流体力学相似原理和量纲分析

合集下载

流体力学相似原理与

流体力学相似原理与

速度比尺 时间比尺 则
加速度比尺
u

up um
t
tp tm
u

up um
lp lm
tp tm
l t
a

ap am
lp lm
t
2 p
t
2 m
lp lm
( t p )2 tm

l
2 t
由于各相应点速度成比例,所以相应断面平均流速有同样的速
度比尺,即
v
vp vm
f l22v
此处 1 ,v 1 l , 则
f
l22v

l2 l2
1

Fp Fm 1.50kN
§5-4 量纲分析
量纲和量纲和谐原理 量纲分析法
一、量纲(dimension)和量纲和谐原理
1、量纲
表示物理量的种类,称为这个物理量的量纲(或称因次)。
a

l
2 t

f



3l
l
2 t



l2

l t
2
l22v

Fp


p
l
2 p
v
2 p
Fm mlm2 vm2
上式可写成
Fp Fm

p
l
2 p
v
2 p

m
l
2 m
vm2
—— 无量纲数
在相似原理中称为牛顿数Ne ∴ (Ne)p (Ne)m
流量:
Qp Qm

vp Ap vm Am
vl2

Qm

工程流体力学第五章 相似原理和量纲分析

工程流体力学第五章 相似原理和量纲分析
弹性力比: k F 'e dp' A' K ' A' dV ' V ' k k 2 K l F
Fe
dp A
KAdV V
K-体积模量 kK-体积模量比例尺
k k kK
K'
2
1
kF 1 2 2 k kl k
力的比例尺
也可写成:
' '2
2
2
K
柯西数 是惯性力与弹 性力的比值
2 2
推导过程
角速度比例尺:
' ' l ' k k l kl
注:确定了长度比例尺和速度比例尺,一切运动相似比例尺都可以推导出来。
注:*运动粘度比例尺的推导
d F A dy

F ma V a dy 1 则: A d dy m V A d dy A d 1
相似原理
如何去做模型?
第五章 相似原理和量纲分析
数学 分析 理论分析 数值计算 模型实验
解决流体 力学问题 的方法
实验研究
基础:相似原理 相似原理与模型试验研究方法不仅广泛应用于流体力 学,而且广泛应用于传热、燃烧过程机理等的研究中。
第一节 流动的力学相似
表 征 流 动 过 程 的 物 理 量
第五章 相似原理和量纲分析
xcli@
L/O/G/O
相似原理
相似原理 实物 模型
相似理论:
模型流场再现实物流场的准则——指导模型实验 实验结果推广到原型以及应用到相似的流动中
本章内容
1 2 3 4 1 5 流动的力学相似 动力相似准则 流动相似条件 近似模型实验 Click to add title in here 量纲分析法 连续方程

流体力学第五章相似原理和量纲分析

流体力学第五章相似原理和量纲分析

vl vl
vl vl
k kvkl 1 k
kvkl 1 k
Re vl vl
雷诺数,惯性力 与黏性力之比
黏性力作用相似: Re Re
第二节 动力相似准则
• (3)压力相似准则(欧拉准则)
在压力作用下相似的流动,其压力分布必须相似
或者:
p Eu
v 2
Eu p
v 2
欧拉数,是总压力与 惯性力的比值
3 基本量 导出量 一个物理问题中诸多的物理量分成基本物理
量(基本量)和其他物理量(导出量),后者可 由前者通过某种关系得到,前者互为独立的物理 量。基本量个数取基本量纲个数,所取定的基本 量必须包括三个基本量纲在内,这就是选取基本 量的原则。
k kl3kg
v
v
gl1 2 gl1 2
kv kl kg
12
1
弗劳德数,是惯性力
Fr
v
gl 1
2
与重力的比值
流场重力作用相似: Fr Fr
第二节 动力相似准则
• (2)黏滞力相似准则(雷诺准则)
在黏性力作用下相似的流动,其黏性力分布必须相似
kF
F F
dvx dvx
/ dyA / dyA
k kvkl
F ma V dv dt F ma Vdv dt
F
F
l2v2 l 2v2
kF 1
k
k2 l
k2 v
Ne F
l 2v2
牛顿数,是作用力与 惯性力的比值
流场动力相似: Ne Ne
第二节 动力相似准则
• (1)重力相似准则(弗劳德准则)
在重力作用下相似的流动,其重力场必须相似
kF

流体力学第5章 相似性原理和量纲分析

流体力学第5章 相似性原理和量纲分析

几何相似只有一个长度比例尺,几何相似是力学 相似的前提
二、运动相似
❖ 流场中所有对应点上对应时刻的流速方向相同大小成比例。
v3' 3
v1'
v2'
1
2
3
v3''
v1 v1
v2 v2
v3 v3
v v
kv
v1''
1
2
kv——速度比例尺
v2''
A
A
o
系统1:v
l t
o
系统2:v l t
时间比例尺 加速度比例尺
1/ p
7.5k,kpkv2'
0.001207, kv 4416(Pa)
22.5, 有
F F ' F ' 1.261104(N)
kF
k
k
2
l
k
2
v
M M ' 2030(N m)
k
k
3k
l
2
v
第五节 量纲分析法
❖一、量纲分析的概念和原理 ❖ 量纲是指物理量的性质和类别。例如长度和质量, 它们分别用 [ L ] , [ M ]表达。 ❖而单位除表示物理量的性质外,还包含着物理量的 大小,如同为长度量纲的米,厘米等单位。
如何进行模型实验: (1) 几何相似(模型和实物、攻角、位置等); (2) 确定相似准则数; (3) 确定模型尺度和速度; (4) 实验数据整理(无因次形式); (5) 试验值与实际值之间的换算。
完全相似:两个流动的全部相似准则数对应相等。不可能实现。 部分相似:满足部分相似准则数相等。
近似的模型试验:在设计模型和组织模型试验时,在 与流动过程有关的定性准则中考虑那些对流动过程起 主导作用的定性准则,而忽略那些对过程影响较小的

流体力学第六章 相似原理与量纲分析

流体力学第六章 相似原理与量纲分析

• 相似准则: 相似准则:
粘性相似准则:保证两现象的雷诺数相等 粘性相似准则:
重力相似准则:保证两现象的弗劳德数相等 重力相似准则:
压差力相似,即欧拉数相等往往是两现象动力相似的结果 压差力相似,
本章小结
1.两液流流动相似必须满足: 1.两液流流动相似必须满足: 两液流流动相似必须满足 (1)几何相似——原形和模型两个流场的几何形状相似; (2)运动相似——原形和模型两个流场的速度场相似; (3)动力相似——原形和模型两个流场中各相应质点 所受的同名方向相同,大小成一固定比例; (4)初始条件和边界条件相似; 2.相似准则 相似准则: 相似准则、 相似准则、 2.相似准则:Re相似准则、 Fr相似准则、 Eu相似准则
式中: ——流体声速 ——弹性模量
当弹性力起主要作用时,如水击,空气动力学中的亚音速或 超音速运动等,动力相似有: (6-20) 6.斯特哈罗数(时间准则) 6.斯特哈罗数(时间准则) 斯特哈罗数 斯特哈罗数:非恒定流体流动中,当地加速度 ,这个 加速度所产生的惯性作用与迁移加速度的惯性作用之比。 (6-21) f——振动频率 对非恒定流,表明有变力作用,动力相似有: (6-22)
2.雷利法 . 雷利法是量纲和谐原理的直接应用, 雷利法的计算步骤: 1. 确定与所研究的物理现象有关的n 个物理 量; 2. 写出各物理量之间的指数乘积的形式,如: FD=kDx Uyρz µa 3. 根据量纲和谐原理,即等式两端的量纲应 该相同,确定物理量的指数x,y,z,a ,代入指 数方程式即得各物理量之间的关系式。 应用范围:一般情况下,要求相关变量未知 数n小于等于4~5个.
第10 章因次分析与模型试验
对于复杂的实际工程问题,直接应用 基本方程求解,在数学上极其困难,因此 需有赖于实验研究来解决。本章主要阐述 有关实验研究的基本理论和方法,包括流 动相似原理,相似准则,量纲和谐原理及 量纲分析方法等。

流体力学相似原理和量纲分析

流体力学相似原理和量纲分析

称为不可压缩流体定常流动的力学相似准则。
11
四、马赫数
当考虑流体压缩性时,弹性力起主要作用 F=EA
在因次上 [F ] [E][A] El2
代入(4 —10)中的 F 时,则
Enln2
nln2Vn2
Emlm2
mlm2Vm2
即 En Em
nVn2 mVm2
对可压缩流体,音速a
E
, 因此
E
1 a2
欲使雷诺数相等,将有 n lm vn m ln vm
1
1
欲使弗劳德数相等,将有
n m
ln lm
2
gn gm
2
v l
l
1 2
v
l 32
这在技术上很难甚至不可能做到。实际中,常常要对所研 究的流动问题作深入的分析找出影响流动问题的主要作用力, 满足一个主要力的相似而忽略其它次要力的相似。
15
例:对于管中的有压流动及潜体绕流等,只要流动的雷 诺数不是特别大,一般其相似条件依赖于雷诺准则数。
m gmlm3
mlm
2 2 m
简化后得
2 n
m2
(4—14)
式中
2
Fr
gnln gmlm
,称为弗劳德 Froude 数。
gl
物理意义:
惯性力与重力之比。
9
三、欧拉数
研究淹没在流体中的物体表面上的压力或压强分布时,
起主要作用的力为压力 F pA 。
在因次上为
F pA Pl 2
将其代替式(4—10)中的F时,则
纲数之间的函数式(4—22),这就是泊金汉 E.Buckingham
定理。因为经常用 表示无量纲数,故又简称 定理。

流体力学-相似原理与量纲分析

流体力学-相似原理与量纲分析

F v2l2
Rm Rn 1.5kN
21
F 1 v2l2 0.672 1.52 1
第四节 量纲分析法
一、量纲
所有物理量 = 自身的物理属性 + 为量度物理属性 而规定的量度标准(量度单位) 如长度:物理属性是线性几何量,量度标准是 m , cm,英尺、光年等。 没有任何联系的独立的量纲为基本量纲,可由其导 出的为导出量纲。 原则上基本量纲的选取带随意性,常采用 M-L-T-Θ 为基本量纲系(即质量-长度-时间-温度)。
14
应该测量哪 些物理量?
实验结果 如何应用?
在相似的条件下进行实验: 完全相似 例如 难于做到 严格地要求四个相似准数都相同
Frn Frm
g 相同
vn l n vm lm
vn lm vm ln
流 体 力 学
1
u l
Ren Rem
相同
u
l
可见粘性和重力相似条件产生矛盾,除非改变 g 和。但改 变 g 是不大可能的(由此可知为什么有些实验要在航天飞机上 做),改变 的可能性也不大,因为流体力学实验可供选择的 流体种类是很少的。通常我们只能抓主要矛盾,保证起决定作 用的那个相似准数相等,称为部分相似(局部相似)。
----- 韦伯准数
F El 2
3
v2
l I l 2 l 2v2 ----- 马赫准数 t v FT l 2 lv ( Re)n ( Re)m Re l l ----- 雷诺准数 I l 3 2 l 2v 2 12 t
Mn Mm
2. 由动力相似定义推导
ln lm un t n um t m
2 2 vn vm g nln g mlm

流体力学 第四章 量纲分析

流体力学 第四章 量纲分析

v l
F 3 l
3 Fp Fm3 300 20 2400000 N 2400 kN l
5.按雷诺准则和佛劳德准则导出的物理量比尺表 比尺
名称
λυ=1 长度比尺λl 流速比尺λv λl λl-1
雷诺准则 λυ≠1 λl λυλl-1
弗劳德准则 λl λl1/2
加速度比尺λa
取m个基本量,组成(n-m)个无量纲的π项
F 1 , 2 ,, nm 0
例:求有压管流压强损失的表达式 解:步骤
a.找出物理过程中有关的物理量,组成未知的函数关系
f p, ,, l , d , , v 0
b.选取基本量
n7
常取:几何学量l(d),运动学量v,动力学量ρ
vp vm

up um
v λv——速度比尺
l t tm lm vm v
tp lp vp
时间比例尺 加速度比尺
v 2 a v t l
qV p qVm
流量比例尺 q 运动粘度比例尺 角速度比例尺
3 3 l 2l v lm tm t
Re
vl

雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm
改成
FIm FIP FGP FGm
FG mg gl 3
FI l 2v 2
2 vm g p l p g m lm
v2 p
无量纲数
v2 Fr gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
20 vm v p 300 6000km / h lm 1 lp
难以实现,要改变实验条件

相似原理与量纲分析

相似原理与量纲分析

相似原理与量纲分析相似原理和量纲分析是科学研究和工程设计中常用的两种方法,它们在不同领域有着广泛的应用。

相似原理是指在某些条件下,两个或多个对象在某些方面具有相似性的原理,而量纲分析则是一种通过对物理量的量纲进行分析,来确定物理现象之间关系的方法。

本文将分别介绍相似原理和量纲分析的基本概念和应用,以期帮助读者更好地理解和应用这两种方法。

首先,我们来介绍相似原理。

相似原理是指在某些条件下,两个或多个对象在某些方面具有相似性的原理。

在流体力学中,相似原理是研究流体流动时的一种重要方法。

根据相似原理,如果两个流体流动问题在某些方面具有相似性,那么它们的流动规律也应该是相似的。

通过建立相似模型,可以通过对模型进行实验来研究真实流体流动问题,这为工程设计和科学研究提供了重要的手段。

在工程设计中,相似原理也有着广泛的应用。

例如,在飞机设计中,通过建立风洞模型来研究飞机在空气中的飞行性能;在建筑设计中,通过建立模型来研究建筑物在风力作用下的受力情况。

相似原理的应用不仅可以帮助工程师更好地理解和预测真实系统的行为,还可以降低实验成本和风险。

接下来,我们来介绍量纲分析。

量纲分析是一种通过对物理量的量纲进行分析,来确定物理现象之间关系的方法。

在物理学和工程学中,很多物理现象可以通过物理量之间的关系来描述。

通过对这些物理量的量纲进行分析,可以得到物理现象之间的关系,从而简化问题的分析和求解。

在工程设计中,量纲分析也有着重要的应用。

例如,在流体力学中,通过对流体流动中的速度、密度、长度等物理量的量纲进行分析,可以得到无量纲参数,从而简化流体流动问题的分析和求解。

在热力学中,通过对热量、温度、热容等物理量的量纲进行分析,可以得到无量纲参数,从而简化热力学问题的分析和求解。

总之,相似原理和量纲分析是科学研究和工程设计中常用的两种方法,它们在不同领域有着广泛的应用。

通过对相似原理和量纲分析的理解和应用,可以帮助工程师和科研人员更好地理解和解决实际问题,从而推动科学技术的发展和进步。

土木工程-流体力学-完整版- 相似原理与量纲分析

土木工程-流体力学-完整版- 相似原理与量纲分析

2.1 相似原理原型/模型流动相似:几何、运动、动力相似相似准则:雷诺、弗雷德、欧拉准则2.2 模型实验模型律的选择及模型设计2.3 量纲分析基本量纲、导出量纲、无量纲量量纲分析法:Π 定理(Theorum )、瑞利法(Rayleigh )2.4 2.4 基本方程的无量纲化基本方程的无量纲化第 2 章 相似原理和量纲分析( Similarity and Dimensional Analysis)2.2 模型实验2.2.1 模型律的选择为使模型与原型流动相似,除几何相似外,还要动力相似,即同时满足各独立准则。

事实上,很难达到独立准则同时满足。

一般情况下,只能按照近似相似进行模型实验,即满足主要作用力相似即可。

通常,不可压缩液体流动的独立准则为雷诺准则和弗汝准则。

因此,主要作用力则是黏滞力或重力。

若主要作用力是黏滞力,模型按雷诺模型律设计,即模型与原型之间只满足雷诺准则。

例如有压管流。

若主要作用力是重力,模型按弗汝德模型律设计,即模型与原型之间只满足弗汝德准则。

例如明渠流。

【例2】求水泵输出功率的表达式。

【解】水泵输出功率指单位时间水泵输出的能量。

(1)找出与水泵输出功率N有关的物理量,包括单位体积水的重量γ=ρg、流量Q、扬程H,于是有f(N, γ , Q, H)= 0(2)指数积关系式N= Kγa Q b H c(3)量纲式dim N = dim(γa Q b H c)(4)用基本量纲表示各物理量量纲ML2T-3 = (ML-2T-2)a(L3T-1)b(L)c (5)根据量纲和谐原理求量纲指数M: 1 = aL: 2 = -2a+3b+cT:-3 = -2a-b解方程得,a = 1,b = 1,c = 1。

(6)整理方程得N = KγQHK 为由实验确定的常数。

问题:由于基本量纲只有3个,故只能建立3 个方程求解量纲指数。

因此,用瑞利法求力学方程,相关的物理量不能超过4个,否则将会出现待定系数。

流体力学第五章 相似原理和量纲分析

流体力学第五章    相似原理和量纲分析

3
第五章 相似原理和量纲分析

流动的物理现象常受到各种因素的影响,对于简单的现象可以通过简化,建 立运动微分方程,求得精确解。

对于大量复杂的流动现象,理论分析本身就比较困难,由于流动边界条件的 复杂性,往往难以用数学形式准确表达和求解。

因此必须结合实验,才能使理论分析深入进行。 如果没有正确的理论指导,不知需要测定哪些物理量和应该如何整理实验数 据——虽然能获取大量数据,却无法找出影响现象本质的因素,使实验带有 盲目性。
kq

qV qV

l / t l
3
3

kl
3
V
k l kv
2
/t
kt

运动粘度比例尺
k


l / t l
2
2

kl
2
k l kv
/t
kt

角速度比例尺
k


v / l v/l

kv kl
过程装备与控制工程教研室
10
第五章 相似原理和量纲分析 三、动力相似
过程装备与控制工程教研室
16
第五章 相似原理和量纲分析

任何系统的机械运动都必须服从牛顿第二定律 F=ma

原型
F ma Va

模型
F ma V a
F F

m a ma

V a Va
kv kl
2
k F k kV ka k kl


——模型与原型流场的几何相似、运动相似和动力相似是两个流
场完全相似的重要特征和条件

流体力学第4章相似原理和量纲分析

流体力学第4章相似原理和量纲分析

对于非定常流的模型试验,必须使模型与原型的流动随时间的
变化相似。
当地加速度引起的惯性力之比
kF k kl2kv2
1
kF

Fit' Fit

V
'

v
' x
V vx
t ' t
k kl3kv kt1
kl 1 l Sr (斯特劳哈尔
kv kt
vt
数或谐时数)
当地惯性力与迁移惯性力之比
4.3 流动相似的条件
同一类流动,为相同的微分方程组所描述。 • 单值条件相似,即几何条件、边界条件、
时间条件(非定常流)、物性条件(密度、 粘性等)相似。 • 同名相似准则数相等。
几个概念:
单值条件中的各物理量称为定性量,如密度 ,特
征长度 l ,流速 v ,粘度 ,重力加速度 g ;
由定性量组成的相似准则数称为定性准则数,如雷诺 数 Re vl 弗劳德数 Fr v gl
自模化状态:如在有压粘性管流中,当雷诺数大 到一定数值时,继续提高雷诺数,管内流体的 紊乱程度及速度剖面几乎不再变化,沿程能量 损失系数也不再变化,雷诺准则失去判别相似 的作用,这种状态称为自模化状态。
关于自模化区实验 ——
尼古拉兹曲线
设计模型实验只要求流动处于同一自模化区,
log(100)
而不必要求两个流动的动力相似参数严格相等。
目的
为了实验流场与真实流场具有一定的对应关 系(相似性),实验中的各物理参数应该 如何确定?模型实验中的各种测量值应该 如何被换算为实物上的相应值?
如何科学地设计实验,正确有效地反映出相 关物理参数之间的实质性联系。
例:圆管的压强损失与圆管的长度、流体的密度、粘 度、平均速度和圆管直径、粗糙度有关。

流体力学量纲分析和相似原理

流体力学量纲分析和相似原理

D
w, ρ , d , µ
• • •
[ D ] = [ w]a [ ρ ]b [d ]c
即 ML T −2 = ( LT −1 ) a ( ML−3 ) b ( L) c 比较上式等号两边的量纲得到 1= b 包含量纲M的项: 包含量纲L的项: 包含量纲T的项:
1 = a − 3b + c
− 2 = −a
第4页 页
退出
返回
第八章
量纲分析和相似原理
第一节
量纲分析和Π定理
二、量纲性质 关于量纲性质有如下公理。 公理1 公理 物理方程中各项的量纲相同且与度量单位无关。 例如,液体中的压力分布公式 p = ρgh为一物理方程,式中p的量纲为ML-1T-2, ρgh 的量纲亦为ML-1T-2,两项的量纲是相同的。无论在什么单位制中, 上述关系不变。 公理2 公理 任一物理量的量纲都可以由基本量纲的指数幂的乘积来表示,即 式中,m1,m2,…,mk为有理数,[a]为任一物理量的量纲,[a1],[a2], …,[ak]为基本量纲。 公理3 公理 量纲不独立量可由量纲独立量的指数幂的乘积来表示,即
流 体 力 学
中国科学文化出版社
退出
第八章 量纲分析和相似原理
第一节 第二节 第三节
量纲分析和Π定理 相似理论 流体力学模型研究方法
退出
返回
第八章
量纲分析和相似原理
在第五章和第六章中我们讨论了解决流体动力学问题的两种基本方 法,即微分方程法和积分方程法。工程实际中的流体动力学问题通常是 十分复杂的,能够用数学分析方法求解的问题是很有限的。大量的问题 只能采用实验的方法,或者把实验作为辅助的方法,结合数学分析来求 解。 实验可分成两类,即直接实验和模型试验。直接实验就是在所研究 的对象即原型上直接进行实验,这种方法具有很大的局限性:实验结果 只能用于特定的实验条件,或只能推广到与实验条件完全相同的现象上 去;对某些设备,如大型的塔器、反应器、锅炉等,由于实验条件的限 制,如高温、高压、危险性介质,或设备尺寸太大或过小,都可能使得 直接实验难于进行;对于那些尚未建造的设备,如要设计一座新的水坝、 建造一艘新型舰船,则根本谈不上用实验的方法探索其规律性;直接实 验的方法不适用于大型设备的破坏性试验,如水坝、大型容器等的爆破 试验;此外,直接实验方法常常只能得出个别量之间的规律性关系,难 于抓住现象的全部本质。

流体力学讲义-第五章相似原理与量纲分析

流体力学讲义-第五章相似原理与量纲分析

第五章相似原理与量纲分析对于复杂的实际工程问题,直接应用基本方程求解,在数学上极其困难,因此需有赖于实验研究来解决。

本章主要阐述有关实验研究的基本理论和方法,包括流动相似原理,相似准则,量纲和谐原理及量纲分析方法等。

第一节流动相似原型:天然水流和实际建筑物称为原型。

模型:通常把原型(实物)按一定比例关系缩小(或放大)的代表物,称为模型。

水力学模型试验:是依据相似原理把水工建筑物或其它建筑物的原型按一定比例缩小制成模型,模拟与天然情况相似的水流进行观测和分析研究,然后将模型试验的成果换算和应用到原型中,分析判断原型的情况。

水力学模型试验的目的:利用模型水流来模拟和研究原型水流问题。

关键问题:模型水流和原型水流保持流动相似。

流动相似:两个流动的相应点上的同名物理量(如速度、压强、各种作用力等)具有各自的固定比例关系,则这两个流动就是相似的。

模型和原型保证流动相似,应满足:几何相似运动相似动力相似初始条件和边界条件相似1. 几何相似几何相似:指原型和模型两个流场的几何形状相似,即原型和模型及其流动所有相应的线性变量的比值均相等。

长度比尺:(5-1)面积比尺:2 4 V ?2(5-2)体积比尺:(5-3)2.运动相似运动相似:是指流体运动的速度场相似,也即两流场各相应点(包括边界上各点)的速度度a方向相同,且大小各具有同一比值。

速度比尺:7 —旳—厶仏_ ? ? -1(5-4)加速度比尺: 3_ T _ 旳仏? -2 _ ? 了-13-石-硕_的■以(5-5)u及加速3.动力相似动力相似:是指两流动各相应点上流体质点所受的同名力方向相同,其大小比值相等。

4.初始条件和边界条件的相似初始条件:适用于非恒定流。

边界条件:有几何、运动和动力三个方面的因素。

如固体边界上的法线流速为零,自由液面上的压强为大气压强等。

流动相似的含义:几何相似是运动相似和动力相似的前提与依据;动力相似是决定二个液流运动相似的主导因素;运动相似是几何相似和动力相似的表现;凡流动相似的流动,必是几何相似、运动相似和动力相似的流动。

流体力学第五章 相似原理与量纲分析

流体力学第五章 相似原理与量纲分析
Vm = Vp Lm Lp
模型流动特征长度不能太小
流体力学
近似模型法-弗劳德相似3
已知某船体长122m, 航行速度15m/s,现用船模 已知某船体长122m, 航行速度15m/s,现用船模 在水池中实验船模长 3.05m 。 求船模应以多大速 在水池中实验船模长3.05m。求船模应以多大速 运动才能保证与原型相似。若测得船模运动阻力 运动才能保证与原型相似。若测得船模运动阻力 为20N,实物船所受阻力等于多少? 为20N,实物船所受阻力等于多少?
V1 m V2 m = = V1 p V2 p
流体力学
针对描述运动状态的量
= CV
CV – 速度比例系数
运动相似2
流体质点通过对应距离的时间相似
tm Lm Vm CL = = Ct = tp CV Lp V p
流体质点的加速度 相似
am Vm tm CV = = Ca = ap Ct Vp t p
弗劳德相似
明渠流、兴波阻力问题
(惯性力)p (压力)p (惯性力)m
α
(重力)p
(压力)m
α
(重力)m
单值条件相似 仅有弗劳德准则为决定性准则
流体力学
近似模型法-弗劳德相似2
( Fr ) m = ( Fr ) p
⎛ V ⎞ ⎛ V ⎞ ⎜ ⎟ =⎜ ⎟ ⎝ gL ⎠ m ⎝ gL ⎠ p
一般情况下 g p = gm
可压缩流动
⎛V ⎞ = ⎛V ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ a ⎠m ⎝ a ⎠ p
欧拉相似
压差起主要作用
⎛ p ⎞ ⎛ p ⎞ ⎜ ⎜ ρV 2 ⎟ = ⎜ ρV 2 ⎟ ⎟ ⎜ ⎟ ⎝ ⎠m ⎝ ⎠p
(Eu )m = (Eu ) p

5工程流体力学 第五章相似原理与量纲分析

5工程流体力学 第五章相似原理与量纲分析
MLt 2 ML3 x1 Lt 1 y1 L z1
对于M: 1 x1
对于L:
1 3 x1 z1 y1
对于t:
2 y1
4
F v2 D2
x1 1 y1 2 z1 2
§5-2 量纲分析法(续17)
同理: g 5 x2 v y2 Dz2
Lt 2 ML3 x2 Lt 1 y2 L z2
例如:
主要作用力
粘性力、压力、 重力、压力、
惯性力
惯性力
压力、粘 性力
弹性力、粘性力、 压力
§5-1 相似原理(续8)
1.雷诺准则(Re数) 作用力是粘性力时:
取管道直径
FI v2 L2 v L v L Re F v L
两种流动的雷诺数相等,则说明所受的粘 性力相似。
就解决了问题。
§5-2 量纲分析法(续14)
例:研究完全淹没在流体中的螺旋桨的推力F和浆
径D,推进速度v,转速n ,重力加速度g,流体密度,
运动粘性系数 有关,求推力 F 的表达式。
解:(1)写出每一个参数的量纲:
F
ML t2
DL
v
L t
n
1 t
g
L t2
M L3
§5-2 量纲分析法(续19)
F
v 2 D2
f
gD v2
,
vD
, nD v
余下的问题就是求 f ( ) 函数关系,用实验的
方法找出 f ( ) 函数关系。将实验数据与 gD ,
,
nD
v2 组合起来,用试验数据回归成数学表
vD v
达式。
§5-2 量纲分析法(续20)
例:用 定理求紊流时管内的流动损失 h f。

流体力学 第四章 cn

流体力学 第四章 cn
Ip = = = = = Tm Gm Pm E m S m I m 即λT = λG = λ P = λ E = λ S = λ I Tp Gp Pp Ep Sp
动力相似是运动相似的保证
四、初始条件和边界条件相似
初始条件和边界条件的相似是保证两个流动相似 的充分条件,正如初始条件和边界条件是微分方 程的定解条件一样。 对于非恒定 流,初始条件是必需 的;对于恒定流, 初始条件则失去了实际意义。 边界条件相似是指两个流动相似,其边界性质相 同,如固体 边界上的法线流速 都为零;自由液体 上 压强 均等 于大气压 等等,对于原型和模型 都是 一样的。
为时间比尺(Time Scale)
二、运动相似
w速度相似 意味着各 相应点的 加 速度也是相似的,

λl λv λ2 λa = = 2 == = v a m λt λt λl ap
式中λa为加速度比尺(Acceleration Scale) 由此可见,只要速度相似,加速度也必然相似,反 之亦然。 由于速度场的研究是流体力学的重要问题,所以 运动相似通常是模型试验的目的。
四、韦伯准则(Weber Criterion)
当作用力主要为表面张力时
F = S = σl
λ F = λ S = λσ λ l λI = λF
式中λσ为表面张力系数比尺,将上式代入式 得
2 λ ρ λ2 l λ v = λσ λl
化简得
λ ρ λl λ2 v λσ
=1 ρplp v2 p σp ρ mlm v2 m = σm
运动相似是两个流场相应点的速度方向相同,大 up 小成比例,即
um 式中λu为速度比尺(Velocity Scale)
断面平均流速也具有同样比尺,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力矩(功、能)比例尺:
kM
M M
F l Fl
kF kl
k kl3kv2
压强(应力)比例尺:
kp
p p
Fp / A Fp / A
kF kA
k kv2
功率比例尺:
kP
P P
Fv Fv
kF kv
k kl2kv3
动力粘度比例尺:
k
k k
k klkv
要使模型流动和原型流动相似,需要两者 在时空相似的条件下受力相似。
动力相似(受力相似)用相似准则(相 似准数)的形式来表示,即:要使模型流动 和原型流动动力相似,需要这两个流动在时 空相似的条件下各相似准则都相等。
4.2 动力相似准则 (牛顿第二定律F m)a
由力比例尺可得: F ' 'V ' dv' / dt' F V dv / dt
作用力与惯性力之比
时间条件(非定常流)、物性条件(密度、 粘性等)相似。 • 同名相似准则数相等。
几个概念:
单值条件中的各物理量称为定性量,如密度 ,特
征长度 l,流速 v,粘度 , 重力加速度 ;g
由定性量组成的相似准则数称为定性准则数,如雷诺 数 Re vl 弗劳德数 Fr v gl
包含被决定量的相似准则数称为非定性准则数,如压强
工程研究方法及其特点
1. 数学分析法:微分方程(组)+ 定解条件求解 优点: (1)理论完善 (2)物理概念清晰 (3)能揭示过程的物理本质 (4)指出影响因素的主次关系
缺点: (1)对复杂工程问题难以描述 (2)求解难度大
2. 实验法 • 直接实验法:在原型实物上研究各物理量之间的
关系(只适用于简单变量关系) 优点:直接可靠 缺点:工作量
Sr lf v
5. 弹性力相似准则
对于可压缩流的模型试验,要使流动相似,由压缩
kF 1 k kl2kv2
引起的弹性力场必须相似
体积模量比例尺
kF
dpA dpA
KdV /V A KdV /V A
kK kl2
k kv2 kK
1
v2
K
Ca (柯西数)
对于气体:
惯性力与弹性力之比
K / c2 v Ma (马赫数)
力比例尺:
kF
Fp Fp
F F
Fg Fg
Fi Fi
上述四种力分别代表总 压力、切向力、重力和 惯性力。
密度比例尺:
k
'
Fi' Fi
a'V ' aV
kF kakV
kF kl2kv2
若以密度、尺寸、速度作为基本变量,可推得动 力学比例尺:
力比例尺:
kF
V a Va
k
3 l
k
ka
k kl2 kv2
kF
F F
dvx / dyA dvx / dyA
kkvkl
k klkv k
1
vl vl Re (雷诺数)
惯性力与粘滞力之比
3. 压力相似准则
总压力与惯性力之比
kF
pA pA
k pkl2
kp k kv2
1
p
v2
Eu
(欧拉数)
欧拉数中的压强p也可用压差p来代替,即
Eu p
v2
4. 非定常性相似准则(由时间比例尺可得)
c
6. 表面力相似准则
表面张力比例尺 惯性力与张力的比值
kF
F' F
l l
k
kl
k kl kv2 k
v2l
We
(韦伯数)
以上分析可知:物理现象中物理量不是单个起作用 的,而是由其组成的准则起作用的微分方程式的 解应是准则方程式。
4.3 流动相似的条件
同一类流动,为相同的微分方程组所描述。 • 单值条件相似,即几何条件、边界条件、
kl
体积流量比例尺: kqv
qV qV
l3 / t kl3 l3 / t kt
kl2kv
运动粘度比例尺:
k
l2 l2
/ /
t t
kl2 kt
klkv
角速度比例:
k
v / l v/l
kv kl
三、动力相似:
模型与原型流场中所有对应点流体微团上受到的各
种力方向相同,大小成同一比例(流动相似的主导 因素)。
二、运动相似(速度场相似)
模型与原型流场中所有对应点上、对应时刻的流速方
向相同,大小成同一比例(流动相似的表现)。
速度比例尺:
kv
v v
时间比例尺:
kt
t t
l/ v l/v
kl kv
长度与速度比例尺确定后,所有运动学量比例 尺就已确定:
加速度比例尺:
ka
a a
v/ t v/t
kv kt
k
2 v
无普遍意义(只能用于与实验条件完全相同的现 象中); 某些情况难以进行(如高温、高压、大型设 备)
以相似理论为基础的模型试验法(常规试验程序: 小中生产规模) 优点:易于控制、调节、节省投资; 试验参数少,工作量小; 实验充实数学分析,同时数学分析指导实验。
目的
为了实验流场与真实流场具有一定的对应关 系(相似性),实验中的各物理参数应该 如何确定?模型实验中的各种测量值应该 如何被换算为实物上的相应值?
对于非定常流的模型试验,必须使模型与原型的流动随时间的
变化相似。
当地加速度引起的惯性力之比
kF k kl2kv2
1
kF
Fit' Fit
V
'
v
' x
V vx
t ' t
k kl3kv kt1
kl 1 l Sr (斯特劳哈尔
kv kt
vt
数或谐时数)
当地惯性力与迁移惯性力之比
对于波动或振荡的非定常流,其频 率为f,谐时数为:
如何科学地设计实验,正确有效地反映出相 关物理参数之间的实质性联系。
例:圆管的压强损失与圆管的长度、流体的密度、粘 度、平均速度和圆管直径、粗糙度有关。
p
v2
l d
f Re, d
主要内容
4.1 流动的力学相似 4.2 动力相似准则 4.3 流动相似的条件 4.4 近似模型试验 4.5 量纲分析法
p与流速 v 总是存在一定关系,那么欧拉数 Eu p v2
便是非定性准则数。
例4-1 试通过模型试验确定出现漩涡的最小油面深度 hmin。已 知 :d 250mm, qv 0.14m3 / s, 7.5105 m2 / s ,kl 1/ 5 为了保证流 动相似,模型输出管的内径、模型内流体的流量和运动粘度等于 多少?试验测得 hm in 60mm 。
kF k kl2kv2
1
F
l 2v2
Ne
(牛顿数)
模型与原型的流场动力相似,则 Ne' Ne (牛顿相似 准则)
各单项力作用下的相似准则:
1. 重力相似准则
惯性力与重力之比
kF
Fg Fg
V g Vg
k
kl3kg
kv2 kl k g
1
v
gl 1/
2
Fr(弗劳德数)
2. 粘滞力相似准则
kF 1
k kl2kv2
4.1 流动的力学相似
几何相似 流动相似
形状相似 同类现象 相似现象 几何相似 运动相似 动力相似
尺度成比例 遵循同一方程 物理量成比例 尺度成比例 速度成比例
力成比例
一、几何相似:
模型与原型对应线性长度比例相等(相似前提条件)。
长度比例尺:
kl
l l
面积比例尺:
kA
k
2 l
体积比例尺:
kV
k
3 l
相关文档
最新文档