2007年北京中考数学试卷及答案
07年中考数学答案
2007年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给分或扣分均以1分为单位. 答案要点与评分标准一、填空题(本大题共12题,满分36分) 1.3 2.2()a a b - 3.1(1)x x + 4.1 5.2x ≥ 6.2 7.3x =-8.3y x = 9.AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 10.1 11.2- 12.答案见图1二、选择题(本大题共4题,满分16分) 13. C 14.B 15.D 16.B 三、(本大题共5题,满分48分) 17.解:由30x ->,解得3x <. ····················································································· 3分由43326x x+>-,解得1x >-. ·························································································· 3分 ∴不等式组的解集是13x -<<.························································································· 1分 解集在数轴上表示正确. ······································································································· 2分 18.解:去分母,得23(21)(1)0x x x x -+-+=, ···························································· 3分 整理,得23210x x --=, ··································································································· 2分 解方程,得12113x x ==-,. ······························································································ 2分经检验,11x =是增根,213x =-是原方程的根,∴原方程的根是13x =-. ·················· 2分 19.解:(1)如图2,作BH OA ⊥,垂足为H , ······························································ 1分在Rt OHB △中,5BO = ,3sin 5BOA ∠=,3BH ∴=. ··························································································································· 2分图14OH ∴=.……………………………… 1分∴点B 的坐标为(43),.……………………2分 (2) 10OA =,4OH =,6AH ∴=.………………1分 在Rt AHB △中,3BH =,AB ∴= 1分cos AH BAO AB ∴∠==2分 20.(1)小杰;1.2. ··································································································· 2分,2分(2)直方图正确. ················································································································· 3分 (3)0~1. ······························································································································ 3分 21.解:[解法一]设2003年和2007年的药品降价金额分别为x 亿元、y 亿元. ············· 1分 根据题意,得226543540269y x x y =⎧⎨++++=⎩………………………………………………………………分………………………………………………分解方程组,得2220120x y =⎧⎨=⎩………………………………………………………………………分………………………………………………………………………分答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·································· 1分 [解法二]设2003年的药品降价金额为x 亿元, ···································································· 1分 则2007年的药品降价金额为6x 亿元. ················································································ 2分 根据题意,得5435406269x x ++++=. ······································································· 2分 解方程,得20x =,6120x ∴=. ······················································································ 4分 答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·································· 1分 四、(本大题共4题,满分50分) 22.解:(1)设二次函数解析式为2(1)4y a x =--, ······················································· 2分二次函数图象过点(30)B ,,044a ∴=-,得1a =. ···················································· 3分 ∴二次函数解析式为2(1)4y x =--,即223y x x =--. ·············································· 1分 (2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ································· 2分∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. ························································· 2分 平移后所得图象与x 轴的另一个交点坐标为(40),. ··························································· 2分23.(1)证明:DE AC ∥, BCA E ∴∠=∠. ·················································································································· 1分 CA 平分BCD ∠, 2BCD BCA ∴∠=∠, ·········································································································· 1分 2BCD E ∴∠=∠, ··············································································································· 1分x又2B E ∠=∠ , B BCD ∴∠=∠. ·················································································································· 1分∴梯形ABCD 是等腰梯形,即AB DC =. ········································································ 2分 (2)解:如图3,作AF BC ⊥,DG BC ⊥, 垂足分别为F G ,,则AF DG ∥.在Rt AFB △中,tg 2B =,2AF BF ∴=.…………1分又AB 222AB AF BF =+,2254BF BF ∴=+,得1BF =.……………………1分同理可知,在Rt DGC △中,1CG =.……………1分 AD BC ∥,DAC ACB ∴∠=∠.又ACB ACD ∠=∠ ,DAC ACD ∴∠=∠,AD DC ∴=.DC AB ==AD ∴······················································································ 1分 AD BC ∥,AF DG ∥,∴四边形AFGD是平行四边形,FG AD ∴= ······ 1分2BC BF FG GC ∴=++=. ···················································································· 1分 24.(1)解: 函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. ··············· 1分 设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,, ·········································································································· 1分1a > ,DB a ∴=,44AE a=-. 由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭, ······································································ 1分 得3a =,∴点B 的坐标为433⎛⎫ ⎪⎝⎭,. ···················································································· 1分(2)证明:据题意,点C 的坐标为(10),,1DE =, 1a > ,易得4EC a=,1BE a =-, 111BE a a DE -∴==-,4414AE a a CEa-==-. ···································································· 2分图3BE AEDE CE ∴=. ······················································································································· 1分 DC AB ∴∥. ······················································································································· 1分 (3)解:DC AB ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =. ∴点B 的坐标是(2,2). ···································································································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. ··········································································· 1分 ②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1). ························································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+. ············································································· 1分 综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+. 25.(1)证明:如图4,连结OB OP ,,O 是等边三角形BPQ 的外心,OB OP ∴=, ································································ 1分圆心角3601203BOP ∠==. 当OB 不垂直于AM 时,作OH AM ⊥,OT AN ⊥,垂足分别为H T ,. 由360HOT A AHO ATO ∠+∠+∠+∠=,且60A ∠=,90AHO ATO ∠=∠= ,120HOT ∴∠= .BOH POT ∴∠=∠. ··········································································································· 1分 Rt Rt BOH POT ∴△≌△. ······························································································· 1分 OH OT ∴=.∴点O 在MAN ∠的平分线上. ·································································· 1分当OB AM ⊥时,36090APO A BOP OBA ∠=-∠-∠-∠=.即OP AN ⊥,∴点O 在MAN ∠的平分线上.综上所述,当点P 在射线AN 上运动时,点O 在MAN ∠的平分线上.(2)解:如图5,AO 平分MAN ∠,且60MAN ∠= ,30BAO PAO ∴∠=∠= . ··································································································· 1分由(1)知,OB OP =,120BOP ∠=,30CBO ∴∠= ,CBO PAC ∴∠=∠.BCO PCA ∠=∠ ,AOB APC ∴∠=∠. ········································································ 1分 ABO ACP ∴△∽△. AB AO AC AP∴=.AC AO AB AP ∴= .4y x ∴=. ·························································· 1分 定义域为:0x >. ················································································································ 1分(3)解:①如图6,当BP 与圆I相切时,AO = ·················································· 2分 ②如图7,当BP 与圆I相切时,AO =; ································································· 1分 ③如图8,当BQ 与圆I 相切时,0AO =. ······································································· 2分图6()P A图7M图8图4图5。
2007年北京卷数学(理科)含详细解答
2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =5.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a -0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥7.如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+.10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.11.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是.13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 . 14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式. 16.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分)矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接OCADB圆外切,求动圆P 的圆心的轨迹方程. 18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (I )求合唱团学生参加活动的人均次数;(II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域;(II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.A2007年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案1.∵ ,∴ 当cos θ<0,tan θ>0时,θ∈第三象限;当cos θ>0,tan θ<0时,θ∈第四象限,选C 。
文档:da2007年北京市中招数学试卷(课标卷)
2007年北京市高级中等学校招生统一考试(课标卷)数学试卷参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第I 卷是选择题,机读阅读.3.第II 卷包括填空题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第I 卷一、选择题 题号 1 2 3 4 5 6 7 8 答案ADCCBABD第II 卷二、填空题 题号9101112 答案21k <-2,3, 4,6,12三、解答题13.解:10118(π1)2cos 454-⎛⎫---+ ⎪⎝⎭2321242=--⨯+ 322=+.14.解:因为1a =,4b =,1c =-, 所以224441(1)20b ac -=-⨯⨯-=.代入公式,得24420425252212b b ac x a -±--±-±====-±⨯. 所以原方程的解为122525x x =-+=--,. 15.解:22111x x x --- 68 101113 或10 12 14 17 1921(1)(1)1x x x x =-+--2(1)(1)(1)x x x x -+=+-1(1)(1)x x x -=+-11x =+. 16.证明:因为OP 是AOC ∠和BOD ∠的平分线, 所以 AOP COP ∠=∠,BOP DOP ∠=∠. 所以AOB COD ∠=∠. 在AOB △和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,,, 所以AOB COD △≌△. 所以 AB CD =.17.解:22(1)()7x x x x x x +-+--323227x x x x x x =++---- 27x =-.当24x =时,原式3=-. 四、解答题18.解:作DF BC ⊥于点F . 因为AD BC ∥,所以12∠=∠. 因为AB AD =,所以23∠=∠. 所以13∠=∠.又因为AB DC =,60C ∠=,所以11133022ABC C ∠=∠=∠=∠=.又因为AE BD ⊥于点E ,1AE =,所以2AB DC ==.在Rt CDF △中,由正弦定义,可得3DF =. 所以梯形ABCD 的高为3.BADEC312F19.解:(1)证明:如图,连结OA .因为OC BC =,12AC OB =, 所以OC BC AC OA ===. 所以ACO △是等边三角形.故60O ∠=.又可得30B ∠=,所以90OAB ∠=.所以AB 是O 的切线.(2)解:作AE CD ⊥于E 点.因为60O ∠=,所以30D ∠=.又45ACD ∠=,2AC OC ==,所以在Rt ACE △中,2CE AE ==.在Rt ADE △中,因为30D ∠=,所以22AD =. 由勾股定理,可求6DE =. 所以62CD DE CE =+=+.五、解答题 20.解:(1)初全2005年北京市水资源统计图见右图;水资源总量为23.18亿3m .(2)设2005年环境用水量为x 亿3m . 依题意得60.2 6.8x +=. 解得 1.1x =.所以2005年环境用水量为1.1亿3m . 因为13.38 1.1 6.813.2234.5+++=, 所以2005年北京市用水总量为34.5亿3m .(3)因为34.523.1811.32-=,所以2005年北京市缺水量为11.32亿3m . (4)说明:通过对比2004年及2005年北京市的用水情况,能提出积极看法的给分. 六、解答题 21.解:(1)12; OABC DE 01 2 3 4 5 6 7 8水系2.79 6.786.883.22永定河水系湖白河水系北运河水系蓟运河水系大清河水系水资源量3.542005年北京市水资源统计图(单位:亿3m )(2)直角顶点的坐标为2222⎛⎫ ⎪ ⎪⎝⎭,或221122⎛⎫-- ⎪ ⎪⎝⎭,. 此时的图形如右图.22.解:依题意得,反比例函数k y x =的解析式为3y x=-的图像上. 因为点(3)A m ,在反比例函数3y x=-的图象上, 所以1m =-.即点A 的坐标为(13)-,.由点(13)A -,在直线2y ax =+上, 可求得1a =-.七、解答题23.解:(1)如图1,BD CE DE =≠;ABD △和ACE △,ABE △和ACD △.(2)证法一:如图2,分别过点D B ,作CA ,EA 的平行线,两线交于F 点,DF 与AB 交于G 点.所以ACE FDB ∠=∠,AEC FBD ∠=∠. 在AEC △和FBD △中,又CE BD =, 可证AEC FBD △≌△. 所以AC FD =,AE FB =.在AGD △中,AG DG AD +>,在BFG △中,BG FG FB +>,所以0AG DG AD +->,0BG FG FB +->. 所以0AG DG BG FG AD FB +++-->. 即AB FD AD FB +>+. 所以AB AC AD AE +>+.11O EFG yx11OEFG yxABCD图1EA B C D 图2 EF G证法二:如图3,分别过点A E ,作CB ,CA 的平行线,两线交于F 点,EF 与AB 交于G 点,连结BF .则四边形FECA 是平行四边形.所以FE AC =,AF CE =. 因为BD CE =, 所以BD AF =.所以四边形FBDA 是平行四边形. 所以FB AD =. 在AGE △中,AG EG AE +>, 在BFG △中,BG FG FB +>,可推得AG EG BG FG AE FB +++>+. 所以AB AC AD AE +>+.证法三:如图4,取DE 的中点O ,连结AO 并延长到F 点,使得FO AO =,连结EF ,CF .在ADO △和FEO △中,又AOD FOE ∠=∠,DO EO =.可证ADO FEO △≌△. 所以AD FE =.因为BD CE =,DO EO =, 所以BO CO =. 同理可证ABO FCO △≌△. 所以AB FC =. 延长AE 交CF 于G 点.在ACG △中,AC CG AE EG +>+,在EFG △中,EG FG EF +>.可推得AC CG EG FG AE EG EF +++>++. 即AC CF AE EF +>+. 所以AB AC AD AE +>+. 八、解答题24.解:(1)根据题意得3652.m m n n ++=⎧⎨=⎩,解得132.m n ⎧=⎪⎨⎪=⎩,所以抛物线的解析式为2123233y x x =++. (2)由2123233y x x =++得抛物线的顶点坐标为(31)B -,. 依题意,可得(31)C --,,且直线l 过原点. 设直线l 的解析式为y kx =.则31k -=-,解得33k =. A B C D 图3 EGFA B C D 图4E G FO x1 2 3342 1-1 -2 -3-2 -4y BA (M 2)M 4 M 3 CNO lM 1所以直线l 的解析式为33y x =. (3)到直线OB OC BC ,,距离相等的点有四个.如图,由勾股定理得2OB OC BC ===,所以OBC △为等边三角形. 易证x 轴所在直线平分BOC ∠,y 轴是OBC △的一个外角的平分线.作BCO ∠的平分线,交x 轴于1M 点,交y 轴于2M 点,作OBC △的BCO ∠相邻外角的平分线,交y 轴于3M 点,反向延长交x 轴于4M 点.可得点1234M M M M ,,,就是到直线OB ,OC ,BC 距离相等的点. 可证2OBM △,4BCM △,3OCM △均为等边三角形. 可求得: ①132333OM OB ==,所以点1M 的坐标为2303⎛⎫- ⎪ ⎪⎝⎭,. ②点2M 与点A 重合,所以点2M 的坐标为(02),.③点3M 与点A 关于x 轴对称,所以点3M 的坐标为(02)-,. ④设抛物线的对称轴与x 轴的交点为N .4332M N BC ==,且4ON M N =,所以点4M 的坐标为(230)-,. 综上所述,到直线OB OC BC ,,距离相等的点的坐标分别为12303M ⎛⎫-⎪ ⎪⎝⎭,,2(02)M ,,3(02)M -,,4(230)M -,.九、解答题25.解:(1)回答正确的给1分(如平行四边形、等腰梯形等). (2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BCF CBG △≌△. 所以BF CG =.因为BDF ABE EBC DCB ∠=∠+∠+∠, BEC ABE A ∠=∠+∠,BOADECF 图1G所以BDF BEC ∠=∠. 可证BDF CEG △≌△. 所以BD CE =.所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BE 于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BDC CFB △≌△.所以BD CF =,BDC CFB ∠=∠.所以ADC CFE ∠=∠.因为ADC DCB EBC ABE ∠=∠+∠+∠,FEC A ABE ∠=∠+∠, 所以ADC FEC ∠=∠. 所以FEC CFE ∠=∠. 所以CF CE =. 所以BD CE =.所以四边形DBCE 是等边四边形.说明:当AB AC =时,BD CE =仍成立.只有此证法,只给1分.BOA D ECF 图2。
2007年北京市高级中等学校招生统一考试数学试卷(课标卷,含答案)-
2007年北京市高级中等学校招生统一考试(课标卷)数 学 试 卷考生须知:1.本试卷分为第Ⅰ卷、第Ⅱ卷,共10页,共九道大题,25个小题,满分120分.考试时间120分钟.2.在试卷密封线内认真填写区(县)名称、毕业学校、姓名、报名号、准考证号. 3.考试结束,请将本试卷和机读答题卡一并交回.第Ⅰ卷 (机读卷 共32分)考生须知:1.第Ⅰ卷共2页,共一道大题,8个小题.2.试题答案一律填涂在机读答题卡上,在试卷上作答无效.一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.3-的倒数是( ) A .13-B .13C .3-D .32.国家游泳中心-- “水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为( ) A .60.2610⨯B .42610⨯C .62.610⨯D .52.610⨯3.如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于AB , 若35BCE ∠=°,则A ∠的度数为( )A .35°B .45°C .55°D .65° 4.若22(1)0m n ++-=,则2m n +的值为( )A .4-B .1-C .0D .45.北京市2007年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为( ) A .28℃ B .29℃ C .30℃ D .31℃ 6.把代数式244ax ax a -+分解因式,下列结果中正确的是( ) A .2(2)a x -B .2(2)a x +C .2(4)a x -D .(2)(2)a x x +-7.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19B .13C .12D .23ABD CE8.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是 这个纸盒的展开图,那么这个展开图是( )2007年北京市高级中等学校招生统一考试(课标卷)数 学 试 卷第Ⅱ卷 (非机读卷 共88分)考生须知:1.第Ⅱ卷共8页,共八道大题,17个小题.2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔.二、填空题(共4个小题,每小题4分,共16分) 9.若分式241x x -+的值为0,则x 的值为 . 10.若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是 . 11.在五环图案内,分别填写五个数a b c d e ,,,,,如图, ,其中a b c,,是三个连续偶数()a b d e <,,是两个连续奇数()d e <,且满足a b c d e ++=+,例如 .请你在0到20之间选择另一组符号条件的数填入下图: .12.右图是对称中心为点O 的正六边形.如果用一个含30°角的直角三 角板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面积 n 等分,那么n 的所有可能的值是 . 三、解答题(共5个小题,共25分) 13.(本小题满分5分)计算:1118(π1)2cos 454-⎛⎫---+ ⎪⎝⎭°.a b c d e2 4 65 7O A. B. C. D.解方程:2410x x +-=. 15.(本小题满分5分) 计算:22111x x x ---. 16.(本小题满分5分)已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,. 求证:AB CD =.B ACO D P已知240x -=,求代数式22(1)()7x x x x x x +-+--的值.四、解答题(共2个小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB DC AD ==,60C ∠=°,AE BD ⊥于点1E AE =,,求梯形ABCD 的高.19.(本小题满分5分)已知:如图,A 是O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC BC =,12AC OB =.(1)求证:AB 是O 的切线;(2)若45ACD ∠=°,2OC =,求弦CD 的长.B A D EC OABCD五、解答题(本题满分6分)20.根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:2005年北京市水资源分布图(单位:亿3m ) 2004年北京市用水量统计图2005年北京市用水情况统计表生活用水 环境用水 工业用水 农业用水 用水量 (单位:亿3m ) 13.386.8013.22占全年总用水量的比例38.8%3.2% 19.7%38.3%(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供.请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿3m );农业用水生活用水工业用水环境用水 2%37%39%22%0 12 34 5678 水系2.796.786.883.22永定河水系潮白河水系北运河水系蓟运河水系大清河水系水资源量2005年北京市水资源统计图(单位:亿3m )6.783.226.882.793.51 潮白河水系永定河水系蓟运河水系北运河水系永定河水系 大清河水系(2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿3m ,请你先计算环境用水量(单位:亿3m ),再计算2005年北京市用水总量(单位:亿3m ); (3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿3m ); (4)结合2004年及2005年北京市的用水情况,谈谈你的看法.六、解答题(共2个小题,共9分) 21.(本小题满分5分)在平面直角坐标系xOy 中,OEFG 为正方形,点F 的坐标为(11),.将一个最短边长大于2的直角三角形纸片的直角顶点放在对角线FO 上.(1)如图,当三角形纸片的直角顶点与点F 重合,一条直角边落在直线FO 上时,这个三角形纸片与正方形OEFG 重叠部分(即阴影部分)的面积为 ; (2)若三角形纸片的直角顶点不与点O F ,重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG 重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.11 O E F G yx22.(本小题满分4分)在平面直角坐标系xOy 中,反比例函数k y x =的图象与3y x=的图象关于x 轴对称,又与直线2y ax =+交于点(3)A m ,,试确定a 的值.七、解答题(本题满分7分) 23.如图,已知ABC △.(1)请你在BC 边上分别取两点D E ,(BC 的中点除外),连结AD AE ,,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形; (2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.A B C24.在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴交于C 点,求直线l 的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.1 2 312 3 4 1- 2- 3-1-2- 3- 4- yxO25.我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.B O A DEC。
2007年北京朝阳区初三下学期综合练习(一)数学试卷
2007年北京朝阳区初三下学期综合练习(一) 数学试卷 2007.5 第I 卷(共32 分) 、选择题(共 8个小题,每小题 4分,共32 分)F 列各题均有四个选项,其中只有一个是符合题意的。
1 . 9的平方根是 B .— 3 C . 3 或一32 •下列各式计算正确的是 2 5 A . (a ) a B . a 2 a3 a 6 C . a 6 a 2 a 3 2、3 3 6 D . ( 2ab ) 8a b 3.中国年水资源总量约为 27500亿立方米,居世界第六位,人均占有水量仅为 2400立方米 1 1,居世界第 4 将数据27500亿用科学记数法表示正确的是 左右,只相当于世界人均的 110位,中国已被联合国列为 13个贫水国之一。
A . 275 102亿 B .27.5 103亿C . 2.75 104亿D . 2.75 105亿4 .函数y 1 ------ 中,自变量 x x 2 的取值范围是 A . x>2 C . x 2 5.如图,AB 为O O 直径,点C 、 D . x<2 C . 35° D . 70°那么/ D 的度数为 A . 20° B .30° 6. 一个几何体的三视图如图(1) 所示,那么这个几何体是7.在 Rt △ ABC 中,/sin A 4 则tanB 的值为[C = 90°, 5,4 33 4A . -— C . — D.- 3 4 5 5&如图,下列结论中错误的是 y k i xA .方程组 k 2y 一 x B .当-2<x<i 时,有 y yC . k i 0、k 2 0、b 0D •直线y k i X b 与两坐标轴围成的三角形的面积是 - 2第II 卷(共88分)二、填空题(共 4个小题,每小题 4分,共16分)9 •分析图①、②、④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分。
2007年北京市高级中等学校招生统一考试(课标卷)数学试题
2007年北京市高级中等学校招生统一考试(课标卷)数学试题佚名
【期刊名称】《政治思想史》
【年(卷),期】2007(000)010
【总页数】2页(P39-封3)
【正文语种】中文
【中图分类】G4
【相关文献】
1.2007年江西省中等学校招生统一考试(课标卷)英语试题 [J],
2.2006年北京市高级中等学校招生统一考试(课标A卷)数学试题 [J], 唐大昌
3.2005年北京市高级中等学校招生统一考试(海淀卷)数学试题 [J],
4.北京市2004年高级中等学校招生统一考试试题(海淀卷) [J], 无
5.2007年北京市高级中等学校招生统一考试(课标卷) 物理试卷 [J], 韩宝财
因版权原因,仅展示原文概要,查看原文内容请购买。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
2007年北京市中考数学试题与答案
2007年北京市高级中等学校招生统一考试(课标卷)一、选择题(共8个小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的,用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1. -3的倒数是( ) A.13- B.13C. -3D.3 2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积给260000平方米,将260000用科学记数法表示应为 ( ) A. 0.26×106 B. 26×104 C. 2.6×106 D. 2.6×1053. 如图,Rt △ABC 中,∠ABC=90O ,DE 过点C 且平行于AB ,若∠BCE=35 O , 则∠A 的度数为 ( ) A. 35O B. 45º C. 55º D. 65º4. 若2|2|(1)0m n ++-=,则2m n +的值为 ( )A. -4B. -1C. 0D. 4 5. 北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为。
( ) A. 28ºC B. 29ºC C. 30ºC D. 31ºC 6. 把代数式244ax ax a -+分解因式,下列结果中正确的是。
( ) A. 2(2)a x - B. 2(2)a x +C. 2(4)a x -D. (2)(2)a x x +-7. 一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为 ( ) A.19 B. 13 C. 12 D. 238. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个....是这个纸盒的 展开图,那么这个展开图是 ( )二、填空题(共4个小题,每小题4分,共16分) 9. 若分式241x x -+的值为0,则x 的值为 . 10. 若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是 .11. 在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图: ,其中a b ,c 是三个连续偶数()a b <,d ,e 是两个连续奇数()d e <,且满足a b c d e ++=+,例如: ,. 请你在0到20之间选择另一组符合条件的数填入下图:12. 2007年北京市统招右图是对种中心为点O 的正六边形,如果用一个含30º角的直角三角板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面 积n 等分,那么n 的所有可能的值是 .三、解答题(共5个小题,共25分) 13.(本小题满分5分)2007年北京市统招计算:1118(1)2cos 45()4π---︒-︒+14.(本小题满分5分) 解方程:2410x x +-=15.(本小题满分5分) 计算:22111x x x ---16.(本小题满分5分)已知:如图,OP 是∠AOC 和∠BOD 的平分线,OA =OC ,OB =OD . 求证:AB =CD17.(本小题满分5分)已知240x -=,求代数式22(1)()7x x x x x x +-+--的值.四、解答题(共2个小题,共10分) 18.(本小题满分5分) 如图,在梯形ABCD 中,AD ∥BC ,AB = DC = AD ,∠C=60º,AE ⊥BD 于点E ,AE=1,求梯形ABCD 的高.19.(本小题满分5分)2007北京统考已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC = BC,AC =12 OB(1)求证:AB是⊙O的切线;(2)若∠ACD =45º,OC =2,求弦CD的长.五、解答题(本题满分6分)20. 根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供,请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿m3);(2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿m3,请你选计算环境用水量(单位:亿m3),再计算2005年北京市用水总量(单位:亿m3);(3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿m3);(4)结合2004年及2005年北京市的用水情况,谈谈你的看法.六、解答题(共2个小题,共9分)21.(本小题满分5分)在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1),将一个最短边长大于2的直角三角形纸片的直角顶点放在对角线FO上,(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O、F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),22.(本小题满分4分)在平面直角坐标系xOy 中,反比例函数k y x =的图像与3y x=的图像关于x 轴对称,又与直线2y ax =+交于点(,3)A m ,试确定a 的值.七、解答题(本题满分7分)23. 如图,已知ABC ∆(1)请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此图中只存在两对.....面 积相等的三角形的相应条件,并表示出面积相等的 三角形;(2)请你根据使(1)成立的相应条件, 证明AB AC AD AE +>+.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(3,5)P ,(0,2)A 两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴交于C 点,求直线l 的解析式;(3)在(2)的条件下,求到直线OB 、OC 、BC 距离相等的点的坐标.九、解答题(本题满分8分)25. 我们知道:有两条边相等的三角形叫做等腰三角形,类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,设CD 、BE 相交于O ,若60A ∠=︒,12DCB EBC A ∠=∠=∠,请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC ∆中,如果A ∠是不等于60º的锐角,点D 、E 分别在AB 、AC 上,且12DCB EBC A ∠=∠=∠,探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.2007年北京市高级中等学校招生统一考试(课标卷)数 学 试 卷·参 考 答 案阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名。
2007年中考数学试题
北京市2007年高级中等学校招生统一考试数学试卷(课标卷)考生须知:1.本试卷分为第Ⅰ卷、第Ⅱ卷,共10页,共九道大题,25个小题,满分120分.考试时间120分钟. 2.在试卷密封线内认真填写区(县)名称、毕业学校、姓名、报名号、准考证号. 3.考试结束,请将本试卷和机读答题卡一并交回.第Ⅰ卷 (机读卷 共32分)考生须知:1.第Ⅰ卷共2页,共一道大题,8个小题.2.试题答案一律填涂在机读答题卡上,在试卷上作答无效.一、选择题(共8个小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.3-的倒数是( ) A .13-B .13C .3-D .32.国家游泳中心-- “水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为( ) A .60.2610⨯B .42610⨯C .62.610⨯D .52.610⨯3.如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于AB若35BCE ∠=°,则A ∠的度数为( )A .35°B .45°C .55°D .65° 4.若22(1)0m n ++-=,则2m n +的值为( )A .4-B .1-C .0D .45.北京市2007年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为( ) A .28℃ B .29℃ C .30℃ D .31℃ 6.把代数式244ax ax a -+分解因式,下列结果中正确的是( ) A .2(2)a x -B .2(2)a x +C .2(4)a x -D .(2)(2)a x x +-7.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19B .13C .12D .238.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是 这个纸盒的展开图,那么这个展开图是( )2007年北京市高级中等学校招生统一考试(课标卷)数 学 试 卷第Ⅱ卷 (非机读卷 共88分)考生须知:1.第Ⅱ卷共8页,共八道大题,17个小题.2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔.二、填空题(共4个小题,每小题4分,共16分) 9.若分式241x x -+的值为0,则x 的值为 . 10.若关于x 的一元二次方程220x x k +-=的取值范围是 .11.在五环图案内,分别填写五个数a b c d e ,,,,,其中a b c ,,是三个连续偶数()a b d e <,,是两个连续奇数()de<,且满足a b c ++0到20之间选择另一组符号条件的数填入下图:.12.右图是对称中心为点O 的正六边形.如果用一个含30°角的直角三 角板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面积 n 等分,那么n 的所有可能的值是 .三、解答题(共5个小题,共25分) 13.(本小题满分5分) 14.(本小题满分5分)101(π1)2cos 454-⎛⎫--+ ⎪⎝⎭°. 解方程:2410x x +-=.A. B. C. D.15.(本小题满分5分) 计算:22111x x x ---. 16.(本小题满分5分)已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,. 求证:AB CD =.17.(本小题满分5分)已知240x -=,求代数式22(1)()7x x x x x x +-+--的值.B ACODP四、解答题(共2个小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB DC AD ==,60C ∠=°,AE BD ⊥于点1E AE =,,求梯形ABCD 的高.19.(本小题满分5分) 已知:如图,A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC BC =,12AC OB =.(1)求证:AB 是⊙O 的切线;(2)若45ACD ∠=°,2OC =,求弦CD 的长.五、解答题(本题满分6分)20.根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表: 2005年北京市水资源分布图(单位:亿3m ) 2004年北京市用水量统计图BC O A B CD 农业用水生活用水工业用水环境用水 2%37%39%22%6.783.226.882.793.51 潮白河水系永定河水系蓟运河水系北运河水系永定河水系 大清河水系2005年北京市用水情况统计表(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供.请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿3m ); (2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿3m ,请你先计算环境用水量(单位:亿3m ),再计算2005年北京市用水总量(单位:亿3m ); (3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿3m ); (4)结合2004年及2005年北京市的用水情况,谈谈你的看法.1 2 3 4 5 6 7 8 水系永定河水系 潮白河水系北运河水系蓟运河水系大清河水系水资源量2005年北京市水资源统计图(单位:亿3m )六、解答题(共2个小题,共9分) 21.(本小题满分5分)在平面直角坐标系xOy 中,OEFG 为正方形,点F 的坐标为(11),的直角三角形纸片的直角顶点放在对角线FO 上.(1)如图,当三角形纸片的直角顶点与点F 重合,一条直角边落在直线FO 上时,这个三角形纸片与正方形OEFG 重叠部分(即阴影部分)的面积为 ;(2)若三角形纸片的直角顶点不与点O F ,重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG 重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.22.(本小题满分4分)在平面直角坐标系xOy 中,反比例函数k y x =的图象与3y x=的图象关于x 轴对称,又与直线2y ax =+交于点(3)A m ,,试确定a 的值.七、解答题(本题满分7分) 23.如图,已知ABC △.(1)请你在BC 边上分别取两点D E ,(BC 的中点除外),连结AD AE ,,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.八、解答题(本题满分7分)24.在平面直角坐标系xOy中,抛物线2y mx n =++经过(02)P A ,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴交于C 点,求直线l 的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.xAB C九、解答题(本题满分8分)25.我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在A B A C,上,且12D C BE B C A∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.B O A DEC答案:阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第I 卷是选择题,机读阅读. 3.第II 卷包括填空题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第I 卷第II 卷三、解答题1311(π1)2cos 454-⎛⎫--+ ⎪⎝⎭1242=-⨯+ 3=+14.解:因为1a =,4b =,1c =-, 所以224441(1)20b ac -=-⨯⨯-=.代入公式,得4422212b x a -±--±====-±⨯ 所以原方程的解为1222x x =-=- 15.解:22111x x x --- 21(1)(1)1x x x x =-+--2(1)(1)(1)x x x x -+=+-1(1)(1)x x x -=+-11x =+. 16.证明:因为OP 是AOC ∠和BOD ∠的平分线, 所以 AOP COP ∠=∠,BOP DOP ∠=∠. 所以AOB COD ∠=∠. 在AOB △和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,,, 所以AOB COD △≌△. 所以 AB CD =.17.解:22(1)()7x x x x x x +-+--323227x x x x x x =++---- 27x =-.当24x =时,原式3=-. 四、解答题18.解:作DF BC ⊥于点F . 因为AD BC ∥,所以12∠=∠. 因为AB AD =,所以23∠=∠. 所以13∠=∠.又因为AB DC =,60C ∠=,所以11133022ABC C ∠=∠=∠=∠=.又因为AE BD ⊥于点E ,1AE =,所以2AB DC ==.在Rt CDF △中,由正弦定义,可得DF =. 所以梯形ABCD.19.解:(1)证明:如图,连结OA .BC因为OC BC =,12AC OB =, 所以OC BC AC OA ===. 所以ACO △是等边三角形.故60O ∠=.又可得30B ∠=,所以90OAB ∠=.所以AB 是O 的切线.(2)解:作AE CD ⊥于E 点.因为60O ∠=,所以30D ∠=.又45ACD ∠=,2AC OC ==,所以在Rt ACE △中,CE AE ==在Rt ADE △中,因为30D ∠=,所以AD =由勾股定理,可求DE =所以CD DE CE =+=.五、解答题 20.解:(1)初全2005年北京市水资源统计图见右图;水资源总量为23.18亿3m .(2)设2005年环境用水量为x 亿3m . 依题意得60.2 6.8x +=. 解得 1.1x =.所以2005年环境用水量为1.1亿3m . 因为13.38 1.1 6.813.2234.5+++=, 所以2005年北京市用水总量为34.5亿3m .(3)因为34.523.1811.32-=,所以2005年北京市缺水量为11.32亿3m . (4)说明:通过对比2004年及2005年北京市的用水情况,能提出积极看法的给分. 六、解答题 21.解:(1)12; OABC DE 01 2 3 4 5 6 7 8水系永定河水系湖白河水系北运河水系蓟运河水系大清河水系水资源量2005年北京市水资源统计图(单位:亿3m )(2)直角顶点的坐标为⎝⎭或11⎛- ⎝⎭. 此时的图形如右图.22.解:依题意得,反比例函数k y x =的解析式为3y x=-的图像上. 因为点(3)A m ,在反比例函数3y x=-的图象上, 所以1m =-.即点A 的坐标为(13)-,.由点(13)A -,在直线2y ax =+上, 可求得1a =-. 七、解答题23.解:(1)如图1,BD CE DE =≠;ABD △和ACE △,ABE △和ACD △.(2)证法一:如图2,分别过点D B ,作CA ,EA 的平行线,两线交于F 点,DF 与AB 交于G 点. 所以ACE FDB ∠=∠,AEC FBD ∠=∠. 在AEC △和FBD △中,又CE BD =, 可证AEC FBD △≌△. 所以AC FD =,AE FB =.在AGD △中,AG DG AD +>,在BFG △中,BG FG FB +>,所以0AG DG AD +->,0BG FG FB +->. 所以0AG DG BG FG AD FB +++-->. 即AB FD AD FB +>+. 所以AB AC AD AE +>+.ABCD图1EA B C D 图2 EF G证法二:如图3,分别过点A E ,作CB ,CA 的平行线,两线交于F 点,EF 与AB 交于G 点,连结BF . 则四边形FECA 是平行四边形.所以FE AC =,AF CE =.因为BD CE =, 所以BD AF =.所以四边形FBDA 是平行四边形.所以FB AD =. 在AGE △中,AG EG AE +>, 在BFG △中,BG FG FB +>,可推得AG EG BG FG AE FB +++>+. 所以AB AC AD AE +>+.证法三:如图4,取DE 的中点O ,连结AO 并延长到F 点,使得FO AO =,连结EF ,CF . 在ADO △和FEO △中,又AOD FOE ∠=∠,DO EO =.可证ADO FEO △≌△.所以AD FE =.因为BD CE =,DO EO =, 所以BO CO =.同理可证ABO FCO △≌△. 所以AB FC =.延长AE 交CF 于G 点. 在ACG △中,AC CG AE EG +>+,在EFG △中,EG FG EF +>.可推得AC CG EG FG AE EG EF +++>++. 即AC CF AE EF +>+. 所以AB AC AD AE +>+. 八、解答题24.解:(1)根据题意得3652.m m n n ++=⎧⎨=⎩,解得132.m n ⎧=⎪⎨⎪=⎩,所以抛物线的解析式为21233y x x =++. (2)由21233y x x =++得抛物线的顶点坐标为(B依题意,可得(1)C -,且直线l 过原点. 设直线l 的解析式为y kx =.A B C D 图3 EGFA B C D 图4E G FO则1=-,解得k =所以直线l 的解析式为y x =. (3)到直线OB OC BC ,,距离相等的点有四个.如图,由勾股定理得2OB OC BC ===,所以OBC △为等边三角形. 易证x 轴所在直线平分BOC ∠,y 轴是OBC △的一个外角的平分线.作BCO ∠的平分线,交x 轴于1M 点,交y 轴于2M 点,作OBC △的BCO ∠相邻外角的平分线,交y 轴于3M 点,反向延长交x 轴于4M 点.可得点1234M M M M ,,,就是到直线OB ,OC ,BC 距离相等的点. 可证2OBM △,4BCM △,3OCM △均为等边三角形. 可求得:①133OM ==,所以点1M 的坐标为03⎛⎫- ⎪ ⎪⎝⎭.②点2M 与点A 重合,所以点2M 的坐标为(02),.③点3M 与点A 关于x 轴对称,所以点3M 的坐标为(02)-,. ④设抛物线的对称轴与x 轴的交点为N .42M N BC ==4ON M N =,所以点4M 的坐标为(-.综上所述,到直线OB OC BC ,,距离相等的点的坐标分别为10M ⎛⎫⎪ ⎪⎝⎭,2(02)M ,,3(02)M -,,4(M -.九、解答题25.解:(1)回答正确的给1分(如平行四边形、等腰梯形等). (2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点.因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BCF CBG △≌△.所以BF CG =.因为BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A ∠=∠+∠,所以BDF BEC ∠=∠.可证BDF CEG △≌△.所以BD CE =.所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BE 于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BDC CFB △≌△.所以BD CF =,BDC CFB ∠=∠.所以ADC CFE ∠=∠. 因为ADC DCB EBC ABE ∠=∠+∠+∠,FEC A ABE ∠=∠+∠, 所以ADC FEC ∠=∠. 所以FEC CFE ∠=∠. 所以CF CE =. 所以BD CE =.所以四边形DBCE 是等边四边形.说明:当AB AC =时,BD CE =仍成立.只有此证法,只给1分.BOA D ECF 图2 B OA D ECF 图1 G。
07年中考全真试题及答案北师
O CA B D E2007年中考数学复习同步检测(1)(圆的基本性质1)一.填空题:1.有长、宽分别为4 cm 、3 cm 的矩形ABCD ,以A 为圆心作圆,若B 、C 、D 至少与一点且至少只有一点在圆内,则圆的半径R 的取值范围是 ;2.圆的一条弦与直径相交成︒30的角,且把直径分为1 cm 和5 cm ,那么这弦的弦心距为 cm ,弦长为 cm ;3.⊙O 的半径为2 cm ,P 为⊙O 内一点,且PO = 1 cm ,则⊙O 过P 点的弦中,最短的弦长为 cm ,它所对的劣弧为 度;4.内接于圆的特殊四边形是 ; 5.如图2,AB 、AC 为⊙O 的两条弦,延长CA 到D ,使AD = AB ; 如果∠ADB =︒30,那么∠BOC = ; 6.一个半径是5cm 的圆,它的一条弦长是6cm ,则弦心距是 ; 7.已知,等边ΔABC 内接于⊙O ,AB=10cm,则⊙O 的半径是 ; 8.一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数是 ; 9.已知圆O 的弦AB 经过弦CD 的中点P ,若AP=2cm,CD=8cm,则PB 的长是 ;10.如图(5),弧AC 的度数是040,则_______=∠B ; 11.如图(6),085=∠A ,则________=∠DCE ;12.如图(7),BC AC =,043=∠CAB ,则_________=∠AOB 。
13.已知某圆的半径是6,请写出它的其中一条弦的长度____________。
14.如图(8),弦CD AB //,O Θ的半径为10,cm AB 12=,cm CD 16=,则AB 、CD 之间的距离是___________cm ; 15.如图(9),PO 是直径所在的直线,且PO 平分BPD ∠,AB OE ⊥,CD OF ⊥,则: ①CD AB =;②弧AC 等于弧CD ;③PE PO =;④弧AB 等于弧CD ;⑤PD PB =;其中结论正确的是________________(填序号) 。
2007年普通高等学校招生全国统一考试数学卷(北京.文)含答案
2007年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角D.第一或第四象限角2.函数()3(02)x f x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19], C.(01), D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( )A.π2B.π C.2π D.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.202⎛⎤ ⎥ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.212⎡⎫⎪⎢⎪⎣⎭, 5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个 6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( ) A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥8.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是.10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 .11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于.14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为 ;当[()]2g f x =时,x = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共12分) 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;x1 2 3 ()f x 211x1 2 3 ()f x321AD(II )求{}n a 的通项公式. 17.(本小题共14分) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小. 18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆D TN OABCMxy心的轨迹方程. 20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.C 2.B 3.B4.D5.A6.C7.D8.C二、填空题(本大题共6小题,每小题5分,共30分)9.3 10.211n - 11.3- 12.10213.72514.11三、解答题(本大题共6小题,共80分)15.(共12分) 解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >, 即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+=,,. 17.(共14分) 解法一:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角,CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥,CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,112OE BO ==, 225CE CO OE ∴=+=. 又132DE AO ==. ∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. 解法二: (I )同解法一.OCADBE(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴=,,,(213)CD =-,,,cos OA CD OA CD OA CD∴<>=,6642322==. ∴异面直线AO 与CD 所成角的大小为6arccos4. 18.(共13分)解:(I )这6位乘客在互不相同的车站下车的概率为610661512.15121010A P ==0≥. (II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===. 19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上, 所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.OCADB xyz(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以22PM PN =+, 即22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =. 所以虚半轴长222b c a =-=.从而动圆P 的圆心的轨迹方程为221(2)22x y x -=-≤. 20.(本小题共14分)解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ··· ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得22k >.(II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,精品文档实用文档 由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故2128428k k x k k --==+-,22k >, 1x 是关于k 的减函数,所以1x 的取值范围是(02),. t 是关于1x 的增函数,定义域为(02),,所以值域为()-∞,0, (III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =. 从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=. 所以OM ON =.。
北京市历届中考数学试卷(含答案)
历届高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。
若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于 A. 60m B. 40m C. 30m D. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ 12. 如图,在平面直角坐标系x O y 中,已知直线:1--=x t ,双曲线xy 1=。
2007年北京丰台区初三统一练习数学试卷
2007年北京丰台区初三统一练习(一)数学试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷(选择题 32分)一、选择题(共8个小题,每小题4分,共32分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的。
1.–5的绝对值是( ) A .51 B .51-C .5D .5-2.废电池是一种危害严重的污染源,一粒纽扣电池可以污染600000升水,用科学记数法表示这个数为( ) A .升41060⨯ B .升5106⨯ C .升6106.0⨯D .升6106⨯3.在函数2x 1y +=中,自变量x 的取值范围是( ) A .2x -≠ B .2x -> C .0x ≠D .2x ≠4.如图所示,是一个物体的三视图,则该物体的形状是( )A .圆锥B .圆柱C .三棱锥D .三棱柱5.某鞋店试销一种新款运动鞋,试销期间销售情况如下表:对于这个鞋店的经理来说最关心的是哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是( ) A .平均数 B .众数 C .中位数D .标准差6.小明用作函数图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数图象l 1、l 2,如图所示,他解的这个方程组是( )A .⎪⎩⎪⎨⎧-=+-=1x21y 2x 2yB .⎩⎨⎧-=+-=x y 2x 2yC .⎪⎩⎪⎨⎧-=-=3x 21y 8x 3yD .⎪⎩⎪⎨⎧--=+-=1x 21y 2x 2y7.如图所示,AB 是圆O 的直径,CD 是弦,且CD ⊥AB ,若BC=6,AC=8,则ABD sin ∠的值是( ) A .34 B .43 C .54 D .538.如图所示,把矩形ABCD 沿EF 对折,若∠1=50°,则∠DEF 等于( ) A .130°B .120°C .115°D .65°第II 卷(非选择题 88分)第II 卷包括七道大题。
[中考数学]北京市丰台区2007年初三数学统一练习试卷二(二模) 下学期
北京市丰台区2007年初三数学统一练习试卷二(二模)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分第I 卷(选择题 32分)一、选择题(共8个小题,每小题4分,共32分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的。
1、-3的倒数是 A.31B. 31-C. 3D. -32、在函数1x 1y -=中,自变量x 的取值范围是A. 1x ≠B. 1x >C. 1x <D. 1x ≥ 3、下列计算中正确的是 A. 39=B. 632-=-C. 532a )a (=D. 22ab )ab (=4、把不等式组⎩⎨⎧>-≤-3x 6,04x 2的解集表示在数轴上,正确的是5活动次数 0 1 2 3 4 学生人数1202381108040则全校学生参加体育活动的次数..的众数和中位数分别是 A. 1,2 B. 2,1 C. 2,2, D. 1,16、如图,已知△ABC 的周长为1,连结△ABC 三边的中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,依次类推,第2007个三角形的周长是A.20061B.20071C.200621D.2007217、如图,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF =45°,则图中阴影部分的面积是A. π-4B. 24π-C. π-8D. 28π-8、如图,现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为A. 4cmB. 3cmC. 2cmD. 1cm第II 卷(非选择题 88分)二、填空题(共4个小题,每小题4分,共16分) 9、将0.0089用科学记数法表示为_______________。
10、如上图,一次函数3x y +=的图象经过点P (a ,b )、Q (c ,d ),则)d c (b )d c (a ---的值为_______________。
2007年北京市朝阳区中考数学试卷
2007年北京市朝阳区中考数学试卷一、选择题(共8小题,每小题4分,满分32分) 1.(4分)(2011•仙桃)﹣的倒数是( ) A .﹣B . ﹣3C .D . 32.(4分)(2008•防城港)实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为( )A . 0.156×10﹣5B . 0.156×105C . 1.56×10﹣6 D . 1.56×106 3.(4分)(2007•朝阳区)下列各式计算正确的是( )A .a 3•a 3=a 6 B . a 3+a 3=2a 6 C . (a 2)3=a 5 D . (3a )2=6a 24.(4分)(2007•朝阳区)如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,如果截面为正面,则此工件的俯视图是( )A .B .C .D .5.(4分)(2007•朝阳区)五张完全相同的卡片上,分别画有圆、菱形、等腰梯形、等边三角形、线段,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( ) A . 1 B . C . D .6.(4分)(2007•朝阳区)已知两圆的半径分别是3和5,圆心距是2,则两圆的位置关系是( ) A .外离 B . 相交 C . 内切 D . 外切 7.(4分)(2007•朝阳区)已知:如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA=4,OA=3,则cos ∠APO 的值为( )A .B .C .D .8.(4分)(2007•朝阳区)如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(共5小题,每小题4分,满分20分)9.(4分)(2008•宜宾)因式分解:3y2﹣27=_________.10.(4分)(2007•朝阳区)已知关于x的方程2x2﹣kx+1=0的一根为x=1,则k的值为_________.11.(4分)(2007•朝阳区)已知一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的取值范围是_________.12.(4分)(2007•朝阳区)劳技课上,小明制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,母线长50cm,则制成一顶这样的纸帽所需纸的面积为_________cm2.(不考虑接缝用料,结果保留π)13.(4分)(2007•朝阳区)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转到△ACP′的位置、如果AP=3,那么PP′的长等于_________.三、解答题(共9小题,满分48分)14.(5分)(2007•朝阳区)计算:sin30°+2﹣1﹣()0﹣|﹣3|.15.(5分)(2007•朝阳区)先化简,再求值:,其中x=.16.(5分)(2007•朝阳区)解不等式组:,并求出这个不等式组的整数解.17.(5分)(2007•朝阳区)已知一次函数y=kx+b的图象与反比例函数的图象都经过点A(﹣2,3),求这两个函数的解析式.18.(5分)(2007•朝阳区)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.19.(5分)(2007•朝阳区)已知:如图,平行四边形ABCD中,点E、F在AC上,_________.在如下条件①AE=CF,②DF∥BE中,你认为再添加哪一个条件,可证出BE=DF.把你选择的条件添在题中的横线上,并完成你的证明.(只需添加一个条件即可)20.(5分)(2007•朝阳区)某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵a元的奖励.另外,种植的果树,从下一年起,每年每棵平均将有b元的果实收入.下表是某农户在头两年通过开荒种树每年获得的总收入情况:年份新果树的棵树年总收入2004年130棵1500元2005年150棵4300元(注:年总收入=生活补贴费+政府奖励费+果实收入)(1)试根据以上提供的资料确定a、b的值;(2)从2006年起,该农户每年新增果树的棵数将以相同的百分率增长,预计2007年新增果树216棵,那么2007年该农户通过种植果树获得的年总收入将达到多少元?21.(6分)(2007•朝阳区)已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于点E,AE=2,ED=4.(1)求证:AF是⊙O的切线;(2)求AB的长.22.(7分)(2007•朝阳区)已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C,E为直径OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.(1)求直线AB的解析式;(2)求y与x之间的函数关系式,并写出自变量x的取值范围.2007年北京市朝阳区中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)(2011•仙桃)﹣的倒数是()A.B.﹣3 C.D.3﹣考点:倒数.专题:计算题.分析:根据倒数的定义可得到﹣的倒数为﹣3.解答:解:﹣的倒数为﹣3.故选B.点评:本题考查了倒数的定义:a(a≠0)的倒数为.2.(4分)(2008•防城港)实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10﹣5B.0.156×105C.1.56×10﹣6D.1.56×106考点:科学记数法—表示较小的数.专题:应用题.分析:绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 001 56=1.56×10﹣6.故选C.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(4分)(2007•朝阳区)下列各式计算正确的是()A.a3•a3=a6B.a3+a3=2a6C.(a2)3=a5D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、a3•a3=a3+3=a6,正确;B、应为a3+a3=2a3,故本选项错误;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为(3a)2=32•a2=9a2,故本选项错误.故选A.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.4.(4分)(2007•朝阳区)如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,如果截面为正面,则此工件的俯视图是()A.B.C.D.考点:简单几何体的三视图;截一个几何体.分析:俯视图是从物体上面看所得到的图形.从工件②上面看,是1个正方形.解答:解:从工件②上面看,是1个正方形.故选C.点评:考查立体图形的俯视图,旨在考查学生的观察能力.5.(4分)(2007•朝阳区)五张完全相同的卡片上,分别画有圆、菱形、等腰梯形、等边三角形、线段,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为()A.1B.C.D.考点:概率公式;中心对称图形.分析:先求出中心对称图形的个数,除以卡片总张数即为恰好是中心对称图形的概率.解答:解:圆、菱形、等腰梯形、等边三角形、线段中,是中心对称图形的有圆、菱形、线段3个,所以从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为.故选B.点评:用到的知识点为:概率=所求情况数与总情况数之比.6.(4分)(2007•朝阳区)已知两圆的半径分别是3和5,圆心距是2,则两圆的位置关系是()A.外离B.相交C.内切D.外切考点:圆与圆的位置关系.分析:根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求解.解答:解:两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r,∵5﹣3=2,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2的位置关系是内切.故选C.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.(4分)(2007•朝阳区)已知:如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO 的值为()A .B .C .D .考点: 锐角三角函数的定义;勾股定理;切线的性质. 专题: 计算题;压轴题. 分析: 根据切线的性质,△OAP 是直角三角形,根据勾股定理就可以求出OP=5,则可以求得cos ∠APO 的值. 解答:解:∵PA 为⊙O 的切线,A 为切点, ∴OA ⊥AP .又PA=4,OA=3,∴OP=5.∴cos ∠APO=.故本题选D .点评:本题运用了切线的性质定理,通过切线的性质定理得到△OAP 是直角三角形,是解决本题的关键.8.(4分)(2007•朝阳区)如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .考点: 动点问题的函数图象;二次函数的图象. 专题: 压轴题;动点型.分析: 利用面积列出二次函数和一次函数解析式,利用面积的变化选择答案.解答:解:根据已知可得:点E 在未到达C 之前,y=x (5﹣x )=5x ﹣x 2;且x ≤3,当x 从0变化到2.5时,y 逐渐变大,当x=2.5时,y 有最大值,当x 从2.5变化到3时,y 逐渐变小, 到达C 之后,y=3(5﹣x )=15﹣3x ,x >3, 根据二次函数和一次函数的性质. 故选:A .点评: 利用一次函数和二次函数的性质,结合实际问题于图象解决问题.二、填空题(共5小题,每小题4分,满分20分)9.(4分)(2008•宜宾)因式分解:3y 2﹣27= 3(y+3)(y ﹣3) .考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用平方差公式继续分解.解答:解:3y2﹣27,=3(y2﹣9),=3(y2﹣32),=3(y+3)(y﹣3).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.10.(4分)(2007•朝阳区)已知关于x的方程2x2﹣kx+1=0的一根为x=1,则k的值为3.考点:一元二次方程的解.专题:计算题.分析:一元二次方程的根就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将x=1代入原方程即可求得k的值.解答:解:把x=1代入方程2x2﹣kx+1=0,得2﹣k+1=0,即k=3.点评:本题考查的是一元二次方程的根的定义.11.(4分)(2007•朝阳区)已知一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的取值范围是k<4.考点:根的判别式.分析:方程有两个不相等的实数根,则△>0,建立关于k的不等式,求出k的取值范围.解答:解:由题意知,△=16﹣4k>0,解得:k<4.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(4分)(2007•朝阳区)劳技课上,小明制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,母线长50cm,则制成一顶这样的纸帽所需纸的面积为500πcm2.(不考虑接缝用料,结果保留π)考点:圆锥的计算.专题:压轴题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面圆的半径为10cm,则底面周长=20πcm,侧面面积=×20π×50=500πcm2.点评:本题利用了圆的周长公式和扇形面积公式求解.13.(4分)(2007•朝阳区)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转到△ACP′的位置、如果AP=3,那么PP′的长等于.考点:旋转的性质.专题:压轴题.分析:因为△ACP′是由△ABP旋转得到的,则这两个三角形全等,根据∠BAP+∠PAC=90°所以∠CAP′+∠PAC=90°,可得△PAP′为等腰直角三角形,由勾股定理即可求解.解答:解:AP=AP′=3,∠BAP=∠CAP′,∵∠BAP+∠PAC=90°,∴∠CAP′+∠PAC=90°,即△PAP′为等腰直角三角形,由勾股定理得PP′=3.点评:此题主要考查学生对旋转的性质及等腰三角形的性质的掌握情况.三、解答题(共9小题,满分48分)14.(5分)(2007•朝阳区)计算:sin30°+2﹣1﹣()0﹣|﹣3|.考点:特殊角的三角函数值;绝对值;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及特殊角的值,实数运算、二次根式化简等多个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=sin30°+2﹣1﹣()0﹣|﹣3|=+﹣1﹣3=﹣3.点评:本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.15.(5分)(2007•朝阳区)先化简,再求值:,其中x=.考点:分式的化简求值;分母有理化.专题:计算题.分析:主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意计算的最后结果要分母有理化.解答:解:原式===,当x=时,原式==1+.点评:本题主要考查分式的化简求值,将分式化到最简是解题的关键.16.(5分)(2007•朝阳区)解不等式组:,并求出这个不等式组的整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答:解:,由不等式①得x<0,由不等式②得x≥﹣2,所以不等组的解集为﹣2≤x<0,则这个不等式组的整数解是﹣2,﹣1.点评:正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.(5分)(2007•朝阳区)已知一次函数y=kx+b的图象与反比例函数的图象都经过点A(﹣2,3),求这两个函数的解析式.考点:反比例函数与一次函数的交点问题.专题:待定系数法.分析:已知一次函数y=kx+b的图象与反比例函数的图象都经过点A(﹣2,3),把(﹣2,3)代入就得到函数解析式.解答:解:根据题意得到,解得,因而这两个函数的解析式是y=﹣6x﹣9和y=﹣.点评:本题考查了函数的图象与解析式的关系,点在图象上,就一定满足函数的解析式,并且本题考查了利用待定系数法求函数解析式.18.(5分)(2007•朝阳区)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.考点:扇形统计图;用样本估计总体;条形统计图.专题:图表型.分析:(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.解答:解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200﹣60﹣30﹣10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(5分)(2007•朝阳区)已知:如图,平行四边形ABCD中,点E、F在AC上,DF∥BE.在如下条件①AE=CF,②DF∥BE中,你认为再添加哪一个条件,可证出BE=DF.把你选择的条件添在题中的横线上,并完成你的证明.(只需添加一个条件即可)考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题;开放型.分析:本题既可以证明△CDF≌△ABE,也可以证明△ADF≌△CBE,相比证明前者条件运用更直接一些.解答:解:DF∥BE.证明:∵DF∥BE,∴∠DFC=∠BEA.∵四边形ABCD是平行四边形,∴CD=AB,∠DCF=∠BAE.∴△CDF≌△ABE(AAS).∴BE=DF.点评:本题关键是利用平行四边形的性质结合添加的条件来证明三角形全等,从而得出结论.20.(5分)(2007•朝阳区)某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵a元的奖励.另外,种植的果树,从下一年起,每年每棵平均将有b元的果实收入.下表是某农户在头两年通过开荒种树每年获得的总收入情况:年份新果树的棵树年总收入2004年130棵1500元2005年150棵4300元(注:年总收入=生活补贴费+政府奖励费+果实收入)(1)试根据以上提供的资料确定a、b的值;(2)从2006年起,该农户每年新增果树的棵数将以相同的百分率增长,预计2007年新增果树216棵,那么2007年该农户通过种植果树获得的年总收入将达到多少元?考点:二元一次方程组的应用.专题:阅读型;图表型.分析:(1)因为年总收入=生活补贴费+政府奖励费+果实收入,结合图表,可列方程求解.(2)可设该增长率为x,则06年新增果树棵树为150(1+x),07年新增的果树棵树为150(1+x)2,根据题意可得方程求解即可.解答:解:(1)根据题意得解得;(2)设该增长率为x,则06年新增果树棵树为150(1+x),07年新增的果树棵树为150(1+x)2.根据题意得150(1+x)2=216,解x=0.2或x=﹣2.2(舍去),∴06年新增果树为150×1.2=180棵,07年的总收入是1200+116×10+(180+150+130)×20=11560元.答:2007年该农户通过种植果树获得的年总收入将达到11560元.点评:此类题目往往紧密联系生活,需很好地分析题意,然后利用方程或方程组解决问题,值得一提的是涉及到增长率时,一定要分析清增长的基础,还要对求出的解作合理的选择.21.(6分)(2007•朝阳区)已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于点E,AE=2,ED=4.(1)求证:AF是⊙O的切线;(2)求AB的长.考点:切线的判定;平行线的性质;圆周角定理.专题:几何综合题;压轴题.分析:(1)连接AO,证明AO⊥AF由切线的判定定理可以得出AF是⊙O的切线.(2)先根据相似三角形的判定得到△ABE∽△ADB,从而根据相似三角形的对应边成比例即可得到AD的长.解答:(1)证明:连接OA,∵A是BC弧的中点,∴OA⊥BC.∵AF∥BC,∴OA⊥AF.∴AF是⊙O的切线.(2)解:∵∠BAE=DAB,∠ABE=∠ADB,∴△ABE∽△ADB.∴=.∴AB2=AE•AD=12.∴AB=2.点评:此题主要考查切线的判定,平行线的性质及圆周角定理等知识点的综合运用.22.(7分)(2007•朝阳区)已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C,E为直径OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.(1)求直线AB的解析式;(2)求y与x之间的函数关系式,并写出自变量x的取值范围.考点:一次函数综合题.专题:压轴题.分析:(1)如图,过C作CM⊥OA于M,CN⊥OB于N,则CM=,CN=,根据已知可以知道OM=CN,然后证明△ACM∽△COM,利用对应边成比例可以求出AM,然后求出A的坐标,再利用待定系数法可以求出直线AB的解析式;(2)如图依题意得到OE=﹣x,根据已知可以证明△GEO∽△GBF∽△ABO,然后利用它们对应边成比例,分别表示BF,GF,最后表示△BGF的面积.解答:解:(1)如图:过C作CM⊥OA于M,CN⊥OB于N,则CM=,CN=.根据相交弦定理,得CM2=OM•AM,∵OM=CN,∴AM=,∴OA=OM+AM=+=2.∴A(﹣2,0).设直线AB的解析式为y=kx+b,把A,C两点坐标代入,得,∴k=,b=1,∴直线AB的解析式为y=x+1;(2)∵AB的解析式为y=x+1,∴当x=0时,y=1,∴OB=1,∴tan∠BAO==,而∠BAO+∠ABO=90°,∠FGB+∠FBG=90°,∴∠BAO=∠FGB,∴tan∠FGB=,∴sin∠FGB=,cos∠FGB=,而E(x,0),∴OE=﹣x,∴OG=﹣2x,∴BG=1﹣x,∴根据三角函数可知,GF=BG•cos∠FGB,BF=BG•sin∠FGB,∴y=•BF•GF=(1﹣x)2.点评:把三角函数,待定系数法,相似三角形的性质与判定都结合在一起,综合性比较强.。
2007年北京市崇文区初三下学期统一练习(一)数学
2007年北京市崇文区初三下学期初三统一练习(一)数学试卷2007.5试卷分为第I 卷(选择题)和第II 卷(解答题)两部分,共8页。
第I 卷(选择题 共32分)一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个选项是正确的。
1.21-的绝对值是 A .21B .21-C .2-D .22.下列运算中,正确的是 A .632a a a =⋅ B .422a 2a a =+ C .24±=D .228=-3.如图,AB//CD ,AC 与BD 交于点E ,若∠A=54°,∠D=76°,则∠AED 的度数为A .150°B .130°C .120°D .50°4.全国绿化委员会公布2006年绿化公报显示,北京2006年全年人工造林达到12000公顷。
将12000用科学记数法表示为 A .4102.1⨯B .5102.1⨯C .31012⨯D .41012⨯5.某电视台体育直播节目从接到的5000条短信中,抽取10名“幸运观众”。
小明给此直播节目发了一条短信,他成为“幸运观众”的概率是 A .101 B .501 C .5001 D .50001 6.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15则这15位营销人员该月销售量的众数和中位数分别为 A .5,210B .210,250C .210,230D .210,2107.若圆锥的母线长为5cm ,高为4cm ,则圆锥的侧面积是 A .2cm 10πB .2cm 15C .2cm 15πD .2cm 20π8.如图是一个跳棋棋盘的示意图,它可以看成将等边ABC ∆绕着中心O 旋转60°,再以点O 为圆心,OA 长为半径作圆得到。
若AB=3,则棋子摆放区域(阴影部分)的面积为 A .343-π B .333-π C .323-πD .33-π第II 卷(解答题 共88分)第II 卷包括四道大题,17个小题。
2007年普通高等学校招生全国统一考试数学及答案(北京卷.文)
2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知cos tan 0θθ<,那么角θ是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角 2.函数()3(02)x f x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.0⎛ ⎝⎦C.112⎡⎫⎪⎢⎣⎭,D.1⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610C A 个B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线,a b a b a b αββα⊂⊂,,,∥,∥8.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( )A.①② B.①③ C.② D.③二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为.11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上. (I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于不同两点11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点. (I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).OCADB2007年普通高等学校招生全国统一考试数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.C 2.B 3.B 4.D 5.A 6.C 7.D 8.C 二、填空题(本大题共6小题,每小题5分,共30分) 9.3 10.211n -11.3-12 13.72514.1 1三、解答题(本大题共6小题,共80分)15.(共12分)解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >,即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+,因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+,解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =.(II )当2n ≥时,由于21a a c -=,322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,.当1n =时,上式也成立, 所以22(12)n a n n n =-+=,,.17.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,ADECE ∴=12DE AO == ∴在Rt CDE △中,tan CE CDE DE ===∴异面直线AO 与CD所成角的大小为arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,D ,(00OA ∴=,,(CD =-,cos OA CD OACD OA CD∴<>=,4322==.∴异面直线AO 与CD 所成角的大小为arccos4. 18.(共13分)解:(I )这6位乘客在互不相同的车站下车的概率为610661512.15121010A P ==0≥.(II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===. 19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M,.所以M 为矩形ABCD外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.x(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b =从而动圆P的圆心的轨迹方程为221(22x y x -=≤. 20.(本小题共14分)解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得k >(II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1112x t x =-1x ,2x 是方程①的两实根,且12x x <,故1x ==k > 1x 是关于k 的减函数,所以1x的取值范围是(0.t 是关于1x的增函数,定义域为(0,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =.从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=. 所以OM ON =.。
2007年普通高等学校招生全国统一考试数学卷(北京.文)含答案
年普通高等学校招生全国统一考试 数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)x f x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.202⎛⎤ ⎥ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.212⎡⎫⎪⎢⎪⎣⎭, 5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥ 8.对于函数①()2f x x =+,②2()(2)f x x =-,③()c os(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( )A.①② B.①③ C.② D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为.11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 ..已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上. (I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,x1 2 3 ()f x211x1 2 3 ()f x32 1 OCADBD T N OABC MxyP 的圆心的轨迹方程.20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.B 4.D 5.A6.C7.D 8.C二、填空题(本大题共6小题,每小题5分,共30分) 9.310.211n -11.3-12.10213.72514.11三、解答题(本大题共6小题,共80分) 15.(共12分) 解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >,即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+,0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立, 所以22(12)n a n n n =-+= ,,.17.(共14分) 解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O = ,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,225CE CO OE ∴=+=.又132DE AO ==. ∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,OC ADBEAz(013)D ,,,(0023)OA ∴= ,,,(213)CD =- ,,,cos OA CDOACD OA CD∴<>=,6642322== . ∴异面直线AO 与CD 所成角的大小为6arccos4. 18.(共13分) 解:(I )这6位乘客在互不相同的车站下车的概率为610661512.15121010A P ==0≥.(II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===. 19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上, 所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,, 因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切, 所以22PM PN =+,22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =.所以虚半轴长222b c a =-=.从而动圆P 的圆心的轨迹方程为221(2)22x y x -=-≤. 20.(本小题共14分)解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ····················· ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得22k >. (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故2128428k k x k k --==+-,22k >, 1x 是关于k 的减函数,所以1x 的取值范围是(02),.t 是关于1x 的增函数,定义域为(02),,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =. 从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=.所以OM ON =.638400四川省武胜中学唐一水整理-313459792-onewater@。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年北京市高级中等学校招生统一考试(课标卷)一、选择题(共8个小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的,用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1. -3的倒数是( ) A.13- B.13C. -3D.3 2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积给260000平方米,将260000用科学记数法表示应为 ( )A. 0.26×106B. 26×104C. 2.6×106D. 2.6×1053. 如图,Rt △ABC 中,∠ABC=90O ,DE 过点C 且平行于AB ,若∠BCE=35 O , 则∠A 的度数为 ( )A. 35OB. 45ºC. 55ºD. 65º4. 若2|2|(1)0m n ++-=,则2m n +的值为 ( )A. -4B. -1C. 0D. 45. 北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为。
( )A. 28ºCB. 29ºCC. 30ºCD. 31ºC6. 把代数式244ax ax a -+分解因式,下列结果中正确的是。
( ) A. 2(2)a x - B. 2(2)a x +C. 2(4)a x -D. (2)(2)a x x +-7. 一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为 ( ) A.19 B. 13 C. 12 D. 238. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一...个.是这个纸盒的展开图,那么这个展开图是 ( )二、填空题(共4个小题,每小题4分,共16分)9. 若分式241x x -+的值为0,则x 的值为 . 10. 若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是 .11. 在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图: ,其中a b ,c 是三个连续偶数()a b <,d ,e 是两个连续奇数()d e <,且满足a b c d e ++=+,例如: ,. 请你在0到20之间选择另一组符合条件的数填入下图:12. 2007年北京市统招右图是对种中心为点O 的正六边形,如果用一个含30º角的直角三角板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面 积n 等分,那么n 的所有可能的值是 .三、解答题(共5个小题,共25分) 13.(本小题满分5分)2007年北京市统招计算:1118(1)2cos 45()4π---︒-︒+14.(本小题满分5分) 解方程:2410x x +-=15.(本小题满分5分) 计算:22111x x x ---16.(本小题满分5分)已知:如图,OP 是∠AOC 和∠BOD 的平分线,OA =OC ,OB =OD .求证:AB =CD17.(本小题满分5分)已知240x -=,求代数式22(1)()7x x x x x x +-+--的值.四、解答题(共2个小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD ∥BC ,AB = DC = AD ,∠C=60º,AE ⊥BD 于点E ,AE=1,求梯形ABCD 的高.19.(本小题满分5分)2007北京统考 已知:如图,A 是⊙O 上一点,半径OC 的延长线与过点A的直线交于B 点,OC = BC ,AC =12OB(1)求证:AB 是⊙O 的切线;(2)若∠ACD =45º,OC =2,求弦CD 的长.五、解答题(本题满分6分)20. 根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供,请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿m3);(2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿m3,请你选计算环境用水量(单位:亿m3),再计算2005年北京市用水总量(单位:亿m3);(3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿m3);(4)结合2004年及2005年北京市的用水情况,谈谈你的看法.六、解答题(共2个小题,共9分)21.(本小题满分5分)在平面直角坐标系x O y中,O E F G为正方形,点F的坐标为(1,1),将一个最短边长大于2的直角三角形纸片的直角顶点放在对角线FO上,(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O 、F 重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG 重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),22.(本小题满分4分)在平面直角坐标系x O y 中,反比例函数k y x =的图像与3y x =的图像关于x 轴对称,又与直线2y a x =+交于点(,3)A m ,试确定a 的值.七、解答题(本题满分7分) 23. 如图,已知ABC ∆(1)请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此图中只存在两对.....面 积相等的三角形的相应条件,并表示出面积相等的 三角形;(2)请你根据使(1)成立的相应条件, 证明A B A C A D A E +>+.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(3,5)P ,(0,2)A 两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴交于C 点,求直线l 的解析式;(3)在(2)的条件下,求到直线OB 、OC 、BC 距离相等的点的坐标.九、解答题(本题满分8分)25. 我们知道:有两条边相等的三角形叫做等腰三角形,类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,设CD 、BE 相交于O ,若60A ∠=︒,12DCB EBC A ∠=∠=∠,请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC ∆中,如果A ∠是不等于60º的锐角,点D 、E 分别在AB 、AC 上,且12DCB EBC A ∠=∠=∠,探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.2007年北京市高级中等学校招生统一考试(课标卷)参考答案一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的,用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1. -3的倒数是( A )A.13-B. 13 C. -3 D.32. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积给260000平方米,将260000用科学记数法表示应为 ( D )A. 0.26×106B. 26×104C. 2.6×106D. 2.6×1053. 如图,Rt △ABC 中,∠ABC=90O ,DE 过点C 且平行于AB ,若∠BCE=35 O , 则∠A 的度数为 ( C )A. 35OB. 45ºC. 55ºD. 65º4. 若2|2|(1)0m n ++-=,则2m n +的值为 ( C ) A. -4 B. -1 C. 0 D. 45. 北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为。
( B )A. 28ºCB. 29ºCC. 30ºCD. 31ºC 6. 把代数式244ax ax a -+分解因式,下列结果中正确的是。
( A )A. 2(2)a x -B. 2(2)a x +C. 2(4)a x - D. (2)(2)a x x +-7. 一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为 ( B )A. 19B. 13C. 12D. 238. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的 展开图,那么这个展开图是 ( D )二、填空题(共4个小题,每小题4分,共16分)9. 若分式241x x -+的值为0,则x 的值为 2 .10. 若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是1k <-.11. 在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图: ,其中a b ,c 是三个连续偶数()a b <,d ,e 是两个连续奇数()d e <,且满足a b c d e ++=+,例如: ,. 请你在0到20之间选择另一组符合条件的数填入下图:12. 2007年北京市统招右图是对种中心为点O 的正六边形,如果用一个含30º角的直角三角板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面 积n 等分,那么n 的所有可能的值是 2,3,4,6,12 .三、解答题(共5个小题,共25分) 13.(本小题满分5分)2007年北京市统招计算:1118(1)2cos 45()4π---︒-︒+ 解:1118(1)2cos 45()4π---︒-︒+2321242=--⨯+322=+14.(本小题满分5分) 解方程:2410x x +-=解:因为 1a =,4b =,1c =-所以224441(1)20b ac -=-⨯⨯-= 代入公式,得24420425252212b b ac x a -±--±-±====-±⨯所以 原方程的解为 1225,25x x =-+=--15.(本小题满分5分)计算:22111x x x ---解:22111x x x ---21(1)(1)1x x x x =-+--2(1)(1)(1)x x x x -+=+-1(1)(1)x x x -=+-11x =+16.(本小题满分5分)已知:如图,OP 是∠AOC 和∠BOD 的平分线,OA=OC ,OB=OD. 求证:AB=CD证明:∵ OP 是∠AOC 和∠BOD 的平分线, ∴ ,AOP COP BOP DOP ∠=∠∠=∠∴ A O B C O D ∠=∠ 在AOB ∆和COD ∆中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩ ∴ A O B C O D ∆≅∆ ∴ A B C D =17.(本小题满分5分)已知240x -=,求代数式22(1)()7x x x x x x +-+--的值. 解析:22(1)()7x x x x x x +-+-- 323227x x x x x x =++---- 27x =-又240x -=,故原式3=-.四、解答题(共2个小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD ∥BC ,AB = DC = AD ,∠C=60º,AE ⊥BD 于点E ,AE=1,求梯形ABCD 的高.解:作DF BC ⊥于点F∵ AD ∥BC , ∴ 12∠=∠ ∵ A B A D =, ∴ 23∠=∠ ∴ 13∠=∠∵ AB DC =,60C ∠=,∴ 11133022ABC C ∠=∠=∠=∠=∵ AE BD ⊥于点E ,1AE =, ∴2AB DC ==在Rt CDF ∆中,由正弦的定义可得3DF =∴梯形ABCD 的高为3.19.(本小题满分5分)2007北京统考 已知:如图,A 是⊙O 上一点,半径OC 的延长线与过点A的直线交于B 点,OC = BC ,AC =12OB(1)求证:AB 是⊙O 的切线;(2)若∠ACD =45º,OC =2,求弦CD 的长. 解:(1)证明: 如图,连结OA∵ 1,2O C B C A C O B== ∴ O C B C A C O A=== ∴ ACO ∆是等边三角形故 60O ∠=又可得 30B ∠= ∴ 90OAB ∠=∴ AB 是O 的切线.(2)解:作AE CD ⊥于E 点.∵ 60O ∠=, ∴ 30D ∠=又 45ACD ∠=,2AC OC ==,∴在Rt ACE ∆中,2CE AE ==在Rt ACE ∆中,∵ 30D ∠=,∴ 22AD = 由勾股定理,可求得 6DE =∴ 62CD DE CE =+=+.五、解答题(本题满分6分)20. 根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供,请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿m3);(2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿m3,请你选计算环境用水量(单位:亿m3),再计算2005年北京市用水总量(单位:亿m3);(3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿m3); (4)结合2004年及2005年北京市的用水情况,谈谈你的看法. 解:(1)补全2005年北京市水资源统计图见右图; 水资源总量为23.18亿m3(2)设2005年环境用水量为x 亿m3依题意得 60.2 6.8x += 解得 1.1x =∴ 2005年环境用水量为1.1亿m3 ∵ 13.38+1.1+6.8+13.22=34.5∴ 2005年北京市用水总量为34.5亿m3(3)∵ 34.5-23.18=11.32,∴2005年北京市缺水量为11.32亿m3(4)说明:通过对比2004年及2005年北京市的用水情况,能提出积极看法的给分,比如节约用水等.六、解答题(共2个小题,共9分)21.(本小题满分5分)在平面直角坐标系xOy 中,OEFG 为正方形,点F 的坐标为(1,1),将一个最短边长大于2的直角三角形纸片的直角顶点放在对角线FO 上,(1)如图,当三角形纸片的直角顶点与点F 重合,一条直角边落在直线FO 上时,这个三角形纸片正方形OEFG 重叠部分(即阴影部分)的面积为 ;(2)若三角形纸片的直角顶点不与点O 、F 重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG 重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),解:(1)12;(2)直角顶点的坐标为22,22⎛⎫ ⎪ ⎪⎝⎭或 221,122⎛⎫-- ⎪ ⎪⎝⎭ 此时的图形如右图22.(本小题满分4分)在平面直角坐标系xOy 中,反比例函数k y x =的图像与3y x =的图像关于x 轴对称,又与直线2y ax =+交于点(,3)A m ,试确定a 的值.解:依题意得,反比例函数k y x =的解析式为3y x =- ∵ 点(,3)A m 在反比例函数3y x =-的图像上, ∴ 1m =-即 点A 的坐标为(1,3)- 由点(1,3)A -在直线2y ax =+上可求得 1a =-.七、解答题(本题满分7分)23. 如图,已知ABC ∆(1)请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.解:(1)相应的条件是: BD = CE ≠ DE ;两对面积相等的三角形分别是: △ABD 和△ACE ,△ABE 和△ACD .(2)证法1:如图2,分别过点D 、B 作CA 、EA 的平行线,两线交于F 点,DF 与AB 交于G 点.所以 ∠ACE = ∠FDB ,∠AEC = ∠FBD在△AEC 和△FBD 中,又CE = BD可证 △AEC ≌ △FBD所以 AC = FD ,AE = FB在△AGD 中,AG + DG >AD在△BFG 中,BG + FG >FB所以 AG + DG -AD >0,BG + FG -FB >0所以 AG + DG + BG + FG -AD -FB >0即 AB + FD >AD + FB所以 AB + AC >AD + AE证法2:如图,分别过点A 、E 作CB 、CA 的平行线,两线交于F 点,EF 与AB 交于G 点,连结BF. 则四边形FECA 是平行四边形,所以 FE = AC ,AF = CE.因为 BD = CE所以 BD = AF所以 四边形FBDA 是平行四边形所以 FB = AD在△AGE 中,AG + EG >AE在△BFG 中,BG + FG >FB可推得 AG + EG + BG + FG >AE + FB所以 AB + AC >AD + AE八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(3,5)P ,(0,2)A 两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴交于C 点,求直线l 的解析式;(3)在(2)的条件下,求到直线OB 、OC 、BC 距离相等的点的坐标.解:(1)由题意可得1365322m m n m n n ⎧++==⎧⎪⇒⎨⎨=⎩⎪=⎩ 故抛物线的解析式为:2123233y x x =++.(2)由2123233y x x =++可知抛物线的顶点坐标为B (3,1-),故C (3,1--),且直线l 过原点. 设直线l 的解析式为y kx =,则有3313k k -=-⇒=. 故直线l 的解析式为33y x =.(3)到直线OB 、OC 、BC 距离相等的点有四个.由勾股定理可知OB=OC=BC=2,故△OBC 为等边三角形,四边形ABCO 是菱形,且∠BCO=60°,连接AC 交x 轴于一点M ,易证点M 到OB 、OC 、BC 的距离相等. 由点A 在∠BCO 的平分线上,故它到BC 、CO 的距离相等均为3,同时不难计算出点A 到OB 的距离为3,故点A 也算其中一个. 同理,不难想到向左、向下可以分别作与ABCO 全等的菱形(如图所示,其中△OBC 为新菱形的一半),此时必然存在两个点,使得它到直线OB 、OC 、BC 的距离相等. 此四个点的坐标分别为:M (23,03-)、A (0,2)、(0,-2)、(23,0-).九、解答题(本题满分8分)25. 我们知道:有两条边相等的三角形叫做等腰三角形,类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形. (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,设CD 、BE 相交于O ,若60A ∠=︒,12DCB EBC A ∠=∠=∠,请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC ∆中,如果A ∠是不等于60º的锐角,点D 、E 分别在AB 、AC 上,且12DCB EBC A ∠=∠=∠,探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.解:(1)平行四边形、等腰梯形等满足条件的即可.(2)与∠A 相等的角是∠BOD (或∠COE )四边形DBCE 是等对边四边形.(3)此时存在等对边四边形DBCE.证明1:如图,作CG ⊥BE 于G 点,作BF ⊥CD 交CD 的延长线于F 点.∵∠DCB=∠EBC=12∠A ,BC 为公共边∴△BGC ≌△CFB∴BF=CG∵∠BDF=∠ABC+∠DCB=∠ABE+∠EBC+∠DCB=∠ABE+∠A∠GEC=∠ABE+∠A∴△BDF ≌△CEG∴BD=CE故四边形DBCE 是等对边四边形.证明2:如图,在BE 上取一点F ,使得BF=CD ,连接CF.易证△BCD ≌△CBF ,故BD=CF ,∠FCB=∠DBC.∵∠CFE=∠FCB+∠CBF=∠DBC+∠CBF=∠ABE+2∠CBF=∠ABE+∠A∠CEF=∠ABE+∠A∴CF=CE∴BF=CE故四边形DBCE 是等对边四边形.。