2014年高考数学真题分类汇编理科-圆锥曲线方程(理科)

合集下载

2014年高考数学真题解析之圆锥真题(理科)

2014年高考数学真题解析之圆锥真题(理科)

2014高考圆锥曲线真题汇总(理科)1.(满分14分)如图在平面直角坐标系x o y 中,12,F F 分别是椭圆顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1FC .(1)若点C 的坐标为(2)若1FC AB ⊥,求椭圆离心率e 的值.2.已知点A ()02-,,椭圆F 是椭圆E 的右焦点,直线AF O 为坐标原点 (I )求E 的方程;(II )设过点A 的动直线l 与E 相交于P,Q 两点。

当OPQ ∆的面积最大时,求l 的直线方程.3.已知椭圆C (0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.(i )证明:OT 平分线段PQ (其中O 为坐标原点);(ii T 的坐标. 4.(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:通过原点的直线中,有且仅有一条直线是E 的分割线.5.如图,曲线C 由上半椭部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为(1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程. 6.(本小题满分14分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E ,(ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 7.(本小题满分13分)如图,已知双曲线()1,2,,2,2n n N n *⋅⋅⋅∈≥的右焦点1a ,点2a 分别在1b 的两条渐近线上,1b 轴,2112,a a b b ξη=-=-∥3n =(ξ为坐标原点).(1)求双曲线ξ的方程;(2)过η上一点()p c 的直线与直线()p c 相交于点N ,证明点P 在C 上移动时,. 8(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 9.(本小题满分13分)的两条渐近线分别为x y l x y l 2:,2:21-==.(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.10的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,,12DF F ∆的面积为 (1)求该椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..11动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.12.(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已1232F F (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点O 的直线l 与该圆相切,求直线13.设1F ,2F 分别是椭圆M 是C 上一点且2MF与x 轴垂直,直线1MF 与C 的另一个交点为N. (1)若直线MNC 的离心率;(2)若直线MN 在y 轴上的截距为2a,b.14.圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图)P(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.15.如图,O 为坐标原点,的左右焦点分别为12,F F ,离心率为1e ;双曲左右焦点分别为34,F F ,离心率为2e ,已知(1)求12,C C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.16.在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程;(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.17.已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C的交点为Q (1)求C 的方程; (2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 18.已知椭圆C :2224x y +=. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆222x y +=的位置关系,并证明你的结论.19.如图,已知两条抛物线()02:1121>=p x p y E 和()02:2222>=p x p y E ,过原点O的两条直线1l 和2l ,1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交于21,B B 两点. (1)证明:;//2211B A B A(2)过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点.记111C B A ∆与222C B A ∆的面积分别为1S 与2S ,.参考答案1.(1(2【来源】2014年全国普通高等学校招生统一考试数学(江苏卷带解析)【解析】试题分析:(1)求椭圆标准方程,一般要找到关系,,a b c的两个等量关系,本题中椭圆过点,可把点的坐标代入标准方程,得到一个关于,,a b c 的方程,另外(2)要求离心率,就是要列出关于,,a b c 的一个等式,题设条件是1FC AB ⊥,即11F C AB k k ⋅=-,求1F C k ,必须求得C 的坐标,由已知写出2BF 方程,与椭圆方程联立可解得A 点坐标11(,)x y ,则11(,)C x y -,由此1F C k 可得,代入11F C A Bk k⋅=-可得关于,,a b c 的等式,再由可得e 的方程,可求得e . 试题解析:(1)由题意,2(,0)F c ,(0,)B b,,解得1b =.∴椭圆方程为 (2)直线2BF 方程为联立方程组,解得A 点坐标为,则C 点坐标为又,由1F C A B ⊥得,即4223b a c c =+,∴22222()3a c a c c -=+,化简得【考点】椭圆标准方程,椭圆离心率,直线与直线的位置关系.2.(I (II 【来源】2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)【解析】试题分析:(I )由直线AF 求得2a =,再利用222b a c =-求b ,进而可确定椭圆E 的方程;(II )依题意直线l 的斜率存在,故可设直线l 方程为2y kx =-,和椭圆方程联立得22(14k )x 16120kx +-+=.利用弦长公式表示利用点到直线l 的距离求OPQ ∆的高从而三角形OPQ ∆的面积可表示为关于变量k 的函数解析式()f k ,再求函数最大值及相应的k 值,故直线l 的方程确定.试题解析:(I )设右焦点(c,0)F ,由条件知,,所以2a =,222b ac =-1=.故椭圆E 的方程为(II )当l x ⊥轴时不合题意,故设直线:l 2y kx =-,1122(x ,y ),Q(x ,y )P .将2y kx =-得22(14k )x 16120kx +-+=.当216(4k 3)0∆=->,即又点O 到直线PQ 的距离d =所以OPQ ∆的面积则0t >,,当且仅当2t =时,0∆>.所以,当OPQ ∆的面积最大时,l 的方程为 【考点定位】1、椭圆的标准方程及简单几何性质;2、弦长公式;3、函数的最值.3.(2)(3,0)T - 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析)【解析】试题分析:(1)因为焦距为4,所以2c =,由此可求出,a b 的值,从而求得椭圆的方程.(2)椭圆方程化为2236x y +=.设PQ 的方程为2x my =-,代入椭圆方程得:22(3)420m y my +--=.(ⅰ)设PQ 的中点为00(,)M x y ,求出,OM OT k k ,只要O M O T k k=,即证得OT 平分线段PQ.(ⅱ)可用m 表示出PQ ,TF 可得:再根据取等号的条件,可得T 的坐标.试题解答:(1)2c =,又(2)椭圆方程化为2236x y +=.(ⅰ)设PQ 的方程为2x my =-,代入椭圆方程得:22(3)420m y my +--=. 设PQ 的中点为00(,)M x y ,则又TF 的方程为0(2)y m x -=-+,则3x =-得y m =,OT 过PQ 的中点,即OT 平分线段PQ.当1m =±时取等号,此时T 的坐标为(3,1)T -±.【考点定位】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.(1)证明见解析;(2(3)证明见解析. 【来源】2014年全国普通高等学校招生统一考试理科数学(上海卷带解析) 【解析】试题分析:本题属于新定义问题,(1)我们只要利用题设定义求出η的值,若0η<,则结论就可得证;(2)直线y kx =是曲线2241x y -=的分隔线,首先直线与曲线无交点,即直线方程与曲线方程联立方程组2241x y y kx⎧-=⎨=⎩,方程组应无实解,方程组变形为22(14)10k x --=,此方程就无实解,注意分类讨论,按二次项系数为0和不为0分类,然后在曲线上找到两点位于直线y kx =的两侧.则可得到所求范围;(3)首先求出轨迹E 的设其方程为y kx =,这个方程有无实数解,直接判断不方便,可转化为判断函数22()(1)44F x k x kx =+-+与的图象有无交点,而这可利用函数图象直接判断.()y F x =是开口方向向上的二次函数,()y G x =是幂函数,其图象一定有交点,因此直线y kx =不是E 的分隔线,过原点的直线还有一条就是0x =,它显然与曲线E 无交点,又曲线E 上两点(1,2),(1,2)-一定在直线0x =两侧,故它是分隔线,结论得证.试题解析:(1)由题得,2(2)0η=⋅-<,∴(1,2),(1,0)A B -被直线10x y +-=分隔. (2)由题得,直线y kx =与曲线2241x y -=无交点即222241(14)10x y k x y kx⎧-=⇒--=⎨=⎩无解 ∴2140k -=或221404(14)0k k ⎧-≠⎨∆=-<⎩,∴ 又对任意点(1,0)和(1,0)-在曲线2221x y -=上,满足20k η=-<,被直线y kx =分隔,所以所求k 的范围是(3)由题得,设(,)M x y ,∴ 化简得,点M 的轨迹方程为222[(2)]1x y x +-⋅= ①当过原点的直线斜率存在时,设方程为y kx =. 联立方程,2222432[(2)]1(1)4410x y x k x kx x y kx⎧+-⋅=⇒+-+-=⎨=⎩.令2432()(1)441F x k x kx x =+-+-,因为2(0)(2)(1)[16(1)15]0F F k =-⋅-+<, 所以方程()0F x =有实解,直线y kx =与曲线E 有交点.直线y kx =不是曲线E 的分隔线. ②当过原点的直线斜率不存在时,其方程为0x =.显然0x =与曲线222[(2)]1x y x +-⋅=没有交点,又曲线E 上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线0x =是E 分隔线.综上所述,仅存在一条直线0x =是E 的分割线. 【考点】新定义,直线与曲线的公共点问题.5.(1)2a =,1b =;【来源】2014年全国普通高等学校招生统一考试理科数学(陕西卷带解析) 【解析】试题分析:(1)由上半椭圆和部分抛物22:1(0)C y x y =-+≤公共点为,A B ,得1b =,设2C 的半焦距为c ,由2221a c b -==,解得2a =;(2)由(1)知,上半椭圆1C 的方程为,(1,0)B ,易知,直线l 与x 轴不重合也不垂直,故可设其方程为(1)(0)y k x k =-≠,并代入1C 的方程中,整理得:2222(4)240k x k x k +-+-=,,又(1,0)B ,得得点P 的坐标同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ----,最后由0AP AQ ⋅=u u u r u u u r ,故直线l试题解析:(1)在1C 方程中,令0y =,得(,0),(,0)A b B b - 在2C 方程中,令0y =,得(1,0),(1,0)A B - 所以1b =设2C 的半焦距为c ,由及2221a c b -==,解得2a = 所以2a =,1b =(2)由(1)知,上半椭圆1C 的方程为,(1,0)B 易知,直线l 与x 轴不重合也不垂直,设其方程为(1)(0)y k x k =-≠ 代入1C 的方程中,整理得:2222(4)240k x k x k +-+-= (*)设点P 的坐标(,)P P x y又(1,0)B ,得所以点P 的坐标为同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为2(1,2)k k k ---- ,(1,2)AQ k k =-+u u u rAP AQ ⊥Q0AP AQ ∴⋅=u u u r u u u r ,0k ≠Q ,4(2)0k k ∴-+=,解得故直线l 的方程为考点:椭圆和抛物线的几何性质;直线与圆锥曲线的综合问题.6.(I )24y x =.(II )(ⅰ)直线AE 过定点(1,0)F .(ⅱ)ABE ∆的面积的最小值为16. 【来源】2014年全国普通高等学校招生统一考试理科数学(山东卷带解析) 【解析】试题分析:(I 解得3t p =+或3t =-(舍去).得2p =.抛物线C 的方程为24y x =. (II )(ⅰ)由(I )知(1,0)F ,设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>,可得02D x x =+,即0(2,0)D x +,直线AB 根据直线1l和直线AB 平行,可设直线1l 的方程为直线AE 恒过点(1,0)F .注意当204y =时,直线AE 的方程为1x =,过点(1,0)F ,得到结论:直线AE 过定点(1,0)F .(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F , 设直线AE 的方程为+1x my =,根据点00(,)A x y 在直线AE 上, ,再设11(,)B x y ,直线AB应用点B 到直线AE从而得到三角形面积表达式,应用基本不等式得到其最小值. 试题解析:(I设(,0)(0)D t t >,则FD因为||||FA FD =, 解得3t p =+或3t =-(舍去). ,解得2p =. 所以抛物线C 的方程为24y x =. (II )(ⅰ)由(I )知(1,0)F ,设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>, 因为||||FA FD =,则0|1|1D x x -=+, 由0D x >得02D x x =+,故0(2,0)D x +, 故直线AB 因为直线1l 和直线AB 平行,设直线1l 的方程为设(,)E E E x y ,则当204y ≠时, 可得直线AE由2004y x =,直线AE 恒过点(1,0)F .当204y =时,直线AE 的方程为1x =,过点(1,0)F ,所以直线AE 过定点(1,0)F .(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F ,设直线AE 的方程为+1x my =, 因为点00(,)A x y 在直线AE 上,设11(,)B x y ,直线AB由于00y≠,所以点B到直线AE的距离为则ABE∆的面积即01x=时等号成立.所以ABE∆的面积的最小值为16.考点:抛物线的定义及其几何性质,直线与抛物线的位置关系,点到直线的距离公式,基本不等式的应用.7.(12【来源】2014年全国普通高等学校招生统一考试理科数学(江西卷带解析)【解析】试题分析:(1)求双曲线ξ的方程就是要确定a的值,用a,c表示条件:1b轴,2112,a a b b ξη=-=-∥3n =,即可得:直线OBOAAB ⊥OB ,解得23a =,故双曲线C2)本题证.分别用坐标表示直线l 与AF及直线l 与直线的交点为),并利用化简.: 试题解析:(1)设(,0)F c ,因为1b =,所以直线OB又直线OA又因为AB ⊥OB ,解得23a =,故双曲线C (2)由(1,则直线l 的方程为因为直线AF 的方程为2x =,所以直线l 与AF直线l 与直线因为是C考点:双曲线方程,直线的交点8.(1(2)220013x y +=.【来源】2014年全国普通高等学校招生统一考试理科数学(广东卷带解析)【解析】 试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. 试题解析:(1解得2b =,因此椭圆C 的标准方程为(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤∆=--⨯+--=⎡⎤⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()22200009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()22200009240x k k x y y --+-=的两根,则化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.【考点定位】本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用,属于难题. 9.存在【来源】2014年全国普通高等学校招生统一考试理科数学(福建卷带解析) 【解析】试题分析:(1) 已知双曲线的两条渐近线分别为x y l x y l 2:,2:21-==,(2)首先分类讨论直线l 的位置..再讨论直线l 不垂直于x 轴,由OAB ∆的面积恒为8,由直线与双曲线方程联立以及韦达定理,即可得到直线l 有且只有一个公共点.试题解析:(1)因为双曲线E 的渐近线分别为和2,2y x y x ==-.所以从而双曲线E (2)由(1)知,双曲线E设直线l 与x 轴相交于点C.当l x ⊥轴时,若直线l 与双曲线E 有且只有一个公共点,又因为OAB ∆的面积为8,此时双曲线E 的方程为 若存在满足条件的双曲线E,则E 以下证明:当直线l 不与x 轴垂直时,双曲线E.设直线l 的方程为y kx m =+,依题意,得k>2或k<-2.记1122(,),(,)Ax y Bx y .由2y x y kx m=⎧⎨=+⎩,得,同理得.由得,由得, 222(4)2160k x kmx m ----=.因为240k -<,所以22222244(4)(16)16(416)k m k m k m ∆=+-+=---,又因为224(4)m k =-.所以∆=,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E,且E考点:1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.10.(1(2【来源】2014年全国普通高等学校招生统一考试理科数学(重庆卷带解析)【解析】试题分析:(1)由题设知()()12,0,,0F c F c -其中222c ab =- 结合条件12DF F ∆的面积为,可求c 的值,再利用椭圆的定义和勾股定理即可求得,a b 的值,从而确定椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点为()()111222,,,P x y P x y 由圆的对称性可知1212,x x y y =-=,利用()()111222,,,P x y P x y 在圆上及11220PF P F ⋅=u u u u r u u u u r确定交点的坐标,进而得到圆的方程.解:(1)设()()12,0,,0F c F c -,其中222c a b =-,故1c =.,由112DF F F ⊥得(2)如答(21)图,设圆心在y 轴上的圆C 与椭圆相交,()()111222,,,P x y P x y 是两个交点,120,0y y >>,11F P ,22F P 是圆C 的切线,且11F P ⊥22F P 由圆和椭圆的对称性,易知2112,x x y y =-=由(1)知()()121,0,1,0F F -,所以()()111122111,,1,F P x y F P x y =+=--u u u u r u u u u r ,再由11F P ⊥22F P得()221110x y -++=,即211340x x +=,10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C . 由11F P ,22F P 是圆C 的切线,且11F P ⊥22F P ,知21CP CP ⊥,又12||||CP CP =故圆C 的半考点:1、圆的标准方程;2、椭圆的标准方程;3、直线与圆的位置关系;4、平面向量的数量积的应用.11.(1)点P 的坐标为(2)详见解析. 【来源】2014年全国普通高等学校招生统一考试理科数学(浙江卷带解析) 【解析】试题分析:(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标,由已知椭圆动直线l 与椭圆C 只有一个公共点P ,可设出直线l 的方程为()0y kx m k =+<,结合椭圆方程,得,消去y 得,()22222222220ba kxa kmx a m ab +++-=,令0∆=,得22220b m a k -+=,即2222b a k m +=,代入原式得点P 的坐标为,再由点P 在第一象,可得点P 的坐标为(2)点P 到直线1l 的距离的最大值为b a -,由直线1l 过原点O 且与l 垂直,得直线1l 的方程为0x ky +=,利用点到直线距离公式可得,即,由式子特点,需消去k 即可,注意到即可证明.(1)设直线l 的方程为()0y k x m k =+<,由,消去y 得,()22222222220ba kxa kmx a m ab +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为,由点P 在第一象限,故点P 的坐标为 (2)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l 的距离,整理得,因为时等号成立,所以点P 到直线1l 的距离的最大值为b a -.点评:本题主要考查椭圆的几何性质,点单直线距离,直线与椭圆的位置关系等基础知识,同时考查解析几何得基本思想方法,基本不等式应用等综合解题能力。

2014 高考分类汇编圆锥曲线解析

2014 高考分类汇编圆锥曲线解析

19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以 |AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4 (0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3. 于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线.17.、[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-517.解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2.因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15, 因此e =55. 14.[2014·江西卷] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.14.33 [解析] 由题意A ⎝⎛⎫c ,b 2a ,B ⎝⎛⎫c ,-b 2a ,F 1(-c ,0),则直线F 1B 的方程为y -0=-b 2a 2c(x +c ). 令x =0,得y =-b 22a,即D ⎝⎛⎭⎫0,-b 22a ,则向量DA =⎝⎛⎭⎫c ,3b 22a ,F 1B →=⎝⎛⎭⎫2c ,-b 2a .因为AD ⊥F 1B ,所以DA →·F 1B →=2c 2-3b 42a2=0,即2ac =3b 2=3(a 2-c 2),整理得(3e -1)(e +3)=0,所以e =33(e >0).故椭圆C 的离心率为33.20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 9.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 20.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =27.21.,,[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.21.解:(1)由题意知,a 2-b 2a =32,可得a 2=4b 2.椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a 5. 因此2×25a 5=4105,即a =2,所以b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)(i)设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1). 因为直线AB 的斜率k AB =y 1x 1,且AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8mkx +4m 2-4=0, 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2, 所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0). 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此,存在常数λ=-12使得结论成立.(ii)直线BD 的方程y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由(i)知M (3x 1,0),所以△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|. 因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时,等号成立, 此时S 取得最大值98,所以△OMN 面积的最大值为98.20.、[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.解: (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心(0,0)到直线l 的距离d =2|m |5.由d <1,得|m |<52,(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y 23=1得x 2-mx +m 2-3=0,由根与系数的关系得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[]m 2-4(m 2-3)=1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.20.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.20.解:(1)由已知可得,c a =63,c =2,所以a = 6.又由a 2=b 2+c 2,解得b =2,所以椭圆C 的标准方程是x 26+y 22=1.(2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形,所以OP →=QT →,即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m =±1.此时,四边形OPTQ 的面积S 四边形OPTQ =2S △OPQ =2×12·|OF |·|y 1-y 2|=2 ⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=2 3. 18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2,故椭圆方程为x 22c 2+y 2c2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ),有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 因为点P 在椭圆上,所以 x 202c 2+y 20c2=1.② 由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c ,代入①得y 0=c 3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c 3. 设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c .由已知,有|TF 2|2=|MF 2|2+r 2.又|MF 2|=22,故有⎝⎛⎭⎫c +23c 2+⎝⎛⎭⎫0-23c 2=8+59c 2,解得c 2=3,所以所求椭圆的方程为x 26+y 23=1.H6 双曲线及其几何性质8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( )A. 2B.15 C .4 D.17 8.D 10.[2014·北京卷] 设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.10.x 2-y 2=18.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等 8.D 8.、[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( )A .0B .1C .2D .3 8.A17.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.17.5220.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知 2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3. 于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线.9.[2014·江西卷] 过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 9.A [解析] 由直线方程x =a 和渐近线方程y =bax 联立解得A (a ,b ).由以C 的右焦点为圆心,4为半径的圆过原点O 可得c =4,即右焦点F (4,0). 由该圆过A 点可得|F A |2=(a -4)2+b 2=a 2+b 2-8a +16=c 2-8a +16=c 2,所以8a =16,则a =2,所以b 2=c 2-a 2=16-4=12.故双曲线C 的方程为x 24-y 212=1.11.[2014·全国卷] 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .2 2C .4D .4 2 11.C4.[2014·全国新课标卷Ⅰ] 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62 C.52D .1 4.D15.,[2014·山东卷] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.15.y =±x11.[2014·四川卷] 双曲线 x 24-y 2=1的离心率等于________.11.526.[2014·天津卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 6.AH7 抛物线及其几何性质 10.[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B3.[2014·安徽卷] 抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2 3.A 21.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下: 由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________. 11.5x +y +2=0 22.、、[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.22.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1, 即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. 当k ≠0时,方程①的判别式 Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-112或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. (iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有一个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上所述,当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点; 当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点. 14.、[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.14.(-∞,-1)∪(1,+∞) [解析] 依题意可知机器人运行的轨迹方程为y 2=4x .设直线l :y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,消去y 得k 2x 2+(2k 2-4)x +k 2=0,由Δ=(2k 2-4)2-4k 4<0,得k 2>1,解得k <-1或k >1.20.[2014·江西卷] 如图1-2所示,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上.(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|220.解:(1)依题意可设AB 的方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0.设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8.直线AO 的方程为y =y 1x 1x ,BD 的方程为x =x 2,解得交点D 的坐标为⎝⎛⎭⎫x 2,y 1x 2x 1. 注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 21=-8y 14y 1=-2, 因此D 点在定直线y =-2上(x ≠0). (2)依题意,切线l 的斜率存在且不等于0.设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0. 由Δ=0得(4a )2+16b =0,化简整理得b =-a 2. 故切线l 的方程可写为y =ax -a 2.分别令y =2,y =-2,得N 1,N 2的坐标为N 1⎝⎛⎭⎫2a +a ,2,N 2⎝⎛⎭⎫-2a +a ,-2, 则|MN 2|2-|MN 1|2=⎝⎛⎭⎫2a -a 2+42-⎝⎛⎭⎫2a +a 2=8,即|MN 2|2-|MN 1|2为定值8. 8. [2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43 B .-1C .-34D .-128.C [解析] 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,故-p 2=-2,解得p =4,所以y 2=8x ,所以焦点F 的坐标为(2,0),这时直线AF 的斜率k AF =3-0-2-2=-34.22.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.22.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故线段AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即 4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0. 10.[2014·新课标全国卷Ⅱ] 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3 10.C10.[2014·全国新课标卷Ⅰ] 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8 10.A15.,[2014·山东卷] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.15.y =±x 11.[2014·陕西卷] 抛物线y 2=4x 的准线方程为________. 11.x =-1 22.、[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.22.解:(1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得到y 0=2,所以P (22,2)或P (-22,2).由PF =3FM ,分别得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y得x 2-4kx -4m =0, 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k ,2k 2+m ). 由PF →=3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m , 由x 20=4y 0得k 2=-15m +415.由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=41+k 2k 2+m ,点F (0,1)到直线AB 的距离为d =|m -1|1+k 2, 所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43. 令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1.可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数. 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43.所以,当m =19时,f (m )取到最大值256243,此时k =±5515. 所以,△ABP 面积的最大值为2565135.H8 直线与圆锥曲线(AB 课时作业) 20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以 |AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4 (0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.21.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线,所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下: 由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 22.、[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.22.解:(1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得到y 0=2,所以P (22,2)或P (-22,2).由PF =3FM ,分别得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y 得x 2-4kx -4m =0, 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k ,2k 2+m ). 由PF →=3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m ,由x 20=4y 0得k 2=-15m +415. 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=41+k 2k 2+m ,点F (0,1)到直线AB 的距离为d =|m -1|1+k 2, 所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43. 令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1.可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数. 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43.所以,当m =19时,f (m )取到最大值256243,此时k =±5515. 所以,△ABP 面积的最大值为2565135.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.8.、[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( )A .0B .1C .2D .38.A [解析] 由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tan θ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A 22.、、[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.22.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1, 即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. 当k ≠0时,方程①的判别式 Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-112或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. (iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有一个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上所述,当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点; 当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点. 14.、[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.14.(-∞,-1)∪(1,+∞) [解析] 依题意可知机器人运行的轨迹方程为y 2=4x .设直线l :y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,消去y 得k 2x 2+(2k 2-4)x +k 2=0,由Δ=(2k 2-4)2-4k 4<0,得k 2>1,解得k <-1或k >1.17.、[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-517.解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2.因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2. 因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15, 因此e =55. 20.[2014·江西卷] 如图1-2所示,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上.(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|220.解:(1)依题意可设AB 的方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0.设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8.直线AO 的方程为y =y 1x 1x ,BD 的方程为x =x 2,解得交点D 的坐标为⎝⎛⎭⎫x 2,y 1x 2x 1. 注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 21=-8y 14y 1=-2,因此D 点在定直线y =-2上(x ≠0). (2)依题意,切线l 的斜率存在且不等于0.设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0. 由Δ=0得(4a )2+16b =0,化简整理得b =-a 2. 故切线l 的方程可写为y =ax -a 2.分别令y =2,y =-2,得N 1,N 2的坐标为N 1⎝⎛⎭⎫2a +a ,2,N 2⎝⎛⎭⎫-2a +a ,-2, 则|MN 2|2-|MN 1|2=⎝⎛⎭⎫2a -a 2+42-⎝⎛⎭⎫2a +a 2=8,即|MN 2|2-|MN 1|2为定值8.15.[2014·辽宁卷] 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.15.12 20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0.又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=。

2014-2019年高考数学真题分类汇编专题11:解析几何4(圆锥曲线理科解答题)3带详细答案

2014-2019年高考数学真题分类汇编专题11:解析几何4(圆锥曲线理科解答题)3带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何(理科大题)(三)41.(2016•北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(Ⅰ)求证:PD ⊥平面PAB ;(Ⅱ)求直线PB 与平面PCD 所成角的正弦值;(Ⅲ)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值,若不存在,说明理由.【考点】空间中直线与平面之间的位置关系【分析】(Ⅰ)由已知结合面面垂直的性质可得AB ⊥平面PAD ,进一步得到AB PD ⊥,再由PD PA ⊥,由线面垂直的判定得到PD ⊥平面PAB ;(Ⅱ)取AD 中点为O ,连接CO ,PO ,由已知可得CO AD ⊥,PO AD ⊥.以O 为坐标原点,建立空间直角坐标系,求得(0P ,0,1),(1B ,1,0),(0D ,1-,0),(2C ,0,0),进一步求出向量,,PB PD PC 的坐标,再求出平面PCD 的法向量n ,设PB 与平面PCD 的夹角为θ,由s i n|c o s ,|||||||nP BnP B n P B θ=<>=求得直线PB 与平面PCD 所成角的正弦值; (Ⅲ)假设存在M 点使得//BM 平面PCD ,设AMAPλ=,(0M ,1y ,1)z ,由A M A P λ=可得(0M ,1λ-,)λ,(1,,)BM λλ=--,由//BM 平面PCD ,可得0BM n =,由此列式求得当14AM AP =时,M 点即为所求. 【解答】(Ⅰ)证明:平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =, 且AB AD ⊥,AB ⊂平面ABCD ,AB ∴⊥平面PAD , PD ⊂平面PAD ,AB PD ∴⊥,又PD PA ⊥,且PAAB A =,PD ∴⊥平面PAB ;(Ⅱ)解:取AD 中点为O ,连接CO ,PO ,CD AC =CO AD ∴⊥,又PA PD =,PO AD ∴⊥.以O 为坐标原点,建立空间直角坐标系如图:则(0P ,0,1),(1B ,1,0),(0D ,1-,0),(2C ,0,0), 则(1,1,1),(0,1,1)PB PD =-=--,(2,0,1),(2,1,0)PC CD =-=--, 设00(,,1)n x y =为平面PCD 的法向量,则由00n PD n PC ⎧=⎪⎨=⎪⎩,得0010210y x --=⎧⎨-=⎩,则1(,1,1)2n =-.设PB 与平面PCD 的夹角为θ,则111sin |cos ,|||||||||1n PBn PB n PB θ--=<>===; (Ⅲ)解:假设存在M 点使得//BM 平面PCD ,设AMAPλ=,(0M ,1y ,1)z , 由(Ⅱ)知,(0A ,1,0),(0P ,0,1),(0,1,1)AP =-,(1B ,1,0),11(0,1,)AM y z =-, 则有AM AP λ=,可得(0M ,1λ-,)λ,∴(1,,)BM λλ=--,//BM 平面PCD ,1(,1,1)2n =-为平面PCD 的法向量,∴0BM n =,即102λλ-++=,解得14λ=.综上,存在点M ,即当14AM AP =时,M 点即为所求.【点评】本题考查线面垂直的判定,考查了直线与平面所成的角,训练了存在性问题的求解方法,建系利用空间向量求解降低了问题的难度,属中档题.42.(2017•新课标Ⅰ理)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=︒. (1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,求二面角A PB C --的余弦值.【考点】平面与平面垂直;二面角的平面角及求法【分析】(1)由已知可得PA AB ⊥,PD CD ⊥,再由//AB CD ,得A B P D ⊥,利用线面垂直的判定可得AB ⊥平面PAD ,进一步得到平面PAB ⊥平面PAD ;(2)由已知可得四边形ABCD 为平行四边形,由(1)知AB ⊥平面PAD ,得到AB AD ⊥,则四边形ABCD为矩形,设2PA AB a ==,则AD =.取AD 中点O ,BC 中点E ,连接PO 、OE ,以O 为坐标原点,分别以OA 、OE 、OP 所在直线为x 、y 、z 轴建立空间直角坐标系,求出平面PBC 的一个法向量,再证明PD ⊥平面PAB ,得PD 为平面PAB 的一个法向量,由两法向量所成角的余弦值可得二面角A PB C --的余弦值.【解答】(1)证明:90BAP CDP ∠=∠=︒,PA AB ∴⊥,PD CD ⊥, //AB CD ,AB PD ∴⊥,又PA PD P =,且PA ⊂平面PAD ,PD ⊂平面PAD ,AB ∴⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD ;(2)解://AB CD ,AB CD =,∴四边形ABCD 为平行四边形,由(1)知AB ⊥平面PAD ,AB AD ∴⊥,则四边形ABCD 为矩形, 在APD ∆中,由PA PD =,90APD ∠=︒,可得PAD ∆为等腰直角三角形,设2PA AB a ==,则AD =.取AD 中点O ,BC 中点E ,连接PO 、OE ,以O 为坐标原点,分别以OA 、OE 、OP 所在直线为x 、y 、z 轴建立空间直角坐标系,则:(,0,0)D ,,2,0)B a ,(0P ,0),(,2,0)C a .(,0,)PD =,(2,2,)PB a =,(,0,0)BC =-.设平面PBC 的一个法向量为(,,)n x y z =,由00n PB n BC ⎧=⎪⎨=⎪⎩,得20ay +=-=⎪⎩,取1y =,得(0,1,2)n =. AB ⊥平面PAD ,AD ⊂平面PAD ,AB PD ∴⊥,又PD PA ⊥,PAAB A =,PD ∴⊥平面PAB ,则PD 为平面PAB 的一个法向量,(,0,)PD =.cos ,||||2PD n PD n PD n a ∴<>===⨯.由图可知,二面角A PB C --为钝角,∴二面角A PB C --的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.43.(2017•新课标Ⅱ理)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒,E 是PD 的中点. (1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45︒,求二面角M AB D --的余弦值.【考点】直线与平面平行;二面角的平面角及求法【分析】(1)取PA 的中点F ,连接EF ,BF ,通过证明//CE BF ,利用直线与平面平行的判定定理证明即可.(2)利用已知条件转化求解M 到底面的距离,作出二面角的平面角,然后求解二面角M AB D --的余弦值即可.【解答】(1)证明:取PA 的中点F ,连接EF ,BF ,因为E 是PD 的中点, 所以1//2EF AD =,12AB BC AD ==,90BAD ABC ∠=∠=︒,1//2BC AD ∴, BCEF ∴是平行四边形,可得//CE BF ,BF ⊂平面PAB ,CE ⊂/平面PAB ,∴直线//CE 平面PAB ;(2)解:四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==, 90BAD ABC ∠=∠=︒,E 是PD 的中点.取AD 的中点O ,M 在底面ABCD 上的射影N 在OC 上,设2AD =,则1AB BC ==,OP 60PCO ∴∠=︒,直线BM 与底面ABCD 所成角为45︒,可得:BN MN =,CN =,1BC =, 可得:22113BN BN +=,BN =MN ,作NQ AB ⊥于Q ,连接MQ ,AB MN ⊥,所以MQN ∠就是二面角M AB D --的平面角,MQ ==, 二面角M AB D --=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.44.(2017•新课标Ⅲ理)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.【考点】平面与平面垂直;二面角的平面角及求法【分析】(1)如图所示,取AC 的中点O ,连接BO ,OD .ABC ∆是等边三角形,可得OB AC ⊥.由已知可得:ABD CBD ∆≅∆,AD CD =.ACD ∆是直角三角形,可得AC 是斜边,90ADC ∠=︒.可得12DO AC =.利用2222DO BO AB BD +==.可得OB OD ⊥.利用线面面面垂直的判定与性质定理即可证明.(2)设点D ,B 到平面ACE 的距离分别为D h ,E h .则D E h DEh BE=.根据平面AEC 把四面体ABCD 分成体积相等的两部分,可得13113ACE DD E ACE E S h h DE h BE S h ∆∆===,即点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨取2AB =.利用法向量的夹角公式即可得出. 【解答】(1)证明:如图所示,取AC 的中点O ,连接BO ,OD . ABC ∆是等边三角形,OB AC ∴⊥.ABD ∆与CBD ∆中,AB BD BC ==,ABD CBD ∠=∠,ABD CBD ∴∆≅∆,AD CD ∴=. ACD ∆是直角三角形, AC ∴是斜边,90ADC ∴∠=︒. 12DO AC ∴=. 2222DO BO AB BD ∴+==.90BOD ∴∠=︒. OB OD ∴⊥.又DO AC O =,OB ∴⊥平面ACD .又OB ⊂平面ABC ,∴平面ACD ⊥平面ABC .(2)解:设点D ,B 到平面ACE 的距离分别为D h ,E h .则D E h DEh BE=. 平面AEC 把四面体ABCD 分成体积相等的两部分,∴13113ACE DD E ACE E S h h DE h BE S h ∆∆===.∴点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨取2AB =.则(0O ,0,0),(1A ,0,0),(1C -,0,0),(0D ,0,1),(0B0),1)2E . (1AD =-,0,1),1()2AE =-,(2AC =-,0,0). 设平面ADE 的法向量为(m x =,y ,)z ,则00m AD m AE ⎧=⎪⎨=⎪⎩,即0102x z x y z -+=⎧⎪⎨-++=⎪⎩,取(3,3,3)m =. 同理可得:平面ACE 的法向量为(0n =,1,.2cos ,||||21m n m n m n -∴<>===⨯.∴二面角D AE C --.【点评】本题考查了空间位置关系、空间角、三棱锥的体积计算公式、向量夹角公式,考查了推理能力与计算能力,属于中档题.45.(2017•天津理)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =. (Ⅰ)求证://MN 平面BDE ; (Ⅱ)求二面角C EM N --的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长. 46.(2017•山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =时,求二面角E AG C --的大小.【考点】旋转体(圆柱、圆锥、圆台);二面角的平面角及求法【分析】(Ⅰ)由已知利用线面垂直的判定可得BE ⊥平面ABP ,得到BE BP ⊥,结合120EBC ∠=︒求得30CBP ∠=︒;(Ⅱ)法一、取EC 的中点H ,连接EH ,GH ,CH ,可得四边形BEGH 为菱形,取AG 中点M ,连接EM ,CM ,EC ,得到EM AG ⊥,CM AG ⊥,说明EMC ∠为所求二面角的平面角.求解三角形得二面角E AG C --的大小.法二、以B 为坐标原点,分别以BE ,BP ,BA 所在直线为x ,y ,z 轴建立空间直角坐标系.求出A ,E ,G ,C 的坐标,进一步求出平面AEG 与平面ACG 的一个法向量,由两法向量所成角的余弦值可得二面角E AG C --的大小. 【解答】解:(Ⅰ)AP BE ⊥,AB BE ⊥,且AB ,AP ⊂平面ABP ,AB AP A =,BE ∴⊥平面ABP ,又BP ⊂平面ABP , BE BP ∴⊥,又120EBC ∠=︒,因此30CBP ∠=︒; (Ⅱ)解法一、取EC 的中点H ,连接EH ,GH ,CH , 120EBC ∠=︒,∴四边形BECH 为菱形,AE GE AC GC ∴==== 取AG 中点M ,连接EM ,CM ,EC , 则EM AG ⊥,CM AG ⊥, EMC ∴∠为所求二面角的平面角.又1AM =,EM CM ∴=== 在BEC ∆中,由于120EBC ∠=︒,由余弦定理得:22222222cos12012EC =+-⨯⨯⨯︒=,∴EC =,因此EMC ∆为等边三角形,故所求的角为60︒.解法二、以B 为坐标原点,分别以BE ,BP ,BA 所在直线为x ,y ,z 轴建立空间直角坐标系. 由题意得:(0A ,0,3),(2E ,0,0),(1G3),(1C -0), 故(2,0,3)AE =-,AG =,(2,0,3)CG =. 设111(,,)m x y z =为平面AEG 的一个法向量,由00m AE m AG ⎧=⎪⎨=⎪⎩,得11112300x z x -=⎧⎪⎨+=⎪⎩,取12z =,得(3,3,2)m =-;设222(,,)n x y z =为平面ACG 的一个法向量,由0n AG n CG ⎧=⎪⎨=⎪⎩,可得22220230x x z ⎧+=⎪⎨+=⎪⎩,取22z =-,得(3,3,2)n =--.1cos ,||||2m n m n m n ∴<>==.∴二面角E AG C --的大小为60︒.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.47.(2017•江苏)如图,在平行六面体1111ABCD A B C D -中,1AA ⊥平面ABCD ,且2A B A D ==,1AA ,120BAD ∠=︒.(1)求异面直线1A B 与1AC 所成角的余弦值; (2)求二面角1B A D A --的正弦值.【考点】异面直线及其所成的角;二面角的平面角及求法【分析】在平面ABCD 内,过A 作Ax AD ⊥,由1AA ⊥平面ABCD ,可得1AA Ax ⊥,1AA AD ⊥,以A 为坐标原点,分别以Ax 、AD 、1AA 所在直线为x 、y 、z 轴建立空间直角坐标系.结合已知求出A ,B ,C ,D ,1A ,1C 的坐标,进一步求出1A B ,1AC ,DB ,1DA 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线1A B 与1AC 所成角的余弦值;(2)求出平面1BA D 与平面1A AD 的一个法向量,再由两法向量所成角的余弦值求得二面角1B A D A --的余弦值,进一步得到正弦值.【解答】解:在平面ABCD 内,过A 作Ax AD ⊥, 1AA ⊥平面ABCD ,AD 、Ax ⊂平面ABCD , 1AA Ax ∴⊥,1AA AD ⊥,以A 为坐标原点,分别以Ax 、AD 、1AA 所在直线为x 、y 、z 轴建立空间直角坐标系.2AB AD ==,1AA =,120BAD ∠=︒,(0A ∴,0,0),1,0)B -,C 1,0),(0D ,2,0),1(0A ,0,1C .1(3,1,A B =-,1(3,1,AC =,(3,3,0)DB=-,1(0,DA =-.(1)1111111cos ,7||||7A B AC A B AC A B AC <>===-.∴异面直线1A B 与1AC 所成角的余弦值为17; (2)设平面1BA D 的一个法向量为(,,)n x yz =,由100n DB n DA ⎧=⎪⎨=⎪⎩,得302y y -=-=⎪⎩,取x (3,1,n =;取平面1A AD 的一个法向量为(1,0,0)m =. 3cos ,||||413m nm n m n ∴<>===⨯. ∴二面角1B A D A --的余弦值为34,则二面角1B A D A --.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.48.(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【考点】棱柱、棱锥、棱台的体积【分析】(1)设玻璃棒在1CC 上的点为M ,玻璃棒与水面的交点为N ,过N 作//NP MC ,交AC 于点P ,推导出1CC ⊥平面ABCD ,1CC AC ⊥,NP AC ⊥,求出30MC cm =,推导出ANP AMC ∆∆∽,由此能出玻璃棒l 没入水中部分的长度.(2)设玻璃棒在1GG 上的点为M ,玻璃棒与水面的交点为N ,过点N 作NP EG ⊥,交EG 于点P ,过点E 作11EQ E G ⊥,交11E G 于点Q ,推导出11EE G G 为等腰梯形,求出124E Q cm =,140E E cm =,由正弦定理求出3sin 5GEM ∠=,由此能求出玻璃棒l 没入水中部分的长度.【解答】解:(1)设玻璃棒在1CC 上的点为M ,玻璃棒与水面的交点为N , 在平面ACM 中,过N 作//NP MC ,交AC 于点P , 1111ABCD A B C D -为正四棱柱,1CC ∴⊥平面ABCD ,又AC ⊂平面ABCD ,1CC AC ∴⊥,NP AC ∴⊥,12NP cm ∴=,且222AM AC MC =+,解得30MC cm =, //NP MC ,ANP AMC ∴∆∆∽,∴AN NP AM MC =,124030AN =,得16AN cm =. ∴玻璃棒l 没入水中部分的长度为16cm .(2)设玻璃棒在1GG 上的点为M ,玻璃棒与水面的交点为N , 在平面11E EGG 中,过点N 作NP EG ⊥,交EG 于点P , 过点E 作11EQ E G ⊥,交11E G 于点Q ,1111EFGH E FG H -为正四棱台,11EE GG ∴=,11//EG E G , 11EG E G ≠,11EE G G ∴为等腰梯形,画出平面11E EGG 的平面图, 1162E G cm =,14EG cm =,32EQ cm =,12NP cm =, 124E Q cm ∴=,由勾股定理得:140E E cm =, 114sin 5EE G ∴∠=,114sin sin 5EGM EE G ∠=∠=,3cos 5EGM ∠=-, 根据正弦定理得:sin sin EM EG EGM EMG =∠∠,7sin 25EMG ∴∠=,24cos 25EMG ∠=, 3sin sin()sin cos cos sin 5GEM EGM EMG EGM EMG EGM EMG ∴∠=∠+∠=∠∠+∠∠=, 12203sin 5NP EN cm GEM∴===∠. ∴玻璃棒l 没入水中部分的长度为20cm .【点评】本题考查玻璃棒l 没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.49.(2017•北京理16)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC ,PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值.【考点】直线与平面所成的角;二面角的平面角及求法 【分析】(1)设ACBD O =,则O 为BD 的中点,连接OM ,利用线面平行的性质证明//OM PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG AD ⊥,再由面面垂直的性质可得PG ⊥平面ABCD ,则P G A D ⊥,连接OG ,则PG OG ⊥,再证明OG AD ⊥.以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B PD A --的大小;(3)求出CM 的坐标,由CM 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.【解答】(1)证明:如图,设ACBD O =,ABCD 为正方形,O ∴为BD 的中点,连接OM ,//PD 平面MAC ,PD ⊂平面PBD ,平面PBD ⋂平面AMC OM =, //PD OM ∴,则BO BMBD BP=,即M 为PB 的中点; (2)解:取AD 中点G ,PA PD =,PG AD ∴⊥,平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =, PG ∴⊥平面ABCD ,则PG AD ⊥,连接OG ,则PG OG ⊥,由G 是AD 的中点,O 是AC 的中点,可得//OG DC ,则OG AD ⊥.以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,由PA PD =4AB =,得(2D ,0,0),(2A -,0,0),(0P ,0,(2C ,4,0),(2B -,4,0),(1M -,2,(DP =-,(4,4,0)DB =-.设平面PBD 的一个法向量为(,,)m x y z =,则由00m DP m DB ⎧=⎪⎨=⎪⎩,得20440x x y ⎧-+=⎪⎨-+=⎪⎩,取z ,得(1,1,2)m =.取平面PAD 的一个法向量为(0,1,0)n =. 11cos ,||||212m n m n m n ∴<>===⨯.∴二面角B PD A --的大小为60︒;(3)解:(3,CM =--,平面BDP 的一个法向量为(1,1,2)m =. ∴直线MC 与平面BDP 所成角的正弦值为|cos ,||||||||9CM mCM m CM m <>===+【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.50.(2018•天津理17)如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG 且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(Ⅰ)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ; (Ⅱ)求二面角E BC F --的正弦值;(Ⅲ)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.【考点】直线与平面平行;直线与平面所成的角【分析】(Ⅰ)依题意,以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.求出对应点的坐标,求出平面CDE 的法向0n 量及MN ,由00MN n =,结合直线MN ⊂/平面CDE ,可得//MN 平面CDE ;(Ⅱ)分别求出平面BCE 与平面平面BCF 的一个法向量,由两法向量所成角的余弦值可得二面角E BCF --的正弦值;(Ⅲ)设线段DP 的长为h ,([0,2])h ∈,则点P 的坐标为(0,0,)h ,求出(1,2,)BP h =--,而(0,2,0)DC =为平面ADGE 的一个法向量,由直线BP 与平面ADGE 所成的角为60︒,可得线段DP 的长. 【解答】(Ⅰ)证明:依题意,以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.可得(0D ,0,0),(2A ,0,0),(1B ,2,0),(0C ,2,0), (2E ,0,2),(0F ,1,2),(0G ,0,2),(0M ,32,1),(1N ,0,2). 设0(,,)n x y z =为平面CDE 的法向量,则0020220n DC y n DE x z ⎧==⎪⎨=+=⎪⎩,不妨令1z =-,可得0(1,0,1)n =-; 又3(1,,1)2MN =-,可得00MN n =.又直线MN ⊂/平面CDE , //MN ∴平面CDE ;(Ⅱ)解:依题意,可得(1,0,0)BC =-,(1,2,2)BE =-,(0,1,2)CF =-.设(,,)n x y z=为平面BCE的法向量,则220n BC xn BE x y z⎧=-=⎪⎨=-+=⎪⎩,不妨令1z=,可得(0,1,1)n=.设(,,)m x y z=为平面BCF的法向量,则20m BC xm CF y z⎧=-=⎪⎨=-+=⎪⎩,不妨令1z=,可得(0,2,1)m=.因此有310cos,||||10m nm nm n<>==10sin,m n<>=.∴二面角E BC F--;(Ⅲ)解:设线段DP的长为h,([0,2])h∈,则点P的坐标为(0,0,)h,可得(1,2,)BP h=--,而(0,2,0)DC=为平面ADGE的一个法向量,故|||cos,|||||BP CDBP DCBP DC h<>==sin60=︒=,解得[0h,2].∴线段DP.【点评】本题考查直线与平面平行的判定,考查空间角的求法,训练了利用空间向量求解空间角,是中档题.【考点】异面直线及其所成的角;直线与平面平行;二面角的平面角及求法【分析】(Ⅰ)取AB 中点F ,连接MF 、NF ,由已知可证//MF 平面BDE ,//NF 平面BDE .得到平面//MFN 平面BDE ,则//MN 平面BDE ;(Ⅱ)由PA ⊥底面ABC ,90BAC ∠=︒.可以A 为原点,分别以AB 、AC 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系.求出平面MEN 与平面CME 的一个法向量,由两法向量所成角的余弦值得二面角C EM N --的余弦值,进一步求得正弦值;(Ⅲ)设AH t =,则(0H ,0,)t ,求出,NH BE 的坐标,结合直线NH 与直线BE 列式求得线段AH 的长.【解答】(Ⅰ)证明:取AB 中点F ,连接MF 、NF ,M 为AD 中点,//MF BD ∴,BD ⊂平面BDE ,MF ⊂/平面BDE ,//MF ∴平面BDE .N 为BC 中点,//NF AC ∴,又D 、E 分别为AP 、PC 的中点,//DE AC ∴,则//NF DE .DE ⊂平面BDE ,NF ⊂/平面BDE ,//NF ∴平面BDE .又MFNF F =.∴平面//MFN 平面BDE ,则//MN 平面BDE ;(Ⅱ)解:PA ⊥底面ABC ,90BAC ∠=︒.∴以A 为原点,分别以AB 、AC 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系.4PA AC ==,2AB =,(0A ∴,0,0),(2B ,0,0),(0C ,4,0),(0M ,0,1),(1N ,2,0),(0E ,2,2),则(1,2,1)MN =-,(0,2,1)ME =, 设平面MEN 的一个法向量为(,,)m x y z =,由00m MN m ME ⎧=⎪⎨=⎪⎩,得2020x y z y z +-=⎧⎨+=⎩,取2z =,得(4,1,2)m =-.由图可得平面CME 的一个法向量为(1,0,0)n =.cos ,||||21m n m n m n ∴<>===⨯∴二面角C EM N -- (Ⅲ)解:设AH t =,则(0H ,0,)t ,(1,2,)NH t =--,(2,2,2)BE =-.直线NH 与直线BE ,|cos ,||||||||5NH BE NH BE NH BE ∴<>===解得:85t =或12t =. ∴线段AH 的长为85或12.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题. 51.(2018•浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.【考点】直线与平面垂直;直线与平面所成的角【分析】()I 利用勾股定理的逆定理证明111AB A B ⊥,111AB B C ⊥,从而可得1AB ⊥平面111A B C ;()II 以AC 的中点为坐标原点建立空间坐标系,求出平面1ABB 的法向量n ,计算n 与1AC 的夹角即可得出线面角的大小. 【解答】()I 证明:1A A ⊥平面ABC ,1B B ⊥平面ABC ,11//AA BB ∴,14AA =,12BB =,2AB =,11A B ∴,又1AB ,2221111AA AB A B ∴=+, 111AB A B ∴⊥,同理可得:111AB B C ⊥, 又11111A B B C B =,1AB ∴⊥平面111A B C .()II 解:取AC 中点O ,过O 作平面ABC 的垂线OD ,交11A C 于D ,AB BC =,OB OC ∴⊥,2AB BC ==,120BAC ∠=︒,1OB ∴=,OA OC ==,以O 为原点,以OB ,OC ,OD 所在直线为坐标轴建立空间直角坐标系如图所示:则(0A ,0),(1B ,0,0),1(1B ,0,2),1(0C 1),∴(1AB =0),1(0BB =,0,2),1(0AC =,1),设平面1ABB 的法向量为(n x =,y ,)z ,则100n AB n BB ⎧=⎪⎨=⎪⎩,∴020x z ⎧+=⎪⎨=⎪⎩,令1y =可得(3n =-,1,0),111cos ,||||2n AC n AC n AC ∴<>===⨯. 设直线1AC 与平面1ABB 所成的角为θ,则139sin|cos ,|n AC θ=<>=. ∴直线1AC 与平面1ABB .【点评】本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.52.(2018•新课标Ⅰ理)如图,四边形ABCD 为正方形,E ,F 分别为AD,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【考点】平面与平面垂直;直线与平面所成的角【分析】(1)利用正方形的性质可得BF 垂直于面PEF ,然后利用平面与平面垂直的判断定理证明即可. (2)利用等体积法可求出点P 到面ABCD 的距离,进而求出线面角. 【解答】(1)证明:由题意,点E 、F 分别是AD 、BC 的中点, 则12AE AD =,12BF BC =, 由于四边形ABCD 为正方形,所以EF BC ⊥.由于PF BF ⊥,EF PF F =,则BF ⊥平面PEF .又因为BF ⊂平面ABFD ,所以:平面PEF ⊥平面ABFD . (2)在平面PEF 中,过P 作PH EF ⊥于点H ,连接DH , 由于EF 为面ABCD 和面PEF 的交线,PH EF ⊥, 则PH ⊥面ABFD ,故PH DH ⊥.在三棱锥P DEF -中,可以利用等体积法求PH , 因为//DE BF 且PF BF ⊥, 所以PF DE ⊥, 又因为PDF CDF ∆≅∆, 所以90FPD FCD ∠=∠=︒, 所以PF PD ⊥, 由于DEPD D =,则PF ⊥平面PDE ,故13F PDE PDE V PF S -∆=,因为//BF DA 且BF ⊥面PEF , 所以DA ⊥面PEF , 所以DE EP ⊥.设正方形边长为2a ,则2PD a =,DE a =在PDE ∆中,PE ,所以2PDE S ∆,故3F PDE V -=, 又因为2122DEF S a a a ∆==,所以23F PDE V PH a -==,所以在PHD ∆中,sin PH PDH PD ∠==,即PDH ∠为DP 与平面ABFD .【点评】本题主要考查点、直线、平面的位置关系.直线与平面所成角的求法.几何法的应用,考查转化思想以及计算能力.53.(2018•新课标Ⅱ理)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.【考点】LW :直线与平面垂直;MI :直线与平面所成的角;MJ :二面角的平面角及求法【专题】35:转化思想;41:向量法;4R :转化法;5F :空间位置关系与距离;5H :空间向量及应用 【分析】(1)利用线面垂直的判定定理证明PO AC ⊥,PO OB ⊥即可; (2)根据二面角的大小求出平面PAM 的法向量,利用向量法即可得到结论. 【解答】(1)证明:连接BO ,AB BC ==O 是AC 的中点,BO AC ∴⊥,且2BO =,又4PA PC PB AC ====,PO AC ∴⊥,PO =则222PB PO BO =+, 则PO OB ⊥, OBAC O =,PO ∴⊥平面ABC ;(2)建立以O 坐标原点,OB ,OC ,OP 分别为x ,y ,z 轴的空间直角坐标系如图: (0A ,2-,0),(0P ,0,,(0C ,2,0),(2B ,0,0), (2BC =-,2,0),设(2BM BC λλ==-,2λ,0),01λ<<则(2AM BM BA λ=-=-,2λ,0)(2--,2-,0)(22λ=-,22λ+,0), 则平面PAC 的法向量为(1m =,0,0), 设平面MPA 的法向量为(n x =,y ,)z , 则(0PA =,2-,-,则20n PA y =--=,(22)(22)0n AM x y λλ=-++= 令1z =,则y =x =即n =,1),二面角M PA C --为30︒, 3cos30|||||2m nm n ∴︒==,213)131λ=++, 解得13λ=或3λ=(舍),则平面MPA 的法向量(23n=,1), (0PC =,2,-,PC 与平面PAM 所成角的正弦值sin |cos PC θ=<,23|||1616n ->===.【点评】本题主要考查空间直线和平面的位置关系的应用以及二面角,线面角的求解,建立坐标系求出点的坐标,利用向量法是解决本题的关键.54.(2018•新课标Ⅲ理19)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.【考点】平面与平面垂直;二面角的平面角及求法【分析】(1)根据面面垂直的判定定理证明MC⊥平面ADM即可.(2)根据三棱锥的体积最大,确定M的位置,建立空间直角坐标系,求出点的坐标,利用向量法进行求解即可.【解答】解:(1)证明:在半圆中,DM MC⊥,正方形ABCD所在的平面与半圆弧CD所在平面垂直,∴⊥平面DCM,则AD MCAD⊥,=,AD DM D∴⊥平面ADM,MCMC⊂平面MBC,∴平面AMD⊥平面BMC.(2)ABC∆的面积为定值,∴要使三棱锥M ABC -体积最大,则三棱锥的高最大,此时M 为圆弧的中点,建立以O 为坐标原点,如图所示的空间直角坐标系如图 正方形ABCD 的边长为2,(2A ∴,1-,0),(2B ,1,0),(0M ,0,1),则平面MCD 的法向量(1m =,0,0), 设平面MAB 的法向量为(n x =,y ,)z 则(0AB =,2,0),(2AM =-,1,1), 由20n AB y ==,20n AM x y z =-++=, 令1x =,则0y =,2z =,即(1n =,0,2), 则cos m <,||||11m n n m n >==⨯,则面MAB 与面MCD 所成二面角的正弦值sin α=.【点评】本题主要考查空间平面垂直的判定以及二面角的求解,利用相应的判定定理以及建立坐标系,利用向量法是解决本题的关键.55.(2018•江苏25)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值; (2)求直线1CC 与平面1AQC 所成角的正弦值.【考点】异面直线及其所成的角;MJ :二面角的平面角及求法【分析】设AC ,11A C 的中点分别为O ,1O ,以1{,,}OB OC OO 为基底,建立空间直角坐标系O xyz -, (1)由111|||cos ,|||||BP AC BP AC BP AC <>=可得异面直线BP 与1AC 所成角的余弦值;(2)求得平面1AQC 的一个法向量为n ,设直线1CC 与平面1AQC 所成角的正弦值为θ, 可得111||sin |cos ,|||||CC n CC n CC n θ=<>=,即可得直线1CC 与平面1AQC 所成角的正弦值.【解答】解:如图,在正三棱柱111ABC A B C -中, 设AC ,11A C 的中点分别为O ,1O , 则,OB OC ⊥,1OO OC ⊥,1OO OB ⊥, 故以1{,,}OBOC OO 为基底, 建立空间直角坐标系O xyz -,12AB AA ==,(0A ,1-,0),B 0,0),(0C ,1,0),1(0A ,1-,2),1B0,2),1(0C ,1,2).(1)点P为11A B 的中点.∴1,2)2P -, ∴1(,2)2BP=--,1(0,2,2)AC =. 111|||cos ,|||||5BP AC BP AC BP AC <>===. ∴异面直线BP 与1AC ;(2)Q 为BC的中点.1,0)2Q ∴ ∴33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==, 设平面1AQC 的一个法向量为(n x =,y ,)z , 由133022220AQ n x y AC n y z ⎧=+=⎪⎨⎪=+=⎩,可取(3n=,1-,1), 设直线1CC 与平面1AQC 所成角的正弦值为θ, 111||sin |cos ,|||||52CC nCC n CC n θ=<>===⨯, ∴直线1CC 与平面1AQC .【点评】本题考查了向量法求空间角,属于中档题.56.(2018•北京理16)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB BC ==,12AC AA ==.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角1B CD C --的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.【考点】直线与平面垂直;直线与平面所成的角;二面角的平面角及求法 【分析】()I 证明AC BE ⊥,AC EF ⊥即可得出AC ⊥平面BEF ;()II 建立坐标系,求出平面BCD 的法向量n ,通过计算n 与EB 的夹角得出二面角的大小; ()III 计算FG 与n 的数量积即可得出结论.【解答】()I 证明:E ,F 分别是AC ,11A C 的中点,1//EF CC ∴,1CC ⊥平面ABC ,EF ∴⊥平面ABC ,又AC ⊂平面ABC ,EF AC ∴⊥, AB BC =,E 是AC 的中点, BE AC ∴⊥,又BE EF E =,BE ⊂平面BEF ,EF ⊂平面BEF ,AC ∴⊥平面BEF .()II 解:以E 为原点,以EB ,EC ,EF 为坐标轴建立空间直角坐标系如图所示:则(2B ,0,0),(0C ,1,0),(0D ,1-,1),∴(2BC =-,1,0),(0CD =,2-,1),设平面BCD 的法向量为(n x =,y ,)z ,则0n BC n CD ⎧=⎪⎨=⎪⎩,即2020x y y z -+=⎧⎨-+=⎩,令2y =可得(1n =,2,4),又EB ⊥平面11ACC A ,∴(2EB =,0,0)为平面1CD C -的一个法向量,cos n ∴<,||||21n EB EB n EB >===.由图形可知二面角1B CD C --为钝二面角,∴二面角1B CD C --的余弦值为 ()III 证明:(0F ,0,2),(2G ,0,1),∴(2FG =,0,1)-,∴20420FG n =+-=-≠, ∴FG 与n 不垂直,FG ∴与平面BCD 不平行,又FG ⊂/平面BCD , FG ∴与平面BCD 相交.【点评】本题考查了线面垂直的判定,二面角的计算与空间向量的应用,属于中档题.57.(2019北京理科)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,//AD BC ,2PA AD CD ===,3BC =.E 为PD 的中点,点F 在PC 上,且13PF PC =. (Ⅰ)求证:CD ⊥平面PAD ; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【考点】二面角的平面角及求法;直线与平面垂直【分析】(Ⅰ)推导出PA CD ⊥,AD CD ⊥,由此能证明CD ⊥平面PAD .(Ⅱ)以A 为原点,在平面ABCD 内过A 作CD 的平行线为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角F AE P --的余弦值.(Ⅲ)求出4(3AG =,0,2)3,平面AEF的法向量(1m =,1,1)-,422333m AG=-=≠,从而直线AG不在平面AEF内.【解答】证明:(Ⅰ)PA⊥平面ABCD,PA CD∴⊥,AD CD⊥,PA AD A=,CD∴⊥平面PAD.解:(Ⅱ)以A为原点,在平面ABCD内过A作CD的平行线为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,(0A,0,0),(1E,0,1),2(3F,23,4)3,(0P,0,2),(1AE=,0,1),224(,,)333 AF=,平面AEP的法向量(1n =,0,0),设平面AEF的法向量(m x=,y,)z,则224333m AE x zm AF x y z⎧=+=⎪⎨=++=⎪⎩,取1x=,得(1m=,1,1)-,设二面角F AE P--的平面角为θ,则||cos||||3m nm nθ===∴二面角F AE P--.(Ⅲ)直线AG不在平面AEF内,理由如下:点G在PB上,且23PGPB=.4(3G∴,0,2)3,∴4(3AG=,0,2)3,平面AEF的法向量(1m=,1,1)-,422333m AG=-=≠,故直线AG不在平面AEF内.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查直线是否在已知平面内的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题. 58.(2019江苏16)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ; (2)1BE C E ⊥.【考点】棱柱的结构特征;LS :直线与平面平行【分析】(1)推导出//DE AB ,11//AB A B ,从而11//DE A B ,由此能证明11//A B 平面1DEC . (2)推导出1BE AA ⊥,BE AC ⊥,从而BE ⊥平面11ACC A ,由此能证明1BE C E ⊥. 【解答】证明:(1)在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点, //DE AB ∴,11//AB A B ,11//DE A B ∴,DE ⊂平面1DEC ,11A B ⊂/平面1DEC ,11//A B ∴平面1DEC .解:(2)在直三棱柱111ABC A B C -中,E 是AC 的中点,AB BC =. 1BE AA ∴⊥,BE AC ⊥,又1AA AC A =,BE ∴⊥平面11ACC A ,1C E ⊂平面11ACC A ,1BE C E ∴⊥.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.59.(2019•新课标Ⅰ理18)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.【考点】二面角的平面角及求法;直线与平面平行【分析】(1)过N 作NH AD ⊥,证明//NM BH ,再证明//BH DE ,可得//NM DE ,再由线面平行的判定可得//MN 平面1C DE ;(2)以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,分别求出平面1A MN 与平面1MAA 的一个法向量,由两法向量所成角的余弦值可得二面角1A MA N --的正弦值.【解答】(1)证明:如图,过N 作NH AD ⊥,则1//NH AA ,且112NH AA =, 又1//MB AA ,112MB AA =,∴四边形NMBH 为平行四边形,则//NM BH , 由1//NH AA ,N 为1A D 中点,得H 为AD 中点,而E 为BC 中点, //BE DH ∴,BE DH =,则四边形BEDH 为平行四边形,则//BH DE , //NM DE ∴,NM ⊂/平面1C DE ,DE ⊂平面1C DE ,//MN ∴平面1C DE ;(2)解:以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,则N 12-,2),M ,1,2),1A ,1-,4), 3(3,,0)2NM =,11(3,,2)2NA =-,设平面1A MN 的一个法向量为(,,)m x y z =,由1330213202m NM xy m NA x y z ⎧=+=⎪⎪⎨⎪=-+=⎪⎩,取y =(m =-,又平面1MAA 的一个法向量为(1,0,0)n =, cos ,||||133mn m n m n∴<>===⨯.∴二面角1A MA N --【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间。

2014年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)

2014年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)

2014年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)、选择题:1 21. (2014安徽文)抛物线y x2的准线方程是()4A. y 二—1B. y 二—2C. x = —1D. X 二—21. A [解析]因为抛物线y= ~x2的标准方程为x2= 4y,所以其准线方程为考点,L抛物线的准线方程+22. (2014福建理)设P,Q分别为x2+(y—6(=2和椭圆Z + y2=1上的点,贝U P, Q两点间的最大10距离是()A. 5.2B. .46 、一2C. 7.2D. 6 2【答案】D【解析】试題分析:依题意巴Q两点间的蛊大距离可瑕转化沖勺心到椭巴上的点的最大距韶再加上;圆的半径72 .设O(x3y)、圆心劉瞞圆的最大距离d = = 7-9 L r-121 +46 兰S/5 •所以FQ两点间的最大距离杲6^2 .故选D.考点:1.直纯与圆罰位直关系.2.鮫形结士的思想2 2 2 23、(2014广东文)若实数k满足0 ::: k ::: 5,则曲线x y 1与曲线 --- - —1的16 5-k 16 5A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等答案:D提示■-Q<k<5i:.5-k>0i16-k>0i从而两曲线均为双曲线’又M + (5-k) = 21-k = (l6-耐+另故两双曲线的焦距相等’选D.x2y2x2y24. (2014广东理)若实数k满足0:::k:::9,则曲线1与曲线1的()25 9 —k 25-k 9A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等【答案】D【解桁】0 < < 9 . 25-A7> 0 ・虚半铀长為、拎—1焦距2^25 + (9-^) = 2^34-Jt 再宇'孜曲吕的实半轴长渋加三学科施半轴令狙焦距沟因此,两取曲线的焦距相等"故选D.离心率2^J(25-k) + 9 = 2-JlA-k ,8 1 2 3 A .— C.— 234【答案】DD .A (-2,3)在准线上,所以y 2 = 8x,求导得:4 22y ?y'二 8,即 k =—.设B (m, m), y 8m> 0,则k = k AB . 4 m -3 8(m -3) 2 =2 = 2 , m - 6m -16= 0,解得 m= 8 m m^ m +16+ 2 8•- F(2,0),k BF = m 8m 4 ”2=.选 D. m^ m -16 3-22 25. (2014湖北文)设a , b 是关于t 的方程t cos 0 + tsin 0 = 0的两个不等实根,则过A (a , a ),2 2B (b , b 2)两点的直线与双曲线 心 一占=1的公共点的个数为( )cos 0 sin 0A . 0B . 1C . 2D . 35. A [解析]由方程 t 2cos 0 + tsin 0 = 0,解得 t i = 0, t 2=— tan 0,不妨设点 A (0, 0), B (—2 2tan 0 , tan 20 ),则过这两点的直线方程为 y = — xtan 0,该直线恰是双曲线笃 —y 2 = 1的一cos 0 sin 0条渐近线,所以该直线与双曲线无公共点.故选A.6. (2014湖北理)已知F 1, F 2是椭圆和双曲线的公共焦点, P 是它们的一个公共点,且/ F j PF 2=n ,3 则椭圆和双曲线的离心率的倒数之和的最大值为()A 也B 速 A. 336. A [解析]设|PF 1|= r 1, |PF 2|=「2,「1>「2,椭圆的长半轴长为 a j ,双曲线的实半轴长为 a ?,椭 圆、双曲线的离心率分别为 厲,勺.则由椭圆、双曲线的定义,得 D + Q = 2a 1,「1— 3= 2a 2,平方得4a 2 =r 2+「2+ 2「1「2, 4a 2= r 2— 2「仃2+ r ;又由余弦定理得 4c 2 =「1+「2 —「仃2,消去「仃2,得 a 1+ 3a 2!= 4c 2,2即+乌=4 .所以由柯西不等式得 —+ —= e 1 e 2 e 1 e 2 所以—+丄< ^^3.故选A. e 1 e 2 3X y 7.(2014江西文)过双曲线C : 2 - 2 =1的右顶点作X 轴的垂线与C 的一条渐近线相交于 A .若以Cab的右焦点为圆心、半径为4的圆经过A 、O 两点(0为坐标原点), 则双曲线C 的方程为()2 22 22 22 2x y 彳A. 1x -y=1 X C.—y=1 X D. -y =14 12 【答案】A 7 98812 4【解析】以C 的右焦点为圆心、半径为4的圆经过坐标原点O,则c=4.且CA =4.设右顶点为B a,0 ,C (a,b ), Q AABC 为Rt △,二 BA 2 + BC 2 = AC 2; (4—a )2 +b 2 =16,又Qa 2+b 2 =c 2 = 16。

【数学】2014-2018年高考数学(理)五年真题分类第十章 圆锥曲线与方程

【数学】2014-2018年高考数学(理)五年真题分类第十章  圆锥曲线与方程

第十章 圆锥曲线 考点1 椭圆1.(2018全国Ⅱ,12)已知F 1,F 2是椭圆的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .23B .12C .13D .141.D 因为△PF 1F 2为等腰三角形,∠F 1F 2P =120°,所以PF 2=F 1F 2=2c,由AP 斜率为√36得,tan∠PAF 2=√36,∴sin∠PAF 2=√13cos∠PAF 2=√12√13,由正弦定理得PF 2AF 2=sin∠PAF 2sin∠APF 2,所以2c a+c=1√13sin(π3−∠PAF 2)1√13√32⋅√12√13−12⋅1√1325∴a =4c,e =14,选D.2.(2017•新课标Ⅲ,10)已知椭圆C : =1(a >b >0)的左、右顶点分别为A 1 , A 2 , 且以线段A 1A 2为直径的圆与直线b ﹣ay+2ab=0相切,则C 的离心率为( )A. B. C. D.2. A 以线段A 1A 2为直径的圆与直线b ﹣ay+2ab=0相切, ∴原点到直线的距离 =a ,化为:a 2=3b 2 . ∴椭圆C 的离心率e= = = .故选A .3.(2017•浙江,)椭圆+=1的离心率是( )A. B. C. D.3. B 椭圆 +=1,可得a=3,b=2,则c==,所以椭圆的离心率为: =.故选B .4.(2016·浙江,7)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<1 4. A [由题意可得:m 2-1=n 2+1,即m 2=n 2+2,又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.]5.(2016·全国Ⅲ,11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.345.A [设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c ,a =3c ,e =13.]6.(2014·大纲全国,6)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , ∴△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A.]7.(2018浙江,17)已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足AP ⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ ,则当m =___________时,点B 横坐标的绝对值最大. 7.5 设,由得因A ,B 在椭圆上,所以 ,与应相得,当且仅当m =5时取最大值.8.(2016·江苏,10)如图,在平面直角坐标系Oy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.8.63 [联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B 、C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b2,又F (c ,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得:c 2-34a 2+b 24=0①,又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca=23=63. 9.(2014·辽宁,15)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.9.12 [设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.]10.(2014·安徽,14)设F 1,F 2分别是椭圆E :2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥轴,则椭圆E 的方程为________. 10.2+3y 22=1 [设点A 在点B 上方,F 1(-c ,0),F 2(c ,0),其中c =1-b 2,则可设A (c ,b 2),B (0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,得b 2=23,故椭圆方程为2+3y 22=1.]11.(2014·江西,15)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________. 11.22 [设A (1,y 1),B (2,y 2),分别代入椭圆方程相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,根据题意有1+2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝⎛⎭⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2得c a =22,所以e =22.]12.(2018全国Ⅲ,20)已知斜率为的直线l 与椭圆交于A ,B 两点,线段AB 的中点为M(1 , m)(m >0). (1)证明:;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃑⃑⃑⃑⃑ +FA ⃑⃑⃑⃑⃑ +FB ⃑⃑⃑⃑⃑ =0.证明:|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列,并求该数列的公差. 12.(1)设,则.两相减,并由得 .题设知,于.① 由题得,故.(2)由题意得F(1,0),设,则 .(1)及题设得.又点P 在C 上,m =34,从而P(1,−32),|FP⃑⃑⃑⃑⃑ |=32. 于是 . 同理. 所以.故,|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列.设该数列的公差为d ,则 .② 将代入①得.所以l 的方程为,代入C 方程,并整得. ,入②解得.所以该数列的差为或.13.(2018天津,19)设椭圆22221x x a b+= (a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为3点A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l : (0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若4AQ AOQ PQ=∠ (O 为原点) ,求的值.13.(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得, FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为(1,y 1),点Q 的坐标为(2,y 2). 由已知有y 1>y 2>0,故12PQ sin AOQ y y ∠=-. 又因为2y AQ sin OAB =∠,而∠OAB =π4,故2AQ =.由AQ sin AOQ PQ=∠,可得5y 1=9y 2. 由方程组22{ 194y kx x y =+=,,消去,可得1y =. 易知直线AB 的方程为+y –2=0, 由方程组{20y kx x y =+-=,,消去,可得221ky k =+.由5y 1=9y 2,可得5(+1)= 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,的值为12或1128.14.(2017•江苏,17)如图,在平面直角坐标系Oy 中,椭圆E : =1(a >b >0)的左、右焦点分别为F 1 , F 2 , 离心率为,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1 , 过点F 2作直线PF 2的垂线l 2 . (Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线l 1 , l 2的交点Q 在椭圆E 上,求点P 的坐标.14.(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =, 228a c =, 解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=. (2)由(1)知, ()11,0F -, ()21,0F . 设()00,P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时, 2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -. 因为11l PF ⊥, 22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程: ()0011x y x y +=-+, ① 直线2l 的方程: ()0011x y x y -=--. ② 由①②,解得2001,x x x y y -=-=,所以20001,x Q x y ⎛⎫-- ⎪⎝⎭.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即2201x y -=或22001x y +=.又P 在椭圆E 上,故2200143x y +=. 由22002201{ 143x y x y-=+=,解得00x y ==; 220022001{ 143x y x y +=+=,无解.因此点P的坐标为⎝⎭15.(2016·全国Ⅱ,20)已知椭圆E :x 2t +y 23=1的焦点在轴上,A 是E 的左顶点,斜率为(>0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求的取值范围.15.解 (1)设M (1,y 1),则由题意知y 1>0.当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =+2.将=y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,>0,A (-t ,0),将直线AM 的方程y =(+t )代入x 2t +y 23=1得(3+t 2)2+2t ·t 2+t 22-3t =0.由1·(-t )=t 2k 2-3t 3+tk 2得1=t (3-tk 2)3+tk 2, 故|AM |=|1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (+t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |得23+tk 2=k3k 2+t,即(3-2)t =3(2-1), 当=32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0.由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<<2.因此的取值范围是(32,2).16.(2016·四川,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-+3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. 16.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得32-12+(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为=2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)证明 由已知可设直线l ′的方程为y =12+m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3.|PT |2=89m 2. 设点A ,B 的坐标分别为A (1,y 1),B (2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得32+4m +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得1+2=-4m3,12=4m 2-123.所以|P A |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2=54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2. 故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.17.(2015·重庆,21)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .17.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23,即c =3,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)法一 如图设点P (0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b 2=1,20+y 20=c 2, 求得0=±a c a 2-2b 2,y 0=±b 2c .由|PF 1|=|PQ |>|PF 2|得0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|. 又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =ca =|PF 1|2+|PF 2|22a =(2-2)2+(2-1)2=9-62=6- 3.18.(2015·福建,18)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :=my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.18.解 法一 (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设A (1,y 1),B (2,y 2),AB 的中点为H (0,y 0).⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0.所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝⎛⎭⎫x 0+942+y 20=⎝⎛⎭⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516. |AB |24=(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0,所以|GH |>|AB |2.故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 法二 (1)同法一.(2)设点A (1,y 1),B (2,y 2),则GA →=⎝⎛⎭⎫x 1+94,y 1,GB →=⎝⎛⎭⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA →·GB →=⎝⎛⎭⎫x 1+94⎝⎛⎭⎫x 2+94+y 1y 2=⎝⎛⎭⎫my 1+54⎝⎛⎭⎫my 2+54+y 1y 2 =(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3(m 2+1)m 2+2+52m2m 2+2+2516=17m 2+216(m 2+2)>0, 所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角. 故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外.19.(2015·陕西,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(+2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E的方程.19.解 (1)过点(c ,0),(0,b )的直线方程为b +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bc a,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)法一 由(1)知,椭圆E 的方程为2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10,易知,AB 与轴不垂直,设其方程为y =(+2)+1,代入①得(1+42)2+8(2+1)+4(2+1)2-4b 2=0, 设A (1,y 1),B (2,y 2),则1+2=-8k (2k +1)1+4k 2,12=4(2k +1)2-4b 21+4k 2,由1+2=-4,得-8k (2k +1)1+4k 2=-4,解得=12,从而12=8-2b 2,于是|AB |=1+⎝⎛⎭⎫122|1-2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2),由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.法二 由(1)知,椭圆E 的方程为2+4y 2=4b 2,②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10,设A (1,y 1),B (2,y 2),则21+4y 21=4b 2,22+4y 22=4b 2,两式相减并结合1+2=-4,y 1+y 2=2,得-4(1-2)+8(y 1-y 2)=0, 易知AB 与轴不垂直,则1≠2, 所以AB 的斜率AB =y 1-y 2x 1-x 2=12, 因此直线AB 的方程为y =12(+2)+1,代入②得2+4+8-2b 2=0,所以1+2=-4,12=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|1-2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.20.(2015·北京,19)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于轴对称,直线PB 交轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.20.解 (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c2解得a 2=2,故椭圆C 的方程为x22+y 2=1.设M (M ,0).因为m ≠0,所以-1<n <1.直线P A 的方程为y -1=n -1m .所以M =m1-n,即M ⎝⎛⎭⎫m 1-n ,0.(2)因为点B 与点A 关于轴对称,所以B (m ,-n ). 设N (N ,0),则N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”,等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|M ||N |.因为M =m 1-n ,N =m 1+n ,m 22+n 2=1.所以y 2Q =|M ||N |=m 21-n 2=2. 所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或(0,-2). 21.(2015·江苏,18)如图,在平面直角坐标系Oy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.21.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥轴时,AB =2,又CP =3,不合题意.当AB 与轴不垂直时,设直线AB 的方程为y =(-1),A (1,y 1),B (2,y 2), 将AB 的方程代入椭圆方程,得(1+22)2-42+2(2-1)=0, 则1,2=2k 2±2(1+k 2)1+2k 2,C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2.若=0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得=±1.此时直线AB 的方程为y =-1或y =-+1.考点2 双曲线1.(2018浙江,2)双曲线的焦点坐标是( ) A .(−√2,0),(√2,0) B .(−2,0),(2,0) C .(0,−√2),(0,√2) D .(0,−2),(0,2)1.B 因为双曲线方程为,所以焦点坐标可设为(±c,0),因为c 2=a 2+b 2=3+1=4,c =2,所以焦点坐标为(±2,0),选B.2.(2018全国Ⅰ,11)已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=( ) A .32 B .3 C .2√3 D .42.B 根据题意,可知其渐近线的斜率为±√33,且右焦点为F(2,0),从而得到∠FON =30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°,可以得出直线MN 的方程为,分别与两条渐近线和联立,求得M(3,√3),N(32,−√32),所以|MN |=(3−32)+(√3+√32)=3,故选B.3.(2018全国Ⅱ,5)双曲线的离心率为√3,则其渐近线方程为( ) A . B . C . D . 3.A ∵e =ca =√3,∴b 2a 2=c 2−a 2a 2=e 2−1=3−1=2,∴ba =√2,因为渐近线方程为,所以渐近线方程为,选A.4.(2018全国Ⅲ,11)设F 1,F 2是双曲线()的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=√6|OP |,则C 的离心率为( ) A .√5 B .√3 C .2 D .√24.B 由题可知|PF 2|=b,|OF 2|=c ,∴|PO |=a ,在Rt △POF 2中,cos∠PF 2O =|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos∠PF 2O =|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=bc,∴b 2+4c 2−(√6a)22b∙2c=bc⇒c 2=3a 2,∴e =√3.故选C.5.(2018天津,7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -= 5.C 设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设: 22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为: 0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==,则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得: 23a =,则双曲线的方程为22139x y -=.本题选择C选项.6.(2017•新课标Ⅱ,9)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.C.D.6.A 双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:b+ay=0,圆(﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:= ,解得:,可得e2=4,即e=2.故选A.7.(2017•新课标Ⅲ,5)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= ,且与椭圆+ =1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=17. B 椭圆+ =1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= ,可得,即,可得= ,解得a=2,b= ,所求的双曲线方程为:﹣=1.故选B.8.(2017·天津,5)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1B.=1C.=1D.=18. B 设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=± =±,则经过F 和P (0,4)两点的直线的斜率= = ,则=1,c=4,则a=b=2,∴双曲线的标准方程: ;故选B .9.(2016·全国Ⅰ,5)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)9.A [∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.]10.(2016·全国Ⅱ,11)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A.2B.32C.3D.210.A [离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin Msin F 1-sin F 2=2231-13= 2.故选A.]11.(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A.11 B.9 C.5 D.311.B [由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.]12.(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2的是( ) A.2-y 24=1 B.x 24-y 2=1 C.y 24-2=1 D.y 2-x 24= 112.C [由双曲线性质知A 、B 项双曲线焦点在轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12,只有C 符合,故选C.]13.(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 216-y 29=1C.x 29-y 216=1D.x 23-y 24=1 13.B [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选B.]14.(2015·四川,5)过双曲线2-y 23=1的右焦点且与轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 314.D [焦点F (2,0),过F 与轴垂直的直线为=2,渐近线方程为2-y 23=0,将=2代入渐近线方程得y 2=12,y =±23,∴|AB |=23-(-23)=4 3.选D.]15.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B.2 C. 3 D. 2 15.D [如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (1,y 1)在第一象限内,过M 作MN ⊥轴于点N (1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,1=|OB |+|BN |=a +2a cos 60°=2a .将点M (1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =ca =a 2+b 2a 2 =2,选D.]16.(2015·新课标全国Ⅰ,5)已知M (0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 16.A [由题意知M 在双曲线C :x 22-y 2=1上,又在2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33.]17.(2014·天津,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 17.A [由题意可知,双曲线的其中一条渐近线y =b a 与直线y =2+10平行,所以ba =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线方程为x 25-y 220=1.选A.]18.(2014·广东,4)若实数满足0<<9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A.离心率相等B.实半轴长相等C.虚半轴长相等D.焦距相等18.D [由0<<9,易知两曲线均为双曲线且焦点都在轴上,由25+9-k =25-k +9,得两双曲线的焦距相等,选D.]19.(2014·新课标全国Ⅰ,4)已知F 为双曲线C :2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B.3 C.3m D.3m19.A [∵双曲线的方程为x 23m -y 23=1,焦点F 到一条渐近线的距离为 3.]20.(2014·重庆,8)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D.3 20.B [由双曲线的定义得||PF 1|-|PF 2||=2a ,又|PF 1|+|PF 2|=3b ,所以(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2=9b 2-4a 2,即4|PF 1|·|PF 2|=9b 2-4a 2,又4|PF 1|·|PF 2|=9ab ,因此9b 2-4a 2=9ab ,即9⎝⎛⎭⎫b a 2-9b a -4=0,则⎝⎛⎭⎫3b a +1⎝⎛⎭⎫3b a -4=0,解得b a =43⎝⎛⎭⎫b a =-13舍去,则双曲线的离心率e =1+⎝⎛⎭⎫b a 2=53.]21.(2014·山东,10)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A.±2y =0 B.2±y =0 C.±2y =0 D.2±y =021.A [椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12,即±2y =0.]22.(2014·大纲全国,9)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( ) A.14 B.13 C.24 D.2322.A [由双曲线的定义知|AF 1|-|AF 2|=2a ,又|AF 1|=2|AF 2|,∴|AF 1|=4a ,|AF 2|=2a . ∵e =ca =2,∴c =2a ,∴|F 1F 2|=4a .∴cos ∠AF 2F 1=|AF 2|2+|F 1F 2|2-|AF 1|22|AF 2|·|F 1F 2|=(2a )2+(4a )2-(4a )22×2a ×4a=14,故选A.]23.(2018江苏,8)在平面直角坐标系中,若双曲线的右焦点F(c,0)到一条渐近线的距离为√32c ,则其离心率的值是________. 23.2 因为双曲线的焦点F(c,0)22=bc c=b,所以b =√32c ,因此a 2=c 2−b 2=c 2−34c 2=14c 2, a =12c,e =2.24.(2017•山东,14)在平面直角坐标系Oy 中,双曲线=1(a >0,b >0)的右支与焦点为F 的抛物线2=2py (p >0)交于A ,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.24. y=±把2=2py (p >0)代入双曲线=1(a >0,b >0),可得:a 2y2﹣2pb 2y+a 2b 2=0,∴y A +y B = ,∵|AF|+|BF|=4|OF|,∴y A +y B +2× =4×,∴=p ,∴ = .∴该双曲线的渐近线方程为:y=± .故答案为:y=± .25.(2017•北京,9)若双曲线2﹣=1的离心率为 ,则实数m=________.25.2 双曲线2﹣=1(m >0)的离心率为 ,可得: ,解得m=2.故答案为:2.26.(2017•江苏,8)在平面直角坐标系Oy 中,双曲线﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________. 26.2双曲线﹣y 2=1的右准线:=,双曲线渐近线方程为:y= ,所以P ( , ),Q ( ,﹣ ),F 1(﹣2,0).F 2(2,0).则四边形F 1PF 2Q 的面积是: =2.故答案为:2.27.(2016·山东,13)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.27.2 [由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a =3×2c ,又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3ca-2=0,即2e 2-3e -2=0,解得e =2或e =-1(舍去).] 28.(2015·浙江,9)双曲线x 22-y 2=1的焦距是______,渐近线方程是______.28.23 y =±22 [由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22.]29.(2015·北京,10)已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为3+y =0,则a =________.29.33 [双曲线渐近线方程为y =±b a ,∴b a =3,又b =1,∴a =33.]30.(2015·湖南,13)设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________.30.5 [不妨设F (c ,0),则由条件知P (-c ,±2b ),代入x 2a 2-y 2b 2=1得c 2a 2=5,∴e = 5.]31.(2015·江苏,12)在平面直角坐标系Oy 中,P 为双曲线2-y 2=1右支上的一个动点.若点P 到直线-y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 31.22[双曲线2-y 2=1的渐近线为±y =0,直线-y +1=0与渐近线-y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线-y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22.]32.(2014·浙江,16)设直线-3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 32.52 [联立直线方程与双曲线渐近线方程y =±ba可解得交点为 ⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而AB =13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.]33.(2014·江西,20)如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C的两条渐近线上,AF ⊥轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线=32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.33.(1)解 设F (c ,0),因为b =1,所以c =a 2+1,直线OB 的方程为y =-1a ,直线BF 的方程为y =1a (-c ),解得B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a ,则A ⎝⎛⎭⎫c ,c a ,AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a. 又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为=2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线=32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0. 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43, 所求定值为|MF ||NF |=23=233.考点3 抛物线1.(2018全国Ⅰ,8)设抛物线C :y 2=4的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =( ) A .5 B .6 C .7 D .81.D 根据题意,过点(–2,0)且斜率为23的直线方程为,与抛物线方程联立,消元整理得:,解得M(1,2),N(4,4),又F(1,0),所以FM ⃑⃑⃑⃑⃑⃑ =(0,2),FN ⃑⃑⃑⃑⃑ =(3,4),从而可以求得FM⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =0×3+2×4=8,故选D.2.(2016·全国Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.82.B [不妨设抛物线C :y 2=2p (p >0),则圆的方程可设为2+y 2=r 2(r >0),如图,又可设A (0,22),D ⎝⎛⎭⎫-p2,5,点A (0,22)在抛物线y 2=2p 上,∴8=2p 0,① 点A (0,22)在圆2+y 2=r 2上,∴20+8=r 2,②点D ⎝⎛⎭⎫-p 2,5在圆2+y 2=r 2上,∴5+⎝⎛⎭⎫p22=r 2,③ 联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.]3.(2015·天津,6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 3.D [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a ,又渐近线过点(2,3),所以2ba =3,即2b=3a ,①抛物线y 2=47的准线方程为=-7,由已知,得a 2+b 2=7,即a 2+b 2=7②, 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D.]4.(2015·浙江,5)如图,设抛物线y 2=4的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+14.A [由图象知S △BCF S △ACF =|BC ||AC |=x B x A ,由抛物线的性质知|BF |=B +1,|AF |=A +1,∴B =|BF |-1,A =|AF |-1,∴S △BCF S △ACF =|BF |-1|AF |-1.故选A.]5.(2018全国Ⅲ,16)已知点M(−1 , 1)和抛物线,过C 的焦点且斜率为的直线与C 交于A ,B 两点.若∠AMB =90°,则________.5.2 设,则,以,所以取AB 中点,分别点A,B 作准的垂线,足分别为A ′,B′,因为∠AMB =90°,∴|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB′|),因为M’为AB 中点,所以MM’平行于轴,因为M(-1,1),所以y 0=1,则y 1+y 2=2即.6.(2017•新课标Ⅱ,16)已知F 是抛物线C :y 2=8的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN|=________.6. 6 抛物线C :y 2=8的焦点F (2,0),M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为: ,|FN|=2|FM|=2 =6.故答案为:6.7.(2016·浙江,9)若抛物线y 2=4上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 7.9 [抛物线y 2=4的焦点F (1,0).准线为=-1,由M 到焦点的距离为10,可知M 到准线=-1的距离也为10,故M 的横坐标满足M +1=10,解得M =9,所以点M 到y 轴的距离为9.]8.(2015·陕西,14)若抛物线y 2=2p (p >0)的准线经过双曲线2-y 2=1的一个焦点,则p =________.8.22 [由于双曲线2-y 2=1的焦点为(±2,0),故应有p2=2,p =2 2.]9.(2014·湖南,15)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2p (p >0)经过C ,F 两点,则ba =________.9.1+2 [由正方形的定义可知BC =CD ,结合抛物线的定义得点D 为抛物线的焦点,所以|AD |=p =a ,D ⎝⎛⎭⎫p 2,0,F ⎝⎛⎭⎫p 2+b ,b ,将点F 的坐标代入抛物线的方程得b 2=2p ⎝⎛⎭⎫p2+b =a 2+2ab ,变形得⎝⎛⎭⎫b a 2-2b a -1=0,解得b a =1+2或b a =1-2(舍去),所以b a=1+ 2.]10.(2014·上海,3)若抛物线y 2=2p的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为______________. 10.=-2[∵c 2=9-5=4,∴c =2.∴椭圆x 29+y 25=1的右焦点为(2,0),∴p2=2,即p =4. ∴抛物线的准线方程为=-2.]11.(2017•北京,18)已知抛物线C :y 2=2p 过点P (1,1).过点(0,)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.11.(1)解:(1)∵y 2=2p 过点P (1,1), ∴1=2p , 解得p= , ∴y 2=,∴焦点坐标为( ,0),准线为=﹣ , (2)(2)证明:设过点(0, )的直线方程为 y=+ ,M (1 , y 1),N (2 , y 2), ∴直线OP 为y=,直线ON 为:y= , 由题意知A (1 , 1),B (1 ,),由 ,可得22+(﹣1)+ =0, ∴1+2=,12=∴y 1+ =1+ + =21+ =21+ =∴A 为线段BM 的中点.12.(2015·新课标全国Ⅰ,20)在直角坐标系Oy 中,曲线C :y =x 24与直线l :y =+a (a >0)交于M ,N 两点,(1)当=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当变动时,总有∠OPM =∠OPN ?说明理由. 12.解 (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在=2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (-2a ),即a -y -a =0.y =x 24在=-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (+2a ),即a +y +a =0.故所求切线方程为a -y -a =0和a +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (1,y 1),N (2,y 2),直线PM ,PN 的斜率分别为1,2. 将y =+a 代入C 的方程得2-4-4a =0. 故1+2=4,12=-4a .从而1+2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a .当b =-a 时,有1+2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN , 所以点p (0,-a )符合题意.13.(2014·大纲全国,21)已知抛物线C :y 2=2p (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.13.解(1)设Q (0,4),代入y 2=2p 得0=8p .所以|PQ |=8p ,|QF |=p 2+0=p 2+8p .由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为=my +1(m ≠0). 代入y 2=4得y 2-4my -4=0.设A (1,y 1)、B (2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),|AB |=m 2+1|y 1-y 2|=4(m 2+1). 又l ′的斜率为-m ,所以l ′的方程为=-1m y +2m 2+3.将上式代入y 2=4,并整理得y 2+4m y -4(2m 2+3)=0.设M (3,y 3)、N (4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于MN 垂直平分AB ,故A 、M 、B 、N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4.化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为-y -1=0或+y -1=0.考点4 圆锥曲线的综合应用1.(2017•新课标Ⅰ,)已知F 为抛物线C :y 2=4的焦点,过F 作两条互相垂直的直线l 1 , l 2 ,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.101. A 如图,l 1⊥l 2 , 直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D ,B ,E 关于轴对称,即直线DE 的斜率为1,。

【5年高考3年模拟】(新课标版)2014年高考数学真题分类汇编 10.6 圆锥曲线的综合问题 理

【5年高考3年模拟】(新课标版)2014年高考数学真题分类汇编 10.6 圆锥曲线的综合问题 理

§10.6 圆锥曲线的综合问题考点一定值与最值问题1.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.2答案 A2.(2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.6答案 D3.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.答案 B4.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.解析(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以==2p1,==2p2,故=,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此=.又由(1)中的=知=.故=.5.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l 与椭圆C 只有一个公共点P,且点P 在第一象限.(1)已知直线l 的斜率为k,用a,b,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a-b.解析 (1)设直线l 的方程为y=kx+m(k<0),由消去y 得(b 2+a 2k 2)x 2+2a 2kmx+a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为.又点P 在第一象限,故点P 的坐标为P.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x+ky=0,所以点P 到直线l 1的距离d=,整理得d=.因为a 2k 2+≥2ab,所以≤=a -b,当且仅当k 2=时等号成立.所以,点P 到直线l 1的距离的最大值为a-b.6.(2014湖南,21,13分)如图,O 为坐标原点,椭圆C 1:+=1(a>b>0)的左、右焦点分别为F 1、F 2,离心率为e 1;双曲线C 2:-=1的左、右焦点分别为F 3、F 4,离心率为e 2,已知e 1e 2=,且|F 2F 4|=-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB,M 为AB 的中点,当直线OM 与C 2交于P,Q 两点时,求四边形APBQ 面积的最小值.解析 (1)因为e1e 2=,所以·=,即a 4-b 4=a 4,因此a 2=2b 2,从而F 2(b,0),F 4(b,0),于是b-b=|F 2F 4|=-1,所以b=1,所以a 2=2.故C 1,C 2的方程分别为+y 2=1,-y 2=1.(2)因为AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x=my-1.由得(m 2+2)y 2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2 .而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.7.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值. 所以当最小时,T点的坐标是(-3,1)或(-3,-1).考点二存在性问题。

2014-2019年高考数学真题分类汇编专题11:解析几何4(圆锥曲线理科解答题)4带详细答案

2014-2019年高考数学真题分类汇编专题11:解析几何4(圆锥曲线理科解答题)4带详细答案

2014-2019年高考数学真题分类汇编专题11:解析几何(圆锥曲线理科解答题)(四)53.(2017•江苏)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【考点】直线与椭圆的综合【分析】(1)由椭圆的离心率公式求得2a c =,由椭圆的准线方程2a x c =±,则228a c⨯=,即可求得a 和c 的值,则2223b a c =-=,即可求得椭圆方程;(2)设P 点坐标,分别求得直线2PF 的斜率及直线1PF 的斜率,则即可求得2l 及1l 的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得22001y x =-,联立即可求得P 点坐标;方法二:设(,)P m n ,当1m ≠时,21PF n k m =-,11PF nk m =+,求得直线1l 及1l 的方程,联立求得Q 点坐标,根据对称性可得221m n n-=±,联立椭圆方程,即可求得P 点坐标.【解答】解:(1)由题意可知:椭圆的离心率12c e a ==,则2a c =,①椭圆的准线方程2a x c =±,由228a c⨯=,②由①②解得:2a =,1c =, 则2223b a c =-=,∴椭圆的标准方程:22143x y +=;(2)方法一:设0(P x ,0)y ,当01x =时,2PF k 不存在,解得:Q 与1F 重合,不满足题意, 当01x ≠时,则直线2PF 的斜率2001PF y k x =-, 直线2l 的斜率0201x k y -=-,直线2l 的方程001(1)x y x y -=--, 直线1PF 的斜率1001PF y k x =+, 则直线2l 的斜率0101x k y +=-,直线1l 的方程001(1)x y x y +=-+, 联立00001(1)1(1)x y x y x y x y -⎧=--⎪⎪⎨+⎪=-+⎪⎩,解得:02001x x x y y =-⎧⎪-⎨=⎪⎩,则0(Q x -,2001)x y -, 由P ,Q 在椭圆上,P ,Q 的横坐标互为相反数,纵坐标应相等,则20001x y y -=,22001y x ∴=-,则220022001431x y y x ⎧+=⎪⎨⎪=-⎩,解得:202016797x y ⎧=⎪⎪⎨⎪=⎪⎩,则00x y ⎧=⎪⎪⎨⎪=⎪⎩, 又P 在第一象限,所以P 的坐标为:P.方法二:设(,)P m n ,由P 在第一象限,则0m >,0n >, 当1m =时,2PF k 不存在,解得:Q 与1F 重合,不满足题意, 当1m ≠时,21PF n k m =-,11PF nk m =+, 由11l PF ⊥,22l PF ⊥,则11l m k n +=-,21l m k n-=-, 直线1l 的方程1(1)m y x n +=-+,①直线2l 的方程1(1)m y x n-=--,②联立解得:x m =-,则21(,)m Q m n--,由Q 在椭圆方程,由对称性可得:221m n n-=±,即221m n -=,或221m n +=,由(,)P m n ,在椭圆方程,22221143m n m n ⎧-=⎪⎨+=⎪⎩,解得:2216797m n ⎧=⎪⎪⎨⎪=⎪⎩,或22221143m n m n ⎧-=⎪⎨+=⎪⎩,无解,又P 在第一象限,所以P 的坐标为:P.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.54.(2017•北京理18)已知抛物线2:2C y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.【考点】抛物线的性质;直线与抛物线的综合【分析】(1)根据抛物线过点(1,1)P .代值求出p ,即可求出抛物线C 的方程,焦点坐标和准线方程;(2)设过点1(0,)2的直线方程为12y kx =+,1(M x ,1)y ,2(N x ,2)y ,根据韦达定理得到1221k x x k -+=,12214x x k =,根据中点的定义即可证明. 【解答】解:(1)22y px =过点(1,1)P ,12p ∴=,解得12p =, 2y x ∴=,∴焦点坐标为1(4,0),准线为14x =-, (2)证明:设过点1(0,)2的直线方程为12y kx =+,1(M x ,1)y ,2(N x ,2)y , ∴直线OP 为y x =,直线ON 为:22yy x x =,由题意知1(A x ,1)x ,1(B x ,122)x y x , 由212y kx y x ⎧=+⎪⎨⎪=⎩,可得221(1)04k x k x +-+=,1221k x x k -∴+=,12214x x k = 122121211111112222111()12222(1)2212224k x kx x y x x k y kx kx kx kx k x x x x x k x -++∴+=++=+=+=+-=⨯,A ∴为线段BM 的中点.【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.55.(2018•天津理19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆,点A 的坐标为(,0)b ,且||||62FB AB = (Ⅰ)求椭圆的方程;(Ⅱ)设直线:(0)l y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若||(||AQ AOQ O PQ =∠为原点),求k 的值. 【考点】椭圆的标准方程;直线与圆锥曲线的综合【分析】(Ⅰ)设椭圆的焦距为2c ,根据椭圆的几何性质与已知条件, 求出a 、b 的值,再写出椭圆的方程;(Ⅱ)设出点P 、Q 的坐标,由题意利用方程思想, 求得直线AB 的方程以及k 的值.【解答】解:(Ⅰ)设椭圆22221(0)x y a b a b+=>>的焦距为2c ,由椭圆的离心率为e =∴2259c a =; 又222a b c =+, 23a b ∴=,由||FB a =,||AB =,且||||6FB AB = 可得6ab =,从而解得3a =,2b =,∴椭圆的方程为22194x y +=;(Ⅱ)设点P 的坐标为1(x ,1)y ,点Q 的坐标为2(x ,2)y ,由已知120y y >>; 12||sin PQ AOQ y y ∴∠=-;又2||sin y AQ OAB =∠,且4OAB π∠=,2||AQ ∴=,由||||AQ AOQ PQ =∠,可得1259y y =;由方程组22194y kxx y =⎧⎪⎨+=⎪⎩,消去x,可得1y =,由(Ⅰ)知直线AB 的方程为20x y +-=; 由方程组20y kx x y =⎧⎨+-=⎩,消去x ,可得221ky k =+;由1259y y =,可得5(1)k +=, 两边平方,整理得25650110k k -+=, 解得12k =或1128k =; k ∴的值为12或1128. 【点评】本题主要考查了椭圆的标准方程与几何性质、直线方程等知识的应用问题,也考查了利用代数方法求研究圆锥曲线的性质应用问题,考查了运算求解能力与运用方程思想解决问题的能力.56.(15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.【考点】直线与椭圆的综合;直线与抛物线的综合【分析】(Ⅰ)设(,)P m n ,21(4y A ,1)y ,22(4y B ,2)y ,运用中点坐标公式可得M 的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得1y ,2y 为关于y 的方程22280y ny m n -+-=的两根,由韦达定理即可得到结论;(Ⅱ)由题意可得2214n m +=,10m -<…,22n -<<,可得PAB ∆面积为121||||2S PM y y =-,再由配方和换元法,可得面积S 关于新元的三次函数,运用单调性可得所求范围.【解答】解:(Ⅰ)证明:可设(,)P m n ,21(4y A ,1)y ,22(4y B ,2)y ,AB 中点为M 的坐标为2212(8y y +,12)2y y +, 抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上, 可得21214()422y m n y ++=, 222214()422m y n y ++=, 化简可得1y ,2y 为关于y 的方程22280y ny m n -+-=的两根, 可得122y y n +=,2128y y m n =-, 可得122y y n +=, 则PM 垂直于y 轴;(Ⅱ)若P 是半椭圆221(0)4y x x +=<上的动点,可得2214n m +=,10m -<…,22n -<<,由(Ⅰ)可得122y y n +=,2128y y m n =-, 由PM 垂直于y 轴,可得PAB ∆面积为121||||2S PM y y =- 2212121()()28y y m y y +=-+222211[(4162)]4324162n m n m n m n =-+--+24n m =- 可令t ==可得12m =-时,t ;1m =-时,t 取得最小值2,即2t 剟则34S =在2t 剟递增,可得S ∈,PAB ∆面积的取值范围为.【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.57.(2018•上海)设常数2t >.在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t =,曲线2:8(0,0)y x x t y Γ=剟?.l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求AQP ∆的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【考点】直线与抛物线的综合【分析】(1)方法一:设B 点坐标,根据两点之间的距离公式,即可求得||BF ; 方法二:根据抛物线的定义,即可求得||BF ;(2)根据抛物线的性质,求得Q 点坐标,即可求得OD 的中点坐标,即可求得直线PF 的方程,代入抛物线方程,即可求得P 点坐标,即可求得AQP ∆的面积;(3)设P 及E 点坐标,根据直线1PF FQ k k =-,求得直线QF 的方程,求得Q 点坐标,根据FP FQ FE +=,求得E 点坐标,则22248()8(6)48y y y +=+,即可求得P 点坐标.【解答】解:(1)方法一:由题意可知:设(B t ,),则||2BF t +, ||2BF t ∴=+;方法二:由题意可知:设(B t ,), 由抛物线的性质可知:||22pBF t t =+=+,||2BF t ∴=+; (2)(2,0)F ,||2FQ =,3t =,则||1FA =,||AQ ∴=Q ∴,设OQ 的中点D ,3(2D ,02322QFk -==-PF 方程:2)y x =-,联立22)8y x y x⎧=-⎪⎨=⎪⎩,整理得:2320120x x -+=,解得:23x =,6x =(舍去),AQP ∴∆的面积1723S ==; (3)存在,设2(8y P ,)y ,2(8m E ,)m ,则2281628PF y y k y y ==--,2168FQ y k y -=, 直线QF 方程为216(2)8y y x y -=-,2216483(82)84Q y y y y y --∴=-=,2483(8,)4y Q y-,根据FP FQ FE +=,则2(68y E +,248)4y y +,22248()8(6)48y y y +∴=+,解得:2165y =,∴存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上,且2(5P .【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.58.(2018•新课标Ⅰ理)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 【考点】直线与椭圆的综合【分析】(1)先得到F 的坐标,再求出点A 的方程,根据两点式可得直线方程, (2)分三种情况讨论,根据直线斜率的问题,以及韦达定理,即可证明. 【解答】解:(1)1c ==, (1,0)F ∴, l 与x 轴垂直, 1x ∴=,由22112x x y =⎧⎪⎨+=⎪⎩,解得1x y =⎧⎪⎨=⎪⎩或1x y =⎧⎪⎨=⎪⎩,A ∴,或(1,, ∴直线AM的方程为y =+y x =, 证明:(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒,当l 与x 轴垂直时,OM 为AB 的垂直平分线,OMA OMB ∴∠=∠, 当l 与x 轴不重合也不垂直时,设l 的方程为(1)y k x =-,0k ≠, 1(A x ,1)y ,2(B x ,2)y,则1x <2x <直线MA ,MB 的斜率之和为MA k ,MB k 之和为121222MA MB y y k k x x +=+--, 由11y kx k =-,22y kx k =-得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--,将(1)y k x =-代入2212x y +=可得2222(21)4220k x k x k +-+-=,2122421k x x k ∴+=+,21222221k x x k -=+, 33312122123()4(441284)021kx x k x x k k k k k k k ∴-++=--++=+从而0MA MB k k +=, 故MA ,MB 的倾斜角互补, OMA OMB ∴∠=∠,综上OMA OMB ∠=∠.【点评】本题考查了直线和椭圆的位置关系,以韦达定理,考查了运算能力和转化能力,属于中档题.59.(2018•新课标Ⅱ文理)设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 【考点】直线与抛物线的综合【分析】(1)方法一:设直线AB 的方程,代入抛物线方程,根据抛物线的焦点弦公式即可求得k 的值,即可求得直线l 的方程; 方法二:根据抛物线的焦点弦公式22||pAB sin θ=,求得直线AB 的倾斜角,即可求得直线l 的斜率,求得直线l 的方程;(2)根据过A ,B 分别向准线l 作垂线,根据抛物线的定义即可求得半径,根据中点坐标公式,即可求得圆心,求得圆的方程.【解答】解:(1)方法一:抛物线2:4C y x =的焦点为(1,0)F ,设直线AB 的方程为:(1)y k x =-,设1(A x ,1)y ,2(B x ,2)y ,则2(1)4y k x y x =-⎧⎨=⎩,整理得:22222(2)0k x k x k -++=,则21222(2)k x x k ++=,121x x =, 由21222(2)||28k AB x x p k+=++=+=,解得:21k =,则1k =, ∴直线l 的方程1y x =-;方法二:抛物线2:4C y x =的焦点为(1,0)F ,设直线AB 的倾斜角为θ,由抛物线的弦长公式2224||8p AB sin sin θθ===,解得:21sin 2θ=, 4πθ∴=,则直线的斜率1k =,∴直线l 的方程1y x =-;(2)由(1)可得AB 的中点坐标为(3,2)D ,则直线AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+,设所求圆的圆心坐标为0(x ,0)y ,则00220005(1)(1)162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得:0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩,因此,所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【点评】本题考查抛物线的性质,直线与抛物线的位置关系,抛物线的焦点弦公式,考查圆的标准方程,考查转换思想思想,属于中档题.60.(2018•新课标Ⅲ理20)已知斜率为k 的直线l 与椭圆22:143x y C +=交于A ,B 两点,线段AB 的中点为(1M ,)(0)m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差. 【考点】椭圆的标准方程;直线与椭圆的综合【分析】(1)设1(A x ,1)y ,2(B x ,2)y ,利用点差法得12126()8()0x x m y y -+-=,12126384y y k x x m m-==-=-- 又点(1,)M m 在椭圆内,即211,(0)43m m +<>,解得m 的取值范围,即可得12k <-,(2)设1(A x ,1)y ,2(B x ,2)y ,3(P x ,3)y ,可得122x x +=由0FP FA FB ++=,可得310x -=,由椭圆的焦半径公式得则111||22FA a ex x =-=-,21||22FB x =-,313||222FP x =-=.即可证明||||2||FA FB FP +=,求得A ,B 坐标再求公差.【解答】解:(1)设1(A x ,1)y ,2(B x ,2)y , 线段AB 的中点为(1,)M m , 122x x ∴+=,122y y m +=将A ,B 代入椭圆22:143x y C +=中,可得2211222234123412x y x y ⎧+=⎪⎨+=⎪⎩, 两式相减可得,121212123()()4()()0x x x x y y y y +-++-=, 即12126()8()0x x m y y -+-=, 12126384y y k x x m m-∴==-=--点(1,)M m 在椭圆内,即211,(0)43m m +<>,解得302m <<∴3142k m =-<-.① (2)由题意得(1,0)F ,设3(P x ,3)y ,则 1231110x x x -+-+-=,1230y y y ++=,由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=,故||||2||FA FB FP +=,即||FA ,||FP ,||FP 成等差数列.设改数列的公差为d ,则1212||||||||||2d FB FA x x =-=-=② 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||d .所以该数列的公差为28或28-. 【点评】本题考查直线与椭圆的位置关系的综合应用,考查了点差法、焦半径公式,考查分析问题解决问题的能力,转化思想的应用与计算能力的考查.属于中档题.61.(2018•江苏18)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点1(F0),2F 0),圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于A ,B 两点.若OAB ∆,求直线l 的方程.【考点】椭圆的性质【分析】(1)由题意可得c =223114a b+=,又2223a b c -==,解得2a =,1b =即可. (2)①可设直线l 的方程为y kx m =+,(0,0)k m <>.可得22223,331m m k k==++即. 由2244y kx mx y =+⎧⎨++=⎩,可得222(41)8440k x kmx m +++-=,△222(8)4(41)(44)0k m k m =-+-=,解得k =3m =.即可②设1(A x ,1)y ,2(B x ,2)y ,联立直线与椭圆方程得222(41)8440k x kmx m +++-=,O 到直线l 的距离d =,221|||1AB x x k =-=+,OAB∆的面积为211122S k =+⨯==,解得k =,(正值舍去),m =【解答】解:(1)由题意可设椭圆方程为22221,(0)x y a b a b+=>>,焦点1(F ,0),2F 0),∴c =. 223114a b∴+=,又2223a b c -==, 解得2a =,1b =.∴椭圆C 的方程为:2214x y +=,圆O 的方程为:223x y +=.(2)①可知直线l 与圆O 相切,也与椭圆C ,且切点在第一象限,因此k 一定小于0,∴可设直线l 的方程为y kx m =+,(0,0)k m <>.由圆心(0,0)到直线l22223,331m m k k==++即. 由2244y kx m x y =+⎧⎨+=⎩,可得222(41)8440k x kmx m +++-=, △222(8)4(41)(44)0km k m =-+-=,可得2241m k =+,223341k k ∴+=+,结合0k <,0m >,解得k =3m =.将k =3m =代入223x y y kx m⎧+=⎨=+⎩可得220x -+=,解得x =,1y =,故点P的坐标为. ②设1(A x ,1)y ,2(B x ,2)y ,由220,0330k m m k k <>⎧⎪=+⇒<⎨⎪>⎩. 联立直线与椭圆方程得222(41)8440k x kmx m +++-=,21||x x -==O 到直线l的距离d =,221|||1AB x x k =-=+,OAB∆的面积为211122S k=+⨯==, 解得k =,(正值舍去),m = y ∴=+【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.62.(2018•北京理19)已知抛物线2:2C y px =经过点(1,2)P ,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.【考点】直线与抛物线的综合【分析】(Ⅰ)将P 代入抛物线方程,即可求得p 的值,设直线AB 的方程,代入椭圆方程,由△0>,即可求得k 的取值范围;(Ⅱ)根据向量的共线定理即可求得1M y λ=-,1N y μ=-,求得直线PA 的方程,令0x =,求得M 点坐标,同理求得N 点坐标,根据韦达定理即可求得11λμ+为定值.【解答】解:(Ⅰ)抛物线2:2C y px =经过点 (1,2)P ,42p ∴=,解得2p =,设过点(0,1)的直线方程为1y kx =+, 设1(A x ,1)y ,2(B x ,2)y 联立方程组可得241y x y kx ⎧=⎨=+⎩,消y 可得22(24)10k x k x +-+=,∴△22(24)40k k =-->,且0k ≠解得1k <,且0k ≠,12224k x x k -+=-,1221x x k=, 又PA 、PB 要与y 轴相交,∴直线l 不能经过点(1,2)-,即3k ≠-, 故直线l 的斜率的取值范围(-∞,3)(3--⋃,0)(0⋃,1); (Ⅱ)证明:设点(0,)M M y ,(0,)N N y , 则(0,1)M QM y =-,(0,1)QO =-因为QM QO λ=,所以11M M y y -=--,故1M y λ=-,同理1N y μ=-, 直线PA 的方程为1121112242(1)(1)(1)1214y y y x x x y x y ---=-=-=--+-,令0x =,得1122M y y y =+,同理可得2222N y y y =+,因为2121212121222121212121212424282(11)42228282(1)(1)8[()1]1111242421122(2)(2)1()1()112M N k ky y y y kx kx k x x k x x k k k k y y y y y y k x x k x x k x x k x x k kλμ---++-⨯++--++-++++=+=+======---------++-++-+-,∴112λμ+=,∴11λμ+为定值.【点评】本题考查抛物线的方程,直线与抛物线的位置关系,考查韦达定理的应用,考查转化思想,计算能力,属于中档题.63.(2019北京理科18)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【考点】直线与抛物线的综合【分析】(Ⅰ)代入点(2,1)-,解方程可得p ,求得抛物线的方程和准线方程;(Ⅱ)抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,运用韦达定理,以及直线的斜率和方程,求得A ,B 的坐标,可得AB 为直径的圆方程,可令0x =,解方程,即可得到所求定点.【解答】解:(Ⅰ)抛物线2:2C x py =-经过点(2,1)-.可得42p =,即2p =, 可得抛物线C 的方程为24x y =-,准线方程为1y =;(Ⅱ)证明:抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,可得2440x kx +-=, 设1(M x ,1)y ,2(N x ,2)y , 可得124x x k +=-,124x x =-, 直线OM 的方程为11y y x x =,即14xy x =-, 直线ON 的方程为22y y x x =,即24xy x =-, 可得14(A x ,1)-,24(B x ,1)-, 可得AB 的中点的横坐标为121142()224kk x x -+==-, 即有AB 为直径的圆心为(2,1)k -,半径为212||1441616||222AB k x x +=-==, 可得圆的方程为222(2)(1)4(1)x k y k -++=+, 化为224(1)4x kx y -++=, 由0x =,可得1y =或3-.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,3)-.【点评】本题考查抛物线的定义和方程、性质,以及圆方程的求法,考查直线和抛物线方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.64.(2019江苏17)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【考点】椭圆的性质【分析】(1)由题意得到12//F D BF ,然后求AD ,再由152AD DF ==求得a ,则椭圆方程可求;(2)求出D 的坐标,得到2133224BF DF k k ===,写出2BF 的方程,与椭圆方程联立即可求得点E 的坐标.【解答】解:(1)如图,22F A F B =,22F AB F BA ∴∠=∠,22212F A a F D DA F D F D ==+=+,1AD F D ∴=,则11DAF DF A ∠=∠, 12DF A F BA ∴∠=∠,则12//F D BF ,1c =,221b a ∴=-,则椭圆方程为222211x y a a +=-, 取1x =,得21D a y a -=,则22112a a AD a a a -+=-=. 又152DF =,∴2152a a +=,解得2(0)a a =>.∴椭圆C 的标准方程为22143x y +=;(2)由(1)知,3(1,)2D ,1(1,0)F -,∴2133224BF DF k k ===,则23:(1)4BF y x =-, 联立223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得22118390x x --=. 解得11x =-或2137x =(舍).∴132y =-.即点E 的坐标为3(1,)2--.【点评】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明12//DF BF 是解答该题的关键,是中档题.65.(2019•新课标Ⅰ理19)已知抛物线2:3C y x =的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若||||4AF BF +=,求l 的方程; (2)若3AP PB =,求||AB . 【考点】抛物线的性质【分析】(1)很具韦达定理以及抛物线的定义可得.(2)若3AP PB =,则123y y =-,1234x x t ⇒=-+,再结合韦达定理可解得1t =,13x =,213x =,再用弦长公式可得.【解答】解:(1)设直线l 的方程为3()2y x t =-,将其代入抛物线23y x =得:22999(3)0424x t x t -++=, 设1(A x ,1)y ,2(B x ,2)y ,则1293422934t x x t ++==+,①,212x x t =②, 由抛物线的定义可得:1243||||2432AF BF x x p t +=++=++=,解得712t =,直线l 的方程为3728y x =-. (2)若3AP PB =,则123y y =-,∴1233()3()22x t x t -=-⨯-,化简得1234x x t =-+,③ 由①②③解得1t =,13x =,213x =,||AB ∴==. 【点评】本题考查了抛物线的性质,属中档题.66.(2019新课标Ⅱ理21)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G . ()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.【考点】直线与椭圆的综合【分析】(1)利用直接法不难得到方程;(2)()i 设0(P x ,0)y ,则0(Q x -,0)y -,0(E x ,0),利用直线QE 的方程与椭圆方程联立求得G 点坐标,去证PQ ,PG 斜率之积为1-; ()ii 利用01||()2G S PE x x =⨯+,代入已得数据,并对0000x y y x +换元,利用“对号”函数可得最值.【解答】解:(1)由题意得1222y y x x ⨯=-+-, 整理得曲线C 的方程:221(0)42x y y +=≠,∴曲线C 是焦点在x 轴上不含长轴端点的椭圆;(2)()i 设0(P x ,0)y ,则0(Q x -,0)y -, 0(E x ,0),(G G x ,)G y ,∴直线QE 的方程为:000()2y y x x x =-, 与22142x y +=联立消去y , 得22222220000000(2)280x y x x y x x y x +-+-=, ∴2220000220082G x y x x x x y --=+,∴2002200(8)2G y x x x y -=+,∴220000022000(4)()22G G y y x y y x x x x y --=-=+, ∴0G PG G y y k x x -=-220000220020002200(4)2(8)2y x y y x y x y x x y ---+=--+232300000002320000004282y y x y y x y x x y x x y ----=---2200022000(432)2(4)y x y x y x --=--, 把220024x y +=代入上式,得2200022000(434)2(442)PGy x x k x y y --+=--+ 20020022y x x y -⨯=x y =-, 0000()1PQ PG y xk k x y ∴⨯=⨯-=-, PQ PG ∴⊥,故PQG ∆为直角三角形; 1()||()2PQG G Q ii S PE x x ∆=⨯- 001()2G y x x =+ 200002200(8)1[]22y x y x x y -=++ 22200000220082122y x y y x x y -++=⨯+ 20002200(4)2y x x x y +=+ 222000002200(2)2y x x y x x y ++=+22000022002()2y x x y x y +=+220000222200008()(2)(2)y x x y x y x y +=++ 330000442200008()225y x x y x y x y +=++ 0000200008()2()1x y y x x y y x +=++ 令0000x y t y x =+,则2t …,2881212PQG t S t t t∆==++ 利用“对号”函数1()2f t t t =+在[2,)+∞的单调性可知,19()4(222f t t +==…时取等号),∴816992PQG S ∆=…(此时00x y ==, 故PQG ∆面积的最大值为169. 【点评】此题考查了直接法求曲线方程,直线与椭圆的综合,换元法等,对运算能力考查尤为突出,难度大.67.(2019•新课标Ⅲ理21)已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【考点】抛物线的性质【分析】(1)求得22x y =的导数,可得切线的斜率,可得切线DA ,DB 的方程,求得交点D的坐标,可得AB 的方程,化简可得AB 恒过定点; (2)设直线AB 的方程为12y kx =+,由(1)可得122x x k +=,121x x =-,求得AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,求得k ,再由四边形ADBE的面积为ABE ABD S S ∆∆+,运用点到直线的距离公式和弦长公式,计算可得所求值.【解答】解:(1)证明:22x y =的导数为y x '=,设切点1(A x ,1)y ,2(B x ,2)y ,即有2112x y =,2222x y =,切线DA 的方程为111()y y x x x -=-,即为2112x y x x =-,切线DB 的方程为2222x y x x =-,联立两切线方程可得121()2x x x =+,可得121122y x x ==-,即121x x =-, 直线AB 的方程为2112112()2x y y y x x x x --=--, 即为211211()()22x y x x x x -=+-,可化为1211()22y x x x =++,可得AB 恒过定点1(0,)2;(2)设直线AB 的方程为12y kx =+, 由(1)可得122x x k +=,121x x =-, AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,15||-= 解得0k =或1k =±, 即有直线AB 的方程为12y =或12y x =±+, 由12y =可得||2AB =,四边形ADBE 的面积为12(12)32ABE ABD S S ∆∆+=⨯⨯+=; 由12y x =±+,可得||144AB =+=, 此时1(1,)2D±-到直线AB11|1|++= 5(0,)2E 到直线AB15||-= 则四边形ADBE的面积为182ABE ABD S S ∆∆+=⨯=;综上可得四边形ADBE 的面积为3或8.【点评】本题考查抛物线的方程和性质,直线和抛物线的位置关系,以及直线和圆相切的条件,考查方程思想和运算能力,属于难题.68.(2019•天津理18)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||(ON OF O =为原点),且OP MN ⊥,求直线PB 的斜率. 【考点】椭圆的性质【分析】(Ⅰ)由题意可得2b =,运用离心率公式和a ,b ,c 的关系,可得a ,c ,进而得到所求椭圆方程;(Ⅱ)(0,2)B ,设PB 的方程为2y kx =+,联立椭圆方程,求得P 的坐标,M 的坐标,由OP MN ⊥,运用斜率之积为1-,解方程即可得到所求值.【解答】解:(Ⅰ)由题意可得24b =,即2b =,c e a ==222a b c -=,解得a ,1c =,可得椭圆方程为22154x y +=;(Ⅱ)(0,2)B ,设PB 的方程为2y kx =+, 代入椭圆方程224520x y +=, 可得22(45)200k x kx ++=, 解得22045kx k =-+或0x =,即有220(45kP k -+,22810)45k k -+,2y kx =+,令0y =,可得2(M k-,0), 又(0,1)N -,OP MN ⊥,可得281011220k k k-=---,解得k =可得PB 的斜率为 【点评】本题考查椭圆的方程和性质,考查直线和椭圆方程联立,求交点,考查化简运算能力,属于中档题.69.(2019•上海)已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =. (1)当8(1,)3P --时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)1P ,2P ,3P 为抛物线准线上三点,且1223||||PP P P =,判断13()()d P d P +与22()d P 的关系.【考点】抛物线的性质【分析】(1)求得抛物线的焦点和准线方程,求得PF 的斜率和方程,解得Q 的坐标,由两点的距离公式可得所求值;(2)求得(1,0)P -,可得2a =,设(1,)P P y -,0P y >,:1PF x my =+,代入抛物线方程,求得Q 的纵坐标,计算2()||d P PF -,化简整理即可得证;(3)设11(1,)P y -,22(1,)P y -,33(1,)P y -,计算1322[()()]4()d P d p d P +-,结合条件,化简整理,配方和不等式的性质,即可得到大小关系.【解答】解:(1)抛物线方程24y x =的焦点(1,0)F ,8(1,)3P --,84323PFk ==,PF 的方程为4(1)3y x =-,代入抛物线的方程,解得14Q x =, 抛物线的准线方程为1x =-,可得10||3PF ==, 15||144QF =+=,||8()||3PF d P QF ==; (2)证明:当(1,0)P -时,2()||2222a d P PF =-=⨯-=, 设(1,)P P y -,0P y >,:1PF x my =+,则2P my =-,联立1x my =+和24y x =,可得2440y my --=,2Q y m =+2()||22(22P P Q y d P PF y m m -==+ 2122m +-=-=,则存在常数a ,使得2()||d P PF a =+;(3)设11(1,)P y -,22(1,)P y -,33(1,)P y -,则1321322[()()]4()||||2||d P d p d P PF P F P F +-=+-==,由221313[()16]28y y y y -++=-,2222221313131313(4)(4(4)4()84()0y y y y y y y y y y ++-+=+-=->,则132()()2()d P d P d P +>.【点评】本题考查抛物线的定义和方程及性质,考查新定义的理解和运用,考查两点的距离公式和联立直线方程和抛物线方程,以及作差法,考查化简运算能力,属于中档题. 70.(2019•浙江)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S .(Ⅰ)求p 的值及抛物线的准线方程; (Ⅱ)求12S S 的最小值及此时点G 点坐标.【考点】直线与抛物线的综合 【分析】(Ⅰ)由抛物线的性质可得:12p=,由此能求出抛物线的准线方程; (Ⅱ)设(A A x ,)A y ,(B B x ,)B y ,(C C x ,)C y ,重心(G G x ,)G y ,令2A y t =,0t ≠,则2A x t =,从而直线AB 的方程为2112t x y t -=+,代入24y x =,得:222(1)40t y y t---=,求出21(B t ,2)t -,由重心在x 轴上,得到220C t y t -+=,从而21(()C t t-,12())t t -,422222(3t t G t-+,0),进崦直线AC 的方程为222()y t t x t -=-,得2(1Q t -,0),由此结合已知条件能求出结果.【解答】解:(Ⅰ)由抛物线的性质可得:12p=, 2p ∴=,∴抛物线的准线方程为1x =-;(Ⅱ)设(A A x ,)A y ,(B B x ,)B y ,(C C x ,)C y ,重心(G G x ,)G y , 令2A y t =,0t ≠,则2A x t =,由于直线AB 过F ,故直线AB 的方程为2112t x y t-=+,代入24y x =,得:222(1)40t y y t---=,24B ty ∴=-,即2B y t =-,21(B t∴,2)t -,又1()3G A B C x x x x =++,1()3G A B C y y y y =++,重心在x 轴上,∴220C t y t-+=, 21(()C t t∴-,12())t t -,422222(3t t G t -+,0), ∴直线AC 的方程为222()y t t x t -=-,得2(1Q t -,0),Q 在焦点F 的右侧,22t ∴>,∴424222142442222211|||2|||||223221222211|||||1||2|23A Ct t t FG y S t t t t t t S t t QGy t t t t-+--====--+-----, 令22m t =-,则0m >,1221222134344S m S m m m m m m=-=--=+++++…, ∴当m 时,12S S 取得最小值为1(2,0)G . 【点评】本题考查实数值、抛物线标准方程的求法,考查三角形的面积的比值的最小值及相应点的坐标的求法,考查抛物线、直线方程、重心性质、弦长公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.第31页(共31页)。

2014-2019年高考数学真题分类汇编专题11:解析几何4(圆锥曲线理科解答题)1带详细答案

2014-2019年高考数学真题分类汇编专题11:解析几何4(圆锥曲线理科解答题)1带详细答案

2014-2019年高考数学真题分类汇编专题11:解析几何(圆锥曲线理科解答题)(一)1.(2014•新课标Ⅰ理)已知点(0,2)A -,椭圆2222:1(0)x y E a b a b+=>>,F 是椭圆的右焦点,直线AF O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【考点】椭圆的性质;直线与圆锥曲线的综合【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a ,即可求E 的方程;(Ⅱ)设直线:2l y kx =-,设1(P x ,1)y ,2(Q x ,2)y 将2y kx =-代入2214x y +=,利用△0>,求出k 的范围,利用弦长公式求出||PQ ,然后求出OPQ ∆的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设(,0)F c ,由条件知2c =,得c =又c a =, 所以2a =,2221b a c =-=,故E 的方程2214x y +=.⋯.(5分)(Ⅱ)依题意当l x ⊥轴不合题意,故设直线:2l y kx =-,设1(P x ,1)y ,2(Q x ,2)y将2y kx =-代入2214x y +=,得22(14)16120k x kx +-+=,当△216(43)0k =->,即234k >时,1,2x从而212143|||k PQ x x -=-=又点O 到直线PQ 的距离d =,所以OPQ ∆的面积12OPQS d PQ ∆==t =,则0t >,244144OPQ t S t t t∆==++…,当且仅当2t =,k =等号成立,且满足△0>,所以当OPQ ∆的面积最大时,l 的方程为:2y x -或2y =-.⋯(12分) 【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.2.(2014•新课标Ⅱ理)设1F ,2F 分别是2222:1(0)x y C a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b . 【考点】椭圆的性质【分析】(1)根据条件求出M 的坐标,利用直线MN 的斜率为34,建立关于a ,c 的方程即可求C 的离心率;(2)根据直线MN 在y 轴上的截距为2,以及1||5||MN F N =,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.【解答】解:(1)M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当x c =时,2b y a=,即2(,)b M c a ,若直线MN 的斜率为34,即22123tan 224b b a MF Fc ac ∠===, 即22232b ac a c ==-,即22302c ac a +-=,则23102e e +-=,即22320e e +-= 解得12e =或2e =-(舍去), 即12e =. (Ⅱ)由题意,原点O 是12F F 的中点,则直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点, 设(,)M c y ,(0)y >,则22221c y a b +=,即422b y a =,解得2b y a=, OD 是△12MF F 的中位线,∴24b a=,即24b a =,由1||5||MN F N =, 则11||4||MF F N =, 解得11||2||DF F N =, 即112DF F N =设1(N x ,1)y ,由题意知10y <, 则(c -,12)2(x c -=+,1)y . 即112()22x c c y +=-⎧⎨=-⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩代入椭圆方程得2229114c a b+=,将24b a =代入得229(4)1144a a a a-+=, 解得7a =,b =【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.3.(2014•大纲版理)已知抛物线2:2(0)C y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l '与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.【考点】直线与圆锥曲线的综合【分析】(Ⅰ)设点Q 的坐标为0(x ,4),把点Q 的坐标代入抛物线C 的方程,求得08x p =,根据5||||4QF PQ =求得p 的值,可得C 的方程.(Ⅱ)设l 的方程为1x my =+(0)m ≠,代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长||AB .把直线l '的方程代入抛物线方程化简,利用韦达定理、弦长公式求得||MN .由于MN 垂直平分线段AB ,故AMBN 四点共圆等价于1||||||2AE BE MN ==,由此求得m 的值,可得直线l 的方程. 【解答】解:(Ⅰ)设点Q 的坐标为0(x ,4),把点Q 的坐标代入抛物线2:2(0)C y px p =>, 可得08x p=,点(0,4)P ,8||PQ p ∴=.又08||22p p QF x p =+=+,5||||4QF PQ =, ∴85824p p p+=⨯,求得2p =,或2p =-(舍去). 故C 的方程为24y x =.(Ⅱ)由题意可得,直线l 和坐标轴不垂直,24y x =的焦点(1,0)F , 设l 的方程为1(0)x my m =+≠,代入抛物线方程可得2440y my --=,显然判别式△216160m =+>,124y y m +=,124y y =-.AB ∴的中点坐标为2(21D m +,2)m ,弦长212|||4(1)AB y y m -=+. 又直线l '的斜率为m -,∴直线l '的方程为2123x y m m=-++. 过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l '与C 相交于M 、N 两点, 把线l '的方程代入抛物线方程可得2244(23)0y y m m +-+=,344y y m-∴+=,2344(23)y y m =-+.故线段MN 的中点E 的坐标为222(23m m++,2)m -,23421)21|||m MN y y m +∴=-=,MN 垂直平分线段AB ,故AMBN 四点共圆等价于1||||||2AE BE MN ==, ∴2221144AB DE MN +=, 22222222422116(1)(21)4(1)(2)(2)4m m m m m m m++∴+++++=⨯,化简可得210m -=, 1m ∴=±,∴直线l 的方程为10x y --=,或10x y +-=.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题. 4.(2014•北京理)已知椭圆22:24C x y +=, (1)求椭圆C 的离心率(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.【考点】椭圆的性质;圆与圆锥曲线的综合【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A ,B 的坐标分别为0(x ,0)y ,(,2)t ,其中00x ≠,由OA OB ⊥得到0OA OB =,用坐标表示后把t 用含有A 点的坐标表示,然后分A ,B 的横坐标相等和不相等写出直线AB 的方程,然后由圆222x y +=的圆心到AB 的距离和圆的半径相等说明直线AB 与圆222x y +=相切.【解答】解:(1)由2224x y +=,得椭圆C 的标准方程为22142x y +=.24a ∴=,22b =,从而2222c a b =-=.因此2a =,c = 故椭圆C的离心率c e a ==; (2)直线AB 与圆222x y +=相切. 证明如下:设点A ,B 的坐标分别为0(x ,0)y ,(,2)t ,其中00x ≠. OA OB ⊥,∴0OA OB =,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =-,代入椭圆C的方程,得t =故直线AB的方程为x =O 到直线AB的距离d . 此时直线AB 与圆222x y +=相切. 当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--, 即0000(2)()20y x x t y x ty ---+-=. 圆心O 到直线AB的距离d =.又220024x y +=,02y t x =-.故220024|2|||y xxd++===此时直线AB与圆222x y+=相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.5.(2014•安徽理)如图,已知两条抛物线2111:2(0)E y p x p=>和2222:2(0)E y p x p=>,过原点O的两条直线1l和2l,1l与1E,2E分别交于1A、2A两点,2l与1E、2E分别交于1B、2B两点.(Ⅰ)证明:1122//A B A B;(Ⅱ)过O作直线l(异于1l,2)l与1E、2E分别交于1C、2C两点.记△111A B C与△222A B C的面积分别为1S与2S,求12SS的值.【考点】直线与圆锥曲线的综合【分析】(Ⅰ)由题意设出直线1l和2l的方程,然后分别和两抛物线联立求得交点坐标,得到1122,A B A B的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△111A B C与△222A B C的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.【解答】(Ⅰ)证明:由题意可知,1l和2l的斜率存在且不为0,设11:l y k x=,22:l y k x=.联立1212y k x y p x =⎧⎨=⎩,解得11121122(,)p p A k k .联立1222y k x y p x=⎧⎨=⎩,解得22221122(,)p pA k k .联立2212y k x y p x =⎧⎨=⎩,解得11122222(,)p pB k k .联立2222y k x y p x=⎧⎨=⎩,解得22222222(,)p pB k k .∴11122212111112(,)A B p k k k k =--, 22222212111112(,)A B p k k k k =--. 111222p A B A B p =, 1122//A B A B ∴;(Ⅱ)解:由(Ⅰ)知1122//A B A B , 同(Ⅰ)可证1122//B C B C ,1122//AC A C .∴△111A B C ∽△222A B C ,因此2111222||()||S A B S A B =, 又111222p A B A B p =, ∴111222||||A B p p A B =. 故211222S p S p =. 【点评】本题是直线与圆锥曲线的综合题,考查了向量共线的坐标表示,训练了三角形的相似比与面积比的关系,考查了学生的计算能力,是压轴题.6.(2014•福建理)已知双曲线2222:1(0,0)x y E a b a b-=>>的两条渐近线分别为1:2l y x =,2:2l y x =-.(1)求双曲线E 的离心率;(2)如图,O 点为坐标原点,动直线l 分别交直线1l ,2l 于A ,B 两点(A ,B 分别在第一、第四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程,若不存在,说明理由.【考点】直线与圆锥曲线的综合【分析】(1)依题意,可知2ba=,易知c ,从而可求双曲线E 的离心率; (2)由(1)知,双曲线E 的方程为222214x y a a-=,设直线l 与x 轴相交于点C ,分l x ⊥轴与直线l 不与x 轴垂直讨论,当l x ⊥轴时,易求双曲线E 的方程为221416x y -=.当直线l 不与x 轴垂直时,设直线l 的方程为y kx m =+,与双曲线E 的方程联立,利用由121||||82OAB S OC y y ∆=-=可证得:双曲线E 的方程为221416x y -=,从而可得答案. 【解答】解:(1)因为双曲线E 的渐近线分别为1:2l y x =,2:2l y x =-, 所以2ba=.2=.故c ,从而双曲线E 的离心率ce a=(2)由(1)知,双曲线E 的方程为222214x y a a-=.设直线l 与x 轴相交于点C ,当l x ⊥轴时,若直线l 与双曲线E 有且只有一个公共点,则||OC a =,||4AB a =, 所以1||||82OC AB =,因此1482a a =,解得2a =,此时双曲线E 的方程为221416x y -=.以下证明:当直线l 不与x 轴垂直时,双曲线E 的方程为221416x y -=也满足条件.设直线l 的方程为y kx m =+,依题意,得2k >或2k <-;则(mC k-,0),记1(A x ,1)y ,2(B x ,2)y , 由2y kx m y x =+⎧⎨=⎩得122m y k =-,同理得222m y k =+,由121||||2OAB S OC y y ∆=-得: 122||||8222m m m k k k--=-+,即2224|4|4(4)m k k =-=-. 由221416x y y kx m ⎧-=⎪⎨⎪=+⎩得:222(4)2160k x kmx m ----=, 因为240k -<,所以△22222244(4)(16)16(416)k m k m k m =+-+=---, 又因为224(4)m k =-,所以△0=,即直线l 与双曲线E 有且只有一个公共点.因此,存在总与直线l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=.【点评】本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.7.(2014•广东理)已知椭圆2222:1(0)x y C a ba b+=>>的右焦点为0).(1)求椭圆C 的标准方程;(2)若动点0(P x ,0)y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 【考点】轨迹方程;椭圆的标准方程【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△0=,整理出关于k 的一元二次方程,利用韦达定理表示出12k k,进而取得0x 和0y 的关系式,即P 点的轨迹方程. 【解答】解:(1)依题意知225a b c a⎧-=⎪⎨=⎪⎩,求得3a =,2b =,∴椭圆的方程为22194x y +=.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(3,2)±±,符合题意,②当两条切线斜率均存在时,设过点0(P x ,0)y 的切线为00()y k x x y =-+, 222200[()]19494k x x y x y x -++=+=, 2222000049[()2()]36x k x x y ky x x +-++-=22222200000049[222]36x k x k x kx x y ky x ky x ++-++-= 整理得2220000(94)18()9[()4]0k x k y kx x y kx ++-+--=,∴△2220000[18()]4(94)9[()4]0k y kx k y kx =--+⨯--=,整理得222000(9)2(4)0x k x y k y --⨯⨯+-=, 2012204119y k k x -∴-===--,220013x y ∴+=.把点(3,2)±±代入亦成立,∴点P 的轨迹方程为:2213x y +=.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.8.(2014•湖北理)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -,求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.【考点】轨迹方程;直线与圆锥曲线的综合【分析】(Ⅰ)设出M 点的坐标,直接由题意列等式,整理后即可得到M 的轨迹C 的方程;(Ⅱ)设出直线l 的方程为1(2)y k x -=+,和(Ⅰ)中的轨迹方程联立化为关于y 的一元二次方程,求出判别式,再在直线1(2)y k x -=+中取0y =得到021k x k+=-.然后分判别式小于0、等于0、大于0结合00x <求解使直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围. 【解答】解:(Ⅰ)设(,)M x y ,依题意得:||||1MF x =+||1x =+, 化简得,22||2y x x =+.∴点M 的轨迹C 的方程为24,00,0x x y x ⎧=⎨<⎩…;(Ⅱ)在点M 的轨迹C 中,记21:4(0)C y x x =…,2:0(0)C y x =<. 依题意,可设直线l 的方程为1(2)y k x -=+.由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++=.①当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.②当0k ≠时,方程244(21)0ky y k -++=的判别式为△216(21)k k =-+-. 设直线l 与x 轴的交点为0(x ,0), 则由1(2)y k x -=+,取0y =得021k x k+=-. 若2016(21)0210k k k x k ⎧=-+-<⎪⎨+=-<⎪⎩,解得1k <-或12k >. 即当1(,1)(,)2k ∈-∞-+∞时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.若000x =⎧⎨<⎩或000x >⎧⎨⎩…,解得1k =-或12k =或102k -<….即当1k =-或12k =时,直线l 与1C 只有一个公共点,与2C 有一个公共点. 当102k -<…时,直线l 与1C 有两个公共点,与2C 无公共点.故当1k =-或12k =或102k -<…时,直线l 与轨迹C 恰好有两个公共点. 若2016(21)0210k k k x k ⎧=-+->⎪⎨+=-<⎪⎩,解得112k -<<-或102k <<. 即当112k -<<-或102k <<时,直线l 与1C 有两个公共点,与2C 有一个公共点.此时直线l 与C 恰有三个公共点. 综上,当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与C 恰有一个公共点;当1[,0){12k ∈--⋃,1}2时,直线l 与C 恰有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰有三个公共点. 【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.9.(2014•湖南理)如图,O 为坐标原点,椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线22222:1x y C a b-=的左、右焦点分别为3F ,4F ,离心率为2e ,已知12e e =,且24||1F F =.(Ⅰ)求1C 、2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值.【考点】直线与圆锥曲线的综合;圆锥曲线的综合【分析】(Ⅰ)由斜率公式写出1e ,2e ,把双曲线的焦点用含有a ,b 的代数式表示,结合已知条件列关于a ,b 的方程组求解a ,b 的值,则圆锥曲线方程可求;(Ⅱ)设出AB 所在直线方程,和椭圆方程联立后得到关于y 的一元二次方程,由根与系数的关系得到AB 中点M 的坐标,并由椭圆的焦点弦公式求出AB 的长度,写出PQ 的方程,和双曲线联立后解出P ,Q 的坐标,由点到直线的距离公式分别求出P ,Q 到AB 的距离,然后代入代入三角形面积公式得四边形APBQ 的面积,再由关于n 的函数的单调性求得最值.【解答】解:(Ⅰ)由题意可知,12e e ==12||F F =123e e =24||1F F .∴2221b a +=1=.解得:1a b ==.∴椭圆1C 的方程为2212x y +=,双曲线2C 的方程为2212x y -=;(Ⅱ)由(Ⅰ)可得1(1,0)F -. 直线AB 不垂直于y 轴,∴设AB 的方程为1x ny =-,联立22112x ny x y =-⎧⎪⎨+=⎪⎩,得22(2)210n y ny +--=. 设1(A x ,1)y ,2(B x ,2)y ,0(M x ,0)y , 则120222,22n n y y y n n +==++,12212y y n =-+.则||AB=. M 在直线AB 上,∴20222122n x n n =-=-++. 直线PQ 的方程为002y ny x x x ==-,联立22212n y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得222()202n x x -⨯--=.解得2242x n =-,代入2n y x =- 得2222n y n =-. 由220n ->,得n <P ∴,Q的坐标分别为(, 则P ,Q 到AB 的距离分别为:2212n nn d n +-=,22222n n n d n --=P ,Q 在直线A ,B 的两端,∴221222n nn d d n +-+=+.则四边形APBQ的面积12213||()22S AB d d n =+=--. ∴当20n =,即0n =时,四边形APBQ 面积取得最小值2.【点评】本题考查圆锥曲线方程的求法,是直线与圆锥曲线、圆锥曲线与圆锥曲线间的关系的综合题,考查了椭圆与双曲线的基本性质,关键是学生要有较强的运算能力,是压轴题.10.(2014•江苏)如图,在平面直角坐标系xOy 中,1F ,2F 分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B 的坐标为(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(1)若点C 的坐标为4(3,1)3,且2BF =(2)若1FC AB ⊥,求椭圆离心率e 的值.【考点】椭圆的标准方程;椭圆的性质【分析】(1)根据椭圆的定义,建立方程关系即可求出a ,b 的值.(2)求出C 的坐标,利用1F C AB ⊥建立斜率之间的关系,解方程即可求出e 的值. 【解答】解:(1)C 的坐标为4(3,1)3,∴22161991a b +=,即221619a b+=, 22222BF b c a =+=, 222a ∴==,即21b =,则椭圆的方程为2212x y +=.(2)设1(,0)F c -,2(,0)F c , (0,)B b ,∴直线2:b BF y x b c =-+,代入椭圆方程22221(0)x y a b a b +=>>得222112()0x x a c c +-=,解得0x =,或2222a cx a c =+,2222(a c A a c +,2222())b c a a c --+,且A ,C 关于x 轴对称, 2222(a c C a c ∴+,2222())b c a a c -+,则122222222322()23F Cb c a a b bc a c k a c a c c ca c --+=-=+++, 1FC AB ⊥, ∴2223()()13b a c b a c c c-⨯-=-+, 由222b ac =-得2215c a =,即e =. 【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.11.(2014•辽宁理)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P(Ⅰ)求1C 的方程;(Ⅱ)若椭圆2C 过点P 且与1C有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.【考点】双曲线的标准方程;直线与圆锥曲线的综合【分析】(Ⅰ)设切点0(P x ,0)y ,0(0x >,00)y >,利用相互垂直的直线斜率之间的关系可得切线的斜率和切线的方程,即可得出三角形的面积,利用基本不等式的性质可得点P 的坐标,再利用双曲线的标准方程及其性质即可得出;(Ⅱ)由(Ⅰ)可得椭圆2C 的焦点.可设椭圆2C 的方程为22122111(0)3x y b b b +=>+.把P 的坐标代入即可得出方程.由题意可设直线l的方程为x my =+,1(A x ,1)y ,2(B x ,2)y ,与椭圆的方程联立即可得出根与系数的关系,再利用向量垂直与数量积的关系即可得出.【解答】解:(Ⅰ)设切点0(P x ,0)y ,0(0x >,00)y >,则切线的斜率为0x y -, 可得切线的方程为0000()x y y x x y -=--,化为004x x y y +=. 令0x =,可得04y y =;令0y =,可得04x x =.∴切线与x 轴正半轴,y 轴正半轴围成一个三角形的面积000014482S y x x y ==. 22000042x y x y =+…,当且仅当00x y ==∴842S=….此时P .由题意可得22221a b-=,c e a ===21a =,22b =.故双曲线1C 的方程为2212y x-=.(Ⅱ)由(Ⅰ)可知双曲线1C 的焦点(0),即为椭圆2C 的焦点. 可设椭圆2C 的方程为22122111(0)3x y bb b +=>+.把P 代入可得22112213b b +=+,解得213b =, 因此椭圆2C 的方程为22163xy +=.由题意可设直线l 的方程为x my =1(A x ,1)y ,2(B x ,2)y , 联立2226x my x y ⎧=+⎪⎨+=⎪⎩,化为22(2)30m y++-=, ∴12y y +=,12232y y m -=+. 1212()x x m y y ∴+=++, 22121212266()32m x x m y y y y m -=+++=+.11(2)AP x y =,22(2)BP x y =,AP BP ⊥,∴0AP BP =,∴12121212))40x x x x y y y y ++++=,∴22110m -+=,解得1m =或1)m =--,因此直线l 的方程为:1)0x y --或1)0x y +-=. 【点评】本题综合考查了圆锥曲线的标准方程及其性质、相互垂直的直线斜率之间的关系、向量垂直与数量积的关系、切线的斜率和切线的方程、三角形的面积计算公式、基本不等式的性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系等基础知识与基本技能方法,考查了推理能力和计算能力,考查了转化和化归能力,考查了解决问题的能力,属于难题.12.(2014•山东理)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 【考点】抛物线的标准方程;直线与圆锥曲线的综合【分析】(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的p 值;(2)(ⅰ)设出点A 的坐标,求出直线AB 的方程,利用直线1//l l ,且1l 和C 有且只有一个公共点E ,求出点E 的坐标,写出直线AE 的方程,将方程化为点斜式,可求出定点;(ⅱ) 利用弦长公式求出弦AB 的长度,再求点E 到直线AB 的距离,得到关于面积的函数关系式,再利用基本不等式求最小值.【解答】解:(1)当点A 的横坐标为3时,过点A 作AG x ⊥轴于G ,A ,(2p F ,0),||32pAF =+, ∴||||32pFD AF ==+. ADF ∆为正三角形,∴13||||224p FG FD ==+.又||||||32p FG OG OF =-=-, ∴33224p p -=+, 2p ∴=.C ∴的方程为24y x =.当D 在焦点F 的左侧时,||||32p FD AF ==+. 又||2||2(3)62PFD FG p ==-=-, ADF ∆为正三角形,362pp ∴+=-,解得18p =, C ∴的方程为236y x =.此时点D 在x 轴负半轴,不成立,舍. C ∴的方程为24y x =.(2)(ⅰ)设1(A x ,1)y ,1||||1FD AF x ==+, 1(2D x ∴+,0),12AD y k ∴=-. 由直线1//l l 可设直线1l 方程为12y y x m =-+, 联立方程1224y y x my x⎧=-+⎪⎨⎪=⎩,消去x 得21880y y y m +-=① 由1l 和C 有且只有一个公共点得△164320y m =+=,12y m ∴=-, 这时方程①的解为142y m y =-=,代入12yy x m =-+得2x m =,2(E m ∴,2)m . 点A 的坐标可化为212(,)m m -,直线AE 方程为222222()1m m y m x m m m+-=--, 即2222()1my m x m m -=--, ∴32222211m m y x m m m =-+--,∴222211m my x m m =---, ∴22(1)1my x m =--,∴直线AE 过定点(1,0);(ⅱ)直线AB 的方程为2111()24y y y y x -=--,即211224y x y y =-++. 联立方程21122244y x y y y x ⎧=-++⎪⎨⎪=⎩,消去x 得22118(8)0y y y y +-+=, ∴1218y y y +=-,∴12118|||2|AB y y y y =-=+, 由(ⅰ)点E 的坐标为21144(,)E y y -,点E 到直线AB 的距离为:2211222844|2||2|y y d ++-++==ABE ∴∆的面积233111211111842|||2||2|2||22162242y y S AB d y y y y ==+++=+⨯厖, 当且仅当12y =±时等号成立,ABE ∴∆的面积最小值为16.【点评】本题考查了抛物线的定义的应用、标准方程求法,切线方程的求法,定点问题与最值问题.13.(2014•江西理)如图,已知双曲线222:1(0)x C y a a-=>的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF x ⊥轴,AB OB ⊥,//(BF OA O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点0(P x ,00)(0)y y ≠的直线002:1x x l y y a -=与直线AF 相交于点M ,与直线32x =相交于点N .证明:当点P 在C 上移动时,||||MF NF 恒为定值,并求此定值.【考点】直线与圆锥曲线的综合【分析】(1)依题意知,(,)c A c a ,设(,)tB t a-,利用AB OB ⊥,//BF OA,可求得a 线C 的方程; (2)易求A ,l 的方程为:0013x x y y -=,直线002:1x x l y y a-=与直线AF 相交于点M ,与直线32x =相交于点N ,可求得0023(2,)3x M y -,3(2N ,002)2x y -,于是化简023||||||x MF NF -=于是原结论得证.【解答】(1)解:依题意知,(,)c A c a ,设(,)tB t a -,AB OB ⊥,//BF OA ,∴11c tac t a +-=--,1()t a a c t =-, 整理得:2ct =,a = ∴双曲线C 的方程为2213x y-=;(2)证明:由(1)知A ,l 的方程为:0013x x y y -=, 又(2,0)F ,直线002:1x x l y y a -=与直线AF 相交于点M ,与直线32x =相交于点N . 于是可得0023(2,)3x M y -,3(2N ,002)2x y-,∴023||||||x MF NF -==2|23||23|3xx-==-.【点评】本题考查直线与圆锥曲线的综合问题,着重考查直线与圆锥曲线的位置关系等基础知识,推理论证能力、运算求解能力、函数与方程思想,属于难题.14.(2014•陕西理)如图,曲线C由上半椭圆22122:1(0,0)y xC a b ya b+=>>…和部分抛物线22:1(0)C y x y=-+…连接而成,1C与2C的公共点为A,B,其中1C.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与1C,2C分别交于点P,Q(均异于点A,)B,若AP AQ⊥,求直线l的方程.【考点】直线与圆锥曲线的综合【分析】(Ⅰ)在1C、2C的方程中,令0y=,即得1b=,设1C:的半焦距为c,由ca=及2221a c b-==得2a=;(Ⅱ)由(Ⅰ)知上半椭圆1C的方程为221(0)4yx y+=…,设其方程为(1)(0)y k x k=-≠,代入1C的方程,整理得2222(4)240k x k x k+-+-=.(*)设点(pP x,)py,依题意,可求得点P的坐标为224(4kk-+,28)4kk-+;同理可得点Q的坐标为2(1,2)k k k----,利用0AP AQ =,可求得k的值,从而可得答案.【解答】解:(Ⅰ)在1C、2C的方程中,令0y=,可得1b=,且(1,0)A-,(1,0)B是上半椭圆1C的左右顶点.设1C:的半焦距为c,由ca=及2221a c b-==得2a=.2a∴=,1b=.(Ⅱ)由(Ⅰ)知上半椭圆1C 的方程为221(0)4y x y +=….易知,直线l 与x 轴不重合也不垂直,设其方程为(1)(0)y k x k =-≠, 代入1C 的方程,整理得:2222(4)240k x k x k +-+-=.(*) 设点(p P x ,)p y , 直线l 过点B ,1x ∴=是方程(*)的一个根,由求根公式,得2244p k x k -=+,从而284p ky k -=+,∴点P 的坐标为224(4k k -+,28)4kk -+.同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+⎩…得点Q 的坐标为2(1,2)k k k ----, ∴22(,4)4kAP k k =-+,(1,2)AQ k k =-+, AP AQ ⊥,∴0AP AQ =,即222[4(2)]04k k k k --+=+, 0k ≠,4(2)0k k ∴-+=,解得83k =-.经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--,即8380x y +-=.【点评】本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查设点法、数形结合思想、函数与方程思想,属于难题.15.(2014•四川理)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q . ①证明:OT 平分线段PQ (其中O 为坐标原点); ②当||||TF PQ 最小时,求点T 的坐标. 【考点】椭圆的标准方程;直线与圆锥曲线的综合【分析】第(1)问中,由正三角形底边与高的关系,222a b c =+及焦距24c =建立方程组求得2a ,2b ; 第(2)问中,先设点的坐标及直线PQ 的方程,利用两点间距离公式及弦长公式将||||TF PQ 表示出来,由||||TF PQ 取最小值时的条件获得等量关系,从而确定点T 的坐标.【解答】解:(1)依题意有22224c a a b c =⎧⎪=⎨⎪-==⎩解得2262a b ⎧=⎨=⎩所以椭圆C 的标准方程为22162x y +=.(2)设(3,)T t -,1(P x ,1)y ,2(Q x ,2)y ,PQ 的中点为0(N x ,0)y , ①证明:由(2,0)F -,可设直线PQ 的方程为2x my =-,则PQ 的斜率1PQ k m=. 由22222(3)420162x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩, 所以222122122168(3)24(1)04323m m m m y y m y y m ⎧⎪=++=+>⎪⎪+=⎨+⎪-⎪=⎪+⎩,于是1202223y y my m +==+,从而20022262233m x my m m -=-=-=++, 即2262(,)33m N m m -++,则直线ON 的斜率3ON mk =-,又由PQ TF ⊥知,直线TF 的斜率011132TF PQt k k m-==-=--+,得t m =.从而33OT ON t mk k ==-=-,即OT ON k k =, 所以O ,N ,T 三点共线,从而OT 平分线段PQ ,故得证. ②由两点间距离公式得||TF =由弦长公式得2222212121224(1)||||1()411m PQ y ym y y y y m m +=-+=+-+=+,所以22||||1)1TF PQ m ==+,令1)x x =…,则2||2)||TF x PQ x ==+22x =时,取“=”号), 所以当||||TF PQ 最小时,由2221x m ==+,得1m =或1m =-,此时点T 的坐标为(3,1)-或(3,1)--. 【点评】本题属相交弦问题,应注意考虑这几个方面: 1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y 或x ,得到一个关于x 或y 一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.。

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年全国高考数学理科试题汇编(超全)

2014年全国高考数学理科试题汇编(超全)

目录(共14单元):【最新】2014年全国高考数学(理)真题分类汇编:A单元集合与常用逻辑用语【最新】2014年全国高考数学(理)真题分类汇编:B单元函数与导数【最新】2014年全国高考数学(理)真题分类汇编:C单元三角函数【最新】2014年全国高考数学(理)真题分类汇编:D单元数列【最新】2014年全国高考数学(理)真题分类汇编:E单元不等式【最新】2014年全国高考数学(理)真题分类汇编:F单元平面向量【最新】2014年全国高考数学(理)真题分类汇编:G单元立体几何【最新】2014年全国高考数学(理)真题分类汇编:H单元解析几何【最新】2014年全国高考数学(理)真题分类汇编:I单元统计【最新】2014年全国高考数学(理)真题分类汇编:J单元计数原理【最新】2014年全国高考数学(理)真题分类汇编:K单元概率【最新】2014年全国高考数学(理)真题分类汇编:L单元算法初步与复数【最新】2014年全国高考数学(理)真题分类汇编:M单元推理与证明【最新】2014年全国高考数学(理)真题分类汇编:N单元选修4系列(资料超全,共282页!)A单元集合与常用逻辑用语A单元集合与常用逻辑用语A1 集合及其运算1.[2014·北京卷] 若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4}C.{1,2} D.{3}1.C[解析] A∩B={0,1,2,4}∩{1,2,3}={1,2}.1.[2014·福建卷] 若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}1..A[解析] 把集合P={x|2≤x<4}与Q={x|x≥3}在数轴上表示出来,得P∩Q={x|3≤x<4},故选A.16.[2014·福建卷] 已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c等于________.16.201[解析] (i)若①正确,则②③不正确,由③不正确得c=0,由①正确得a=1,所以b=2,与②不正确矛盾,故①不正确.(ii)若②正确,则①③不正确,由①不正确得a=2,与②正确矛盾,故②不正确.(iii)若③正确,则①②不正确,由①不正确得a=2,由②不正确及③正确得b=0,c=1,故③正确.则100a+10b+c=100³2+10³0+1=201.1.[2014·广东卷] 已知集合M={2,3,4},N={0,2,3,5},则M∩N=() A.{0,2} B.{2,3}C.{3,4} D.{3,5}1.B[解析] ∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3}.1.[2014·湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=() A.{1,3,5,6} B.{2,3,7} C.{2,4,7} D.{2,5,7}1.C[解析] 由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁U A={2,4,7}.故选C.2.[2014·湖南卷] 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}2.C[解析] 由集合运算可知A∩B={x|2<x<3}.11.[2014·重庆卷] 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________.11.{3,5,13}[解析] 由集合交集的定义知,A∩B={3,5,13}.1.[2014·江苏卷] 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.1.{-1,3}[解析] 由题意可得A∩B={-1,3}.2.[2014·江西卷] 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1) C.(-3,-1] D.(-3,3)2.C[解析] ∵A=(-3,3),∁R B=(-∞,-1]∪(5,+∞),∴A∩(∁R B)=(-3,-1].1.[2014·辽宁卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}1.D[解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)=x|0<x<1}.1.[2014·全国卷] 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.71.B[解析] 根据题意知M∩N={1,2,4,6,8}∩{1,2,3,5,6,7}={1,2,6},所以M∩N中元素的个数是3.1.[2014·新课标全国卷Ⅱ] 已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=() A.∅B.{2}C.{0} D.{-2}1.B[解析] 因为B={-1,2},所以A∩B={2}.1.[2014·全国新课标卷Ⅰ] 已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=() A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)1.B[解析] 利用数轴可知M∩N={x|-1<x<1}.2.[2014·山东卷] 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)2.C[解析] 因为集合A={x|0<x<2},B={x|1≤x≤4},所以A∩B={x|1≤x<2},故选C.1.[2014·陕西卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=() A.[0,1] B.(0,1) C.(0,1] D.[0,1)1.D[解析] 由M={x|x≥0},N={x|x2<1}={x|-1<x<1},得M∩N=[0,1).1.[2014·四川卷] 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=() A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}1.D[解析] 由题意可知,集合A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},所以A∩B={-1,0,1,2}.故选D.20.[2014·天津卷] 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2²2+x3²22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.1.[2014·浙江卷] 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞) C.(2,5) D.[2,5]1.D[解析] 依题意,易得S∩T=[2,5] ,故选D.A2 命题及其关系、充分条件、必要条件5.[2014·北京卷] 设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.D[解析] 当ab<0时,由a>b不一定推出a2>b2,反之也不成立7.、[2014·广东卷] 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件7.A[解析] 设R是三角形外切圆的半径,R>0,由正弦定理,得a=2R sin A,b=2R sin B.故选A.∵sin≤A sin B,∴2R sin A≤2R sin B,∴a≤b.同理也可以由a≤b推出sin A≤sin B.6.[2014·江西卷] 下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β6.D[解析] 对于选项A,a>0,且b2-4ac≤0时,才可得到ax2+bx+c≥0成立,所以A错.对于选项B,a>c,且b≠0时,才可得到ab2>cb2成立,所以B错.对于选项C,命题的否定为“存在x∈R,有x2<0”,所以C错.对于选项D,垂直于同一条直线的两个平面相互平行,所以D正确5.[2014·辽宁卷] 设a,b,c是非零向量,已知命题p:若a²b=0,b·c=0,则=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧q C.(⌝p)∧(⌝q) D.p∨(⌝q)5.A[解析] 由向量数量积的几何意义可知,命题p为假命题;命题q中,当b≠0时,a,c一定共线,故命题q是真命题.故p∨q为真命题.3.[2014·新课标全国卷Ⅱ] 函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件3.C[解析] 函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0 ,所以p是q的必要不充分条件.4.[2014·山东卷] 用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根4.A [解析] 方程“x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.8.[2014·陕西卷] 原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假8.A [解析] 由a n +a n +12<a n ,得a n +1<a n ,所以数列{a n }为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.15.[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”;②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+x x 2+1(x >-2,a ∈R )有最大值,则f (x )∈B . 其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+x x 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=x x 2+1(x >-2).易知f (x )∈⎣⎢⎡⎦⎥⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确2.[2014·浙江卷] 设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.故选A.6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有|x |≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧(⌝q )B .⌝p ∧qC .⌝p ∧(⌝q )D .p ∧q6.A [解析] 由题意知 p 为真命题,q 为假命题,则⌝q 为真命题,所以p ∧(⌝q)为真命题.A3 基本逻辑联结词及量词2.[2014·安徽卷] 命题“∀x ∈R ,|x |+x 2≥0”的否.定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0C .∃x 0∈R ,|x 0|+x 20<0D .∃x 0∈R ,|x 0|+x 20≥02.C [解析] 易知该命题的否定为“∃x 0∈R ,|x 0|+x 20<0”.5.[2014·福建卷] 命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( )A .∀x ∈(-∞,0),x 3+x <0B .∀x ∈(-∞,0),x 3+x ≥0C .∃x 0∈[0,+∞),x 30+x 0<0D .∃x 0∈[0,+∞),x 30+x 0≥05.C [解析] “∀x ∈[0,+∞),x 3+x ≥0”是含有全称量词的命题,其否定是“∃x 0∈[0,+∞),x 30+x 0<0”,故选C. 3.[2014·湖北卷] 命题“∀x ∈R ,x 2≠x ”的否定是( )A .∀x ∈/R ,x 2≠xB .∀x ∈R ,x 2=xC .∃x 0∈/R ,x 20≠x 0D .∃x 0∈R ,x 20=x 03.D [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R ,x 2≠x ”的否定是“∃x 0∈R ,x 20=x 0”. 故选D.1.[2014·湖南卷] 设命题p :∀x ∈R ,x 2+1>0,则⌝p 为( )A .∃x 0∈R ,x 20+1>0B .∃x 0∈R ,x 20+1≤0C .∃x 0∈R ,x 20+1<0D .∀x ∈R ,x 2+1≤01.B [解析] 由全称命题的否定形式可得⌝p :∃x 0∈R ,x 20+1≤0.3.[2014·天津卷] 已知命题p :∀x >0,总有(x +1)e x >1,则⌝p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1 B. ∃x 0>0,使得(x 0+1)e x 0≤1C. ∀x >0,总有(x +1)e x ≤1D. ∀x ≤0,总有(x +1)e x ≤13.B [解析] 含量词的命题的否定,先改变量词的形式,再对命题的结论进行否定.数 学B 单元 函数与导数B1 函数及其表示6.[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12答案:A2.[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)答案:A 7. [2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( ) A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)答案:D2.[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)答案:C3. [2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 答案:CB2 反函数12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )答案:DB3 函数的单调性与最值2. [2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)答案:A 7. [2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( ) A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)答案:D21. [2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2. (1)求函数f (x )的定义域D (用区间表示);(2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示).12.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 答案:115.,[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+x x 2+1(x >-2,a ∈R )有最大值,则f (x )∈B . 其中的真命题有________.(写出所有真命题的序号)答案:①③④21. [2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.答案:解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减.则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0.又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增.所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).B4 函数的奇偶性与周期性7. [2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( ) A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)答案:D3.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3答案:C3.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案:C15.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.答案:(-1,3)B5 二次函数16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.答案:(-∞,2]B6 指数与指数函数4. [2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-2答案:B3.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A .1B .2C .3D .-1答案:A3. [2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a答案:C2. [2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)答案:C5. [2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 3 答案:D7.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x 答案:B11.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________. 答案:10 [解析] 由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012=10.B7 对数与对数函数5. [2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 3 答案:D3. [2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞)答案:C 4. [2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-2答案:B 13. [2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.答案:503. [2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a 答案:C4.[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案:D 7.[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a a x 的图像可能是( )AC图1-2 图1-2答案:D 12.[2014·重庆卷] 函数f (x )=log 2x ²log 2(2x )的最小值为________.答案:-14B8 幂函数与函数的图像 4. [2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-2答案:B10.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 答案:B8.[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞) 答案:B7.[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a a x 的图像可能是( )AC 图1-2图1-2答案:DB9 函数与方程10.[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e) C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e答案:B 14.[2014·天津卷] 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.答案:(0,1)∪(9,+∞)6.[2014·浙江卷] 已知函数f (x )=x +ax +bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9 D .c >9答案:CB10 函数模型及其应用 8.[2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1答案:D 10.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x答案:AB11 导数及其运算 18.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 答案:解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值. 21. [2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 答案:证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p ² 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p.①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.20. [2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 答案:解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0.即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,e x>x 2,所以e x=e x 2²e x 2>⎝⎛⎭⎫x 22²⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .10.[2014·广东卷] 曲线y =e -5x +2在点(0,3)处的切线方程为________.答案:y =-5x +3 [解析] 本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.13.[2014·江西卷] 若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.答案:(-ln 2,2) [解析] 设点P 的坐标为(x 0,y 0),y ′=-e -x .又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln 2,此时y =2,所以点P 的坐标为(-ln 2,2).18.[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 答案:解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0,依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 答案:C 8.[2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3 答案:D 21. [2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.答案:解:由题设得,g (x )=x1+x(x ≥0). (1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立. (2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证. 方法三:如图,⎠⎛0nx x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证. 19.[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .答案:解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4³2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.B12 导数的应用 21.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 答案:解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1). 18.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 答案:解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.18.[2014·北京卷] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.答案:解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.20.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 答案:解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .。

备战2014年高考数学全国统考区精选理科试题(详解)分类汇编9:圆锥曲线

备战2014年高考数学全国统考区精选理科试题(详解)分类汇编9:圆锥曲线

备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编9:圆锥曲线一、选择题1 .(贵州省六校联盟2013届高三第一次联考理科数学试题)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( )A .3B .2C .332 D .2 【答案】A 【解析】设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111,c ce a a e ==.双曲线的实半轴为a ,双曲线的离心率为e ,,c ce a a e==.12,,(0)PF x PF y x y ==>>,则由余弦定理得2222242cos 60c x y xy x y xy =+-=+- ,当点P 看做是椭圆上的点时,有22214()343c x y xy a xy =+-=-,当点P 看做是双曲线上的点时,有2224()4c x y xy a xy =-+=+,两式联立消去xy 得222143c a a =+,即22214()3()c cc e e =+,所以22111()3()4e e +=,又因为11e e =,所以22134e e +=,整理得42430e e -+=,解得23e =,所以e ,选A.2 .(甘肃省河西五市部分普通高中2013届高三第二次联合考试 数学(理)试题)若P 点是以A (-3,0)、B (3,0)为焦点,实轴长为52的双曲线与圆922=+yx 的一个交点,则PB PA +=( )A .134 B.142 C. 132 D. 143【答案】C3 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)已知抛物线方程为24yx =,直线l 的方程为40x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,P 到直线l 的距离为2d ,则22d d +的最小值 ( )A2+ B1 C2- D1 【答案】D 【解析】因为抛物线的方程为24y x =,所以焦点坐标(1,0)F ,准线方程为1x =-。

2009--2014年山东省高考数学真题分类--圆锥曲线解答题

2009--2014年山东省高考数学真题分类--圆锥曲线解答题

高考数学真题分类——圆锥曲线解答题1、(2014理21)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA|=|FD|,当点A 的横坐标为3时,△ADF 为正三角形。

(I )求C 的方程;(II )若直线l 1∥l ,且l 1和C 有且只有一个公共点E ,(i )证明直线AE 过定点,并求出定点坐标;(ii )△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。

2、(2013理22)椭圆()2222:+10x y C a b a b=>>的左、右焦点分别是12F F ,,,过F 且垂直于x 轴的直线被椭圆C 截得的线段长为.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12PF PF ,,设∠12F P F 的角平分线 P M 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线,使得与椭圆C 有且只有一个公共点.设直线12PF PF ,的斜率分别为12,k k ,若k ≠0,试证明1211k k +为定值,并求出这个定值。

3、(2012理21)在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34。

(Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M l :y=kx+14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,的最小值。

4、(2011理22)已知动直线l 与椭圆C :22132x y +=交于()()1122,,,P x y Q x y 两不同点,且OPQ ∆的面积2OPQ S ∆=,其中O 为坐标原点. (Ⅰ)证明:2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在三点,,D E G ,使得2ODE ODG OEG S S S ∆∆∆===DEG ∆的形状;若不存在,请说明理由.5、(2010理21)如图,已知椭圆)0(12222>>=+b a by a x 的离心率为22,以该椭圆上的点和椭圆的左、右焦点21,F F 为顶点的三角形的周长为)12(4+,一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于项点的任一点,直线1PF 和2PF与椭圆的交点分别为A 、 B 和C 、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF的斜率分别为1k 、2k ,证明:121=⋅k k ; (Ⅲ)是否存在常数λ,使得CD AB CD AB ⋅=+λ恒成立?若存在,求λ的值;若不存在,请说明理由.6、(2009理22) 设椭圆E: 22221x y a b+=(a,b>0)过M (2 ,两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

2014年高考数学试题分类解析考点43 曲线与方程、圆锥曲线的综合应用

2014年高考数学试题分类解析考点43 曲线与方程、圆锥曲线的综合应用

考点43 曲线与方程、圆锥曲线的综合应用一、解答题1.(2014·安徽高考文科·T21)设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率.【解题提示】(1)利用椭圆的定义求解;(2)设1||BF k =,用k 表示22||||AF BF 、利用余弦定理解2ABF D 得出等腰12Rt AF F D,从而得到a,c 的关系式。

【解析】(1)由11||3||,|AB|=4AF BF =,得11||3||=1AF BF =,,因为2ABF D 的周长为16,所以由椭圆定义可得12416,||||=2a=8a AF AF =+,故21||=2||=8-3=5AF a AF -。

(2)设1||BF k =,则k>0,且1||3,||4,AF k AB k ==由椭圆定义可得22||=23,||=2,AF a k BF a k --在2ABF D 中,由余弦定理可得22222222||||||2||.||cos ,AB AF BF AF BF AF B =+-?即2226(23)(2)(23)(2)5a k a k a k a k =-+----(4k), 化简可得()(3)0a k a k +-=,而a+k>0,故a=3k,于是有21||3||,AF k AF ==2||=5k BF ,因此2222212||||||B F A F A B F A F A =+轣,故12AF F D 为等腰直角三角形,从而22c c a e a =?=。

2.(2014·安徽高考理科·T19)如图,已知两条抛物线()02:1121>=p x p y E 和()02:2222>=p x p y E ,过原点O 的两条直线1l 和2l ,1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交于21,B B 两点.(1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线理科一、 选择题1.(2014 大纲理 6)已知椭圆C :22221x y a b +=()0a b >>的左、右焦点为1F ,2F过2F 的直线l 交C 于A ,B 两点,若1AF B △的周长为C 的方程为( ). A .22132x y += B .2213x y += C .221128x y += D .221124x y += 2.(2014 大纲理 9)已知双曲线C 的离心率为2,焦点为1F ,2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( ).A .14 B .13 C .4 D .33.(2014 福建理 9)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ).A.25B.246+C.27+D.264.(2014 广东理 4)若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的( ). A.焦距相等 B.实半轴长相等 C. 虚半轴长相等 D.离心率相等5.(2014 湖北理 9)已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π3F PF ∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ).C.3D.2 6.(2014 辽宁理 10)已知点()2,3A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ).A .12 B .23 C .34 D .437.(2014 山东理 10)已知0,0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 2C 的渐近线方程为( ).A.0x = 0y ±= C.20x y ±= D.20x y ±=8.(2014 四川理 10)已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( ).A .2B .3C .8D 9.(2014 天津理 5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A.221520x y -= B.221205x y -= C.2233125100x y -= D.2233110025x y -= 10.(2014 新课标1理4)已知F 是双曲线C :()2230x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A.B.3C.D. 3m11.(2014 新课标1理10)已知抛物线C : 28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =( ).A.72 B. 3 C. 52D. 2 12.(2014 新课标2理10)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,O 为坐标原点,则OAB △的面积为( ).A.4 B. 8C.6332D.9413.(2014 重庆理 8)设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得121293,4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为( ). A.43 B. 53 C. 94D. 3 二、填空题1.(2014 安徽理 14)设21,F F 分别是椭圆E : 2221y x b+=()01b <<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若113AF BF =,2AF x ⊥轴,则椭圆E 的方程为 .2.(2014 北京理 11)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.3.(2014 湖南理 15)如图所示,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线22y px =()0p >经过C ,F 两点,则ba=________. 4.(2014 江西理 15)过点()1,1M 作斜率为12-的直线与椭圆C :()222210x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .5.(2014 辽宁理 15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则AN BN += .6.(2014 浙江理 14)设直线()300x y m m -+=≠与双曲线()222210x y a b a b-=>>两条渐近线分别交于点,A B ,若点(),0P m 满足PA PB =,则该双曲线的离心率是__________.三、解答题1.(2014 安徽理 19)(本小题满分13分)如图所示,已知两条抛物线1E :212y p x =()10p >和2E :222y p x =()20p >,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点. (1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C △与222A B C △的面积分别为1S 与2S ,求12S S 的值.2.(2014 北京理 19)(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点.若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆222x y +=的位置关系,并证明你的结论.3.(2014 大纲理 21)(本小题满分12分)已知抛物线C :()220y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于,A B 两点,若AB 的垂直平分线l '与C 相交于,M N 两点,且,,,A M B N 四点在同一圆上,求l 的方程.4.(2014 福建理 19)(本小题满分13分)已知双曲线()2222:10,0x y E a b a b -=>>的两条渐近线分别为1:2l y x =,2:2l y x =-.(1)求双曲线E 的离心率;(2)如图所示,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB △的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.5.(2014 广东理 20) (14分)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为),离心率为3(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 6.(2014 湖北理 21)(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程;(2)设斜率为k 的直线l 过定点()2,1P -.求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.7.(2014 湖南理 21)如图所示,O 为坐标原点,椭圆1:C ()222210x y a b a b+=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2:C 22221x y a b -=的左右焦点分别为34,F F ,离心率为2e ,已知12e e =,且241F F =. (1)求12,C C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值. 8.(2014 江苏理 17)如图,在平面直角坐标系xOy 中,1F ,2F 分别是椭圆22221x y a b+=()0a b >>的左、右焦点,顶点B 的坐标为()0,B b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为41,33⎛⎫⎪⎝⎭,且2BF =(2)若1FC AB ⊥,求椭圆离心率e 的值. 9.(2014 江西理 20)(本小题满分13分)如图,已知双曲线C :2221x y a-=()0a >的右焦点F ,点,A B 分别在C 的两条渐近线上,AF x ⊥轴,AB OB ⊥,//BF OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点()00,P x y ()00y ≠的直线l :021xx y y a -=与直线AF 相交于点M ,与直线23=x 相交于点N .证明:点P 在C 上移动时,NFMF恒为定值,并求此定值.10.(2014 辽宁理 20) (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.11.(2014 山东理 21)(本小题满分14分)已知抛物线()2:20C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =,当点A 的横坐标为3时,ADF △为正三角形. (1)求C 的方程;(2)若直线l l //1,且1l 和C 有且只有一个公共点E , (i )证明直线AE 过定点,并求出定点坐标;(ii )ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.12.(2014 陕西理 20)(本小题满分13分)如图所示,曲线C 由上半椭圆()22122:10,0y x C a b y a b+=>>…和部分抛物线()22:10C y x y =-+…连接而成,12,C C 的公共点为,A B ,其中1C. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.13.(2014 四川理 20)已知椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点,P Q . (i )证明:OT 平分线段PQ (其中O 为坐标原点);(ii )当TF PQ最小时,求点T 的坐标.14.(2014 天津理 18)(本小题满分13分)设椭圆22221x y a b +=()0a b >>的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点O 的直线l 与该圆相切. 求直线l 的斜率.15.(2014 新课标1理20) (本小题满分12分)已知点()0,2A -,椭圆E :22221x y a b +=()0a b >>F 是椭圆E 的右焦点,直线AF的斜率为3,O 为坐标原点. (1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ △的面积最大时,求l 的方程. 16.(2014 新课标2理20)(本小题满分12分)设12,F F 分别是椭圆2222:1x y C a b+=()0a b >>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直.直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b . 17.(2014 浙江理 21)(本题满分15分)如图,设椭圆()2222:10x y C a b a b+=>>动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.18.(2014 重庆理 21)如图,设椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,点D在椭圆上,112DF F F ⊥,121F F DF =,12DF F △. (1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..。

相关文档
最新文档