyze-Descriptive Statistics- Descriptive命令
19
第二节 简易平均法
这样就得到下面的结果:
Descriptive Statistics Std. Deviation 12.1147 12.3985 1.7926
N 自 行车 2000年 月产 量 自 行车 2000年 下半 年 月 产量 自 行车 2000年 第 4季 度 月产 量 Valid N (listwise) 12 6 3 3
10
第一节 时间序列分析法特点和步骤
利用乘法模型可以将四个因素很容易地从时
间序列中分离出来,因而乘法模型在时间序列分 析中被广泛采用。 三、时间序列法撇开市场发展的因果关系去
分析市场的过去和未来
11
第一节 时间序列分析法特点和步骤
市场对象的发展变化是受很多因素影响的。
运用时间序列分析法进行预测,事实上是将所有
统的时间序列分析法把影响市场变动的各因素, 按其特点和综合影响结果分为四种类型,即长期 变动趋势、季节变动、循环变动和不规则变动。 (一)长期趋势变动 (T)
长期趋势是时间序列的主要构成因素,它是
指现象在较长时期内持续发展变化的一种趋向或
状态。
6
第一节 时间序列分析法特点和步骤
(二)季节变动(S) 季节变动一般是指市场现象由于受自然因素
期时间长短不一。
8
第一节 时间序列分析法特点和步骤
(四)不规则变动(I) 不规则变动是指时间序列数据在短期内由于 偶然因素而引起的无规律的变动。 上述各类影响因素作用于时间序列,使得时 间序列数据发生变化,有的具有规律性,有的不
具有规律性。把这些影响因素同时序列的关系用
一定的数学关系式表示出来,就构成了时间序列
X t X t 1 X t 2 X t ( n 1) (1) ˆ X t 1 M t n
29
第三节 移动平均法
例3-3 已知某商业企业季末库存的资料(数
据存放在文件例3-3中),使用一次移动平均法
对该企业下一季末的库存进行预测。 从这个例子可以看出,一次移动平均可以消 除由于偶然因素引起的不规则变动,同时又保留 了原时间序列的波动规律(后面有对比图形),
影响因素都归结为时间这一因素上,只承认所有 影响因素的综合作用,并认为在未来对预测目标
仍然起作用。
因此,为了求得能反映市场未来发展变化的
精确预测值,在运用时间序列分析法时,必须将
定量分析与定性分析结合起来,用定性的方法充 分研究各种因素与市场的关系,在充分分析研究 影响市场变化的各种因素的基础上确定预测值。 12
平均值是预测值计算的依据。
27
第三节 移动平均法
移动平均法在一定程度上消除了时间序列历
史数据随时间变化引起的不规则变动的影响,修
匀了时间序列。另外,它是利用前T期的平均值 作为下一期预测值的方法,其数据存储量较少。 移动平均预测法的准确程度主要取决于平均 期数或移动步长T的选择。一般通过实验加以比
时,移动平均值总是落后于观察值数据的变化。
32
第三节 移动平均法
二次移动平均法正是利用这一滞后偏差的演
变规律,通过建立预测目标与时间的线性关系数
学模型求得预测值。可见,二次移动平均法适用 于时间序列数据呈线性趋势变化的预测。 二次线性移动平均法是对时间序列的一次移 动平均值再进行第二次移动平均,以一次移动平
第一节 时间序列分析法特点和步骤
时间序列分析法的步骤为:
1、收集、整理市场现象的历史资料,编制
时间序列,并根据时间序列绘制图形。
2、对时间序列进行分析
3、选择预测方法 4、测算预测误差,并结合定性分析,最终 确定预测误差为:
ˆ ei Yi Y i ˆ为估计值 其中,Yi为实际值, Y i
13
Case Number
31
第三节 移动平均法
一次移动平均市场预测法也有其局限性:一
方面,这种方法只能向未来预测一期;另一方面,
对于有明显趋势变动的市场现象时间序列,一次 移动平均法是不适合的,因为一次移动平均值大 大滞后于实际观察值。 二、二次移动平均法
运用一次移动平均发法求得的移动平均值存
在滞后偏差,特别是在时间序列数据呈线性趋势
量分别是60万辆、50.4万辆、55万辆、49.6万辆、