《数值分析》杨大地_答案(第八章)
数值分析第8章答案

第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为 211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—53、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得 21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hnh y h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为 210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。
数值分析课后答案8

第八章习题解答1、已知方程3210x x --=在 1.5x =附近有根,将方程写成以下三种不同的等价形式:①211x x=+;②x =x =试判断以上三种格式迭代函数的收敛性,并选出一种较好的格式。
解:①令121()1x x ϕ=+,则'132()x x ϕ=-,'132(1.5)0.592611.5ϕ=≈<,故迭代收敛;②令2()x ϕ=2'2322()(1)3x x x ϕ-=+,'2(1.5)0.45581ϕ≈<,故迭代收敛;③令3()x ϕ='3()x ϕ=,'3(1.5) 1.41421ϕ≈>,故迭代发散。
以上三中以第二种迭代格式较好。
2、设方程()0f x =有根,且'0()m f x M <≤≤。
试证明由迭代格式1()k k k x x f x λ+=-(0,1,2,)k = 产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20Mλ<<时,均收敛于方程的根。
证明:设()()x x f x ϕλ=-,则''()1()x f x ϕλ=-,故'1()1M x m λϕλ-<<-,进而可知, 当20Mλ<<时,'1()1x ϕ-<<,即'()1x ϕ<,从而由压缩映像定理可知结论成立。
3、试分别用Newton 法和割线法求以下方程的根cos 0x x -=取初值010.5,4x x π==,比较计算结果。
解:Newton 法:1230.75522242,=0.73914166,=0.73908513x x x =;割线法:23450.73638414,=0.73905814,=0.73908515,=0.73908513x x x x =; 比较可知Newton 法比割线法收敛速度稍快。
数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
习题10(答案)《数值分析》(第二版)第10章_习题参考答案

习题参考答案习题一1.(1) 0.05ε=,0.0185r ε=,有2位有效数字 (2) 0.0005ε=,0.000184r ε=,有4位有效数字 (3) 0.000005ε=,0.000184r ε=,有4位有效数字 (4) 0.0000005ε=,0.000184r ε=,有4位有效数字 2.0.0005ε=,0.00016r ε≈;有4位有效数字 3.|d | 1.210.005 3.650.0050.0050.02930.03a ≤⨯+⨯+≈≤4.*1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字5.(1) ***124()x x x ε++31.0510−=⨯ (2) ***123()x x x ε=0.21479 (3) *2*4()x x ε50.8865410−=⨯6.略。
7.最小刻度x 满足0.002cm x ≤ 8.*3()10000 mm V επ=,*()0.02r V ε= 9.设正方形边长为a ,*2()0.510a ε−≤⨯10.*1()1%0.00333r R ε=⨯≈11.1||||14x =,2||||9.89949x ≈,||||9x ∞= 12.1|||||1.25||0.02|| 5.15||0| 6.42x =++−+=22221/22||||[(1.25)(0.02)( 5.15)(0)] 5.2996x =++−+=||||| 5.15| 5.15x ∞=−=13.||||10A ∞=,1||||9A =,2||||82.05125A ≈14.||||16A ∞=,1||||16A =,2||||12A =15.(1) ||()||1f x ∞=,1||()||8f x =,2||()||f x π=(2) ||()||23f x ∞=,1||()||17f x =,2||()||10.6427f x ≈ 16.略。
数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。
由于ni i inn n n n i n x x x x x x x x x x V ...1...1 (1))(21110200---=,.1,...,1,0-=n i故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。
又)(x V n 的最高次幂nx 的系数为)(...1...1..................1),...,,(101121112222102001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -==∏-≤<≤-----------。
故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V6、解:(1)设.)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n对)(x f 构造Lagrange 插值多项式,),()(0x l x x L j nj k j n ∑==其0)()!1()()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ,ξ介于j x 之间,.,...,1,0n j =故),()(x L x f n =即.,...,1,0,)(0n k xx l x kjnj k j ==∑=特别地,当0=k 时,10)(=∑=nj x j l。
(2)0)()1(1)()1()()(0000=-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--=-===∑∑∑∑k j j i j i k j ki i j ii k j nj ki i j knj j x x x x i k x l x x i k x l x x )利用(。
7、证明:以b a ,为节点进行线性插值,得)()()(1b f ab ax a f b a b x x P --+--=因0)()(==b f a f ,故0)(1=x P 。
如何解救高处跌落伤员

手帕、 棉花或纱布堵塞 。 免得 造成颅 内压 力增 高和细茵感染。 若伤 员跌 下时腰 背部或 下肢 先着地 , 可能造成脊柱骨折
及 下肢骨折 , 应使 伤 员两下肢和 两上肢伸 直 , 然后 由 3人 同
时将 其 平 直托 起 至 板 上 。 稳 运 送 。 平
一 ~ … 一 * v ・ …
应急救援预案的制定提供依据 。
参 考 文 献
[] 1刘骥 , 多英全, 关磊 , . 等 宁波化 工 区区域 性风险评 价报告 [ ] R.
北 京 : 国 安全 生 产 科 学 研 究 院 ,06 中 20 .
[] 2 郭吉红 . 重大危险 源事故预测 模拟及安全规 划[ . 南 : D] 淮 安徽
理 工 大 学 ,O6 20 .
[] 3 齐福强 , 赵云胜 , 何华 刚. 罐 区火灾爆炸事故危险性分析 [] I J.
~
工业安全 与环保 ,0 83 ( )2 —2 . 20 ,4 1 :7 9
_
; …
… ’
…一
…。 : 。 = : :
[] 4潘旭 海, 蒋军成 . 事故泄漏 源模 型研究与分析[] 南京工业大学 J.
由此可得罐体泄漏孔上方初始液位高度 h =7 8m。 o . 将上述参数输人软件计算界面 , 得泄漏停止 时泄 漏孔 上 方液位高度 J 及液体泄 漏质量 , 图 7所示 。h =5 9 l L 如 o .4
m, = 1 17 3 6 k 。 W 8 9 . g
齿和积血, 防止误入气管引起 窒息。如发现伤者的耳朵、 鼻
软件[ ] 南京 : D. 南京工业大学安全工程研究所 。 O. 28 O 作者简介 孙 东亮 . 1 2 生, 士生 , 男。 8 年 9 博 主要从 事化工 区域风险
数值分析第四版习题及答案

第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。
《数值分析》杨大地 答案(第三章)

数值分析第3章3.1 填空题(1)当A 具有严格对角优势或具有对角线优势且矩阵不可约时,线性方程组b A x =用Jacobi 迭代法和Gauss-Seidel 迭代法均收敛;(2)当线性方程组的系数矩阵A 对称正定时,Gauss-Seidel 迭代收敛;(3)线性方程组迭代法收敛的充分必要条件是迭代矩阵的谱半径小于1;SOR 法收敛的必要条件是0<w<2;(4)用迭代法求解线性方程组,若)1(),(≥=q B q ρ时不收敛,q 接近0时收敛较快,q 接近1时收敛较慢; (5)A=⎪⎪⎭⎫⎝⎛2111;J B =⎪⎪⎭⎫ ⎝⎛--02110;s B =⎪⎪⎭⎫⎝⎛-21010;)22()(=J B ρ;)21()(=s B ρ 解:∵ A=⎪⎪⎭⎫⎝⎛2111,∴ L=⎪⎪⎭⎫⎝⎛0100, D=⎪⎪⎭⎫ ⎝⎛2001, U=⎪⎪⎭⎫⎝⎛0010 //P49D −1=1ad−bc d −b−c a∴⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫⎝⎛-=+-=-02110011021001)(1U L D B J //P49 B J 指Jacobi 迭代法的矩阵形式 又 ∵ )(U LD +=⎪⎪⎭⎫⎝⎛00211001−−−→−=-=22/12)2122)1r r r r r ⎪⎪⎭⎫ ⎝⎛-210101001=))((1U L D I -+//P50 B S 指Seidel 迭代法的矩阵形式,U L D B S 1)(-+-= ∴ ⎪⎪⎭⎫⎝⎛-=21010s B ∴ 22)(=J B ρ21)(=s B ρ //谱半径ρ A =max 1≤i≤n λi3.2 用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组,各分量第三位稳定即可。
(1) ⎝⎛012121⎪⎪⎪⎭⎫210⎪⎪⎪⎭⎫ ⎝⎛321x x x =⎪⎪⎪⎭⎫⎝⎛-453 解:利用Jacobi 迭代法,有⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=-=+++k k k k k kk x x x x x x x 21331122112122521212123,令0x =()T 0,0,0,代入有://P48k0 1 2 3 4 5 6 7 kx 1 0 1.5 2.75 3.625 4.25 4.6875 5 5.21875 k x 20 -2.5 -4.25 -5.5 -6.375 -7 -7.4375 -7.75 k x 323.254.1254.755.18755.55.71875k89101112131415k x 1 5.375 5.484375 5.5625 5.6171875 5.65625 5.68359375 5.703125 5.716796875 k x 2 -7.96875 -8.125 -8.234375 -8.3125 -8.3671875 -8.40625 -8.43359375 -8.453125 k x 35.8755.9843756.06256.11718756.156256.183593756.2031256.216796875k16 17 18 19 20 21 22 23 k x 1 5.726563 5.733398 5.738281 5.741699 5.744141 5.745850 5.747070 5.747925 k x 2 -8.466797 -8.476563 -8.483398 -8.488281 -8.491699 -8.494141 -8.495850 -8.497070 k x 36.2265636.2333986.2382816.2416996.2441416.2458506.2470706.247925由题,用Jacobi 迭代法进行第21次迭代后,前三位有效数字稳定,此时x=()T25.6,50.8,75.5-利用Gauss-Seidel 迭代法,得出⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=-=+++++1213211122112122521212123k k k k k kk x x x x x x x ,令0x =()T 0,0,0代入有//P50k0 1 2 3 4 5 6 7 k x 10 1.5 3.125 4.4375 5.09375 5.421875 5.585938 5.667969 kx 2 0 -3.25 -5.875 -7.1875 -7.84375 -8.171875 -8.335938 -8.417969 k x 33.6254.93755.593755.9218756.0859386.1679696.208984k8 9 10 11 12 13 kx 15.708984 5.729492 5.739746 5.744873 5.747437 5.748718 k x 2 -8.458984 -8.479492 -8.489746 -8.494873 -8.497437 -8.498718 k x 36.2294926.2397466.2448736.2474376.2487186.249359可见Gauss-Seidel 迭代法进行至12次迭代后稳定,x=()T 25.6,50.8,75.5-3.4 下面一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收敛性。
数值分析杨大地_答案(第八章)

数值分析第8章 数值积分与数值微分8.1 填空题(1)n+1个点的插值型数值积分公式∫f (x )dx ba ≈∑A j n j =0f (x j )的代数精度至少是 n ,最高不超过 2n+1 。
[注:第1空,见定理8.1](2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。
[注:分别见定理8.1,8.3] (3)求积公式∫f (x )dx h0≈h2[f (0)+f (h )]+ah 2[f ′(0)−f ′(h )]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。
解:令f(x)=1,x,x 2带入有, {h 2[1+1]+ah 2[0−0]=hh2[0+h ]+ah 2[1−1]=12(h 2)h 2[0+h 2]+ah 2[0−2h ]=13(h 3)//注:x 的导数=1解之得,a=1/12,此时求积公式至少具有2次代数精度。
∴积分公式为:∫f (x )dxh0≈h2[f (0)+f (h )]+h 212[f ′(0)−f ′(h )]令f(x)= x 3带入求积公式有:h2[0+h 3]+h 212[0−3h 2]=14(h 4),与f(x)= x 4的定积分计算值14(h 4)相等,所以,此求积公式至少具有3次代数精度。
令f(x)= x 4带入求积公式有,h2[0+h 4]+h 212[0−4h 3]=16(h 5),与f(x)= x 5的定积分计算值15(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。
8.2 确定以下求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。
解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。
数值分析李庆杨版习题及答案

第四版数值分析习题答案第一章 绪论习题参考答案1. ε(lnx )≈***()()r x x xεεδ==。
2.1******()()()()0.02n nnr nn n x x x n x x n xxxεεεε-=≈==。
3. *1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字,*5x 有2位有效数字。
4.******4333124124()()()()0.5100.5100.510 1.0510x x x x x x εεεε----++≈++=⨯+⨯+⨯=⨯************123231132123()()()()0.214790825x x x x x x x x x x x x εεεε≈++=****62224***24441()()()8.85566810x x x x x x x εεε-≈-=⨯。
5.1()1()()()0.00333333r r r V R V V V εεεε=≈===。
6.33100111()100101010022Y ε--=⨯⨯⨯=⨯。
7.12855.982x =≈,21280.0178655.982x ==≈≈。
8. 21arc 12N dx tgN x π+∞=-+⎰9.121()()0.0052x S S εεε-=≈=。
10. ()()0.1S g t t g t εε≈=,2()2()0.2()12r g t t t S t t gt εεε≈==,故t 增加时S 的绝对误差增加,相对误差减小。
11. 1081001()10()102y y εε==⨯,计算过程不稳定。
12.61)0.005051f =≈,1.4=,则611)0.004096f ==,20.005233f ==,33(30.008f =-=,40.005125f ==,5991f =-=,4f 的结果最好。
13.(30) 4.094622f =-,开平方时用六位函数表计算所得的误差为41102ε-=⨯,分别代入等价公式)1x x (ln )x (f ),1x x (ln )x (f 2221++-=--=中计算可得411()ln(1(60103102f x εε--=+≈=+=⨯⨯=⨯,47211()ln(1108.3310602f ε--=+≈=⨯⨯=⨯。
数值分析课后习题及答案

数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析第8章 数值积分与数值微分8.1 填空题(1)n+1个点的插值型数值积分公式∫f (x )dx ba ≈∑A j n j =0f (x j )的代数精度至少是 n ,最高不超过 2n+1 。
【注:第1空,见定理8.1】(2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。
【注:分别见定理8.1,8.3】 (3)求积公式∫f (x )dx h0≈h2[f (0)+f (h )]+ah 2[f ′(0)−f ′(h )]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。
解:令f(x)=1,x,x 2带入有,{h 2[1+1]+ah 2[0−0]=hh 2[0+h ]+ah 2[1−1]=12(h 2)h2[0+h 2]+ah 2[0−2h ]=13(h 3)//注:x 的导数=1解之得,a=1/12,此时求积公式至少具有2次代数精度。
∴积分公式为:∫f (x )dxh0≈h2[f (0)+f (h )]+h 212[f ′(0)−f ′(h )]令f(x)= x 3带入求积公式有:h2[0+h 3]+h 212[0−3h 2]=14(h 4),与f(x)= x 4的定积分计算值14(h 4)相等,所以,此求积公式至少具有3次代数精度。
令f(x)= x 4带入求积公式有,h2[0+h 4]+h 212[0−4h 3]=16(h 5),与f(x)= x 5的定积分计算值15(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。
8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。
解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。
(1)∫f (f )ff fff≈f f f (f )+f f f (f )+f f f (ff )解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】{A 0+A 1+A 2=2hA 1h +A 22h =12(2h )2A 1h 2+A 2(2h )2=13(2h )3求解得A 0=13h,A 1=43h,A 2=13h,∴求积公式为:∫f (x )dx 2h0≈13hf (0)+43hf (h )+13hf (2h )∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1∴该求积公式至少具有2次代数精度。
令f(x)= x 3,代入求积公式有:43hh 3+13h (2h )3=4h 4∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=14(2h )4=4h 4 ,与求积公式计算值相等,∴该求积公式具有3次代数精度。
令f(x)= x 4,代入求积公式有:43hh 4+13h (2h )4=203h 5 ∵函数f(x) = x 4的定积分结果为∫x 4dx 2h 0=15[(2h )5−05]=325h 5,与求积公式计算值不相等, ∴该求积公式的最高代数精度为3次代数精度。
(2)∫f (f )ff f−f ≈f [f (−f )+ff (f f )+ff (f f )]解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 、X1、X2共3个未知量,故需3个相异求积节点f(x)】{A [1+2+3]=2A [−1+2x 1+3x 2]=0A [(−1)2+2x 12+3x 22]=13[13−(−1)3]=23求解得 A =13,x 1=0.6899,x 2=−0.1260,或A =13,x 1=−0.2899,x 2=0.5266∴求积公式为:求积公式1:∫f (x )dx 1−1≈13[f (−1)+2f (0.6899)+3f (−0.1260)]求积公式1:∫f (x )dx 1−1≈13[f (−1)+2f (−0.2899)+3f (0.5266)]∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0,//注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。
令f(x)= x 3代入求积公式1有:13[(−1)3+2(0.6899)3+3(−0.1260)3]=−0.2245令f(x)= x 3代入求积公式2有:13[(−1)3+2(−0.2899)3+3(0.5266)3]=−0.2928∵函数f(x) = x 3的定积分结果为:∫x 3dx 1−1=14[(1)4—(−1)4]=0 ,与求积公式计算值均不相等,∴该求积公式的最高代数精度为2次代数精度。
(3)∫f (f )ff f −f ≈f f f (−f )+f f f (−f f )+f f f (ff)解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 1、A 2、A 3共3个未知量,故需3个相异求积节点f(x)】{A 1+A 2+A 3=[1−(−1)]=2A 1(−1)+A 2(−13)+A 3(13)=12[12−(−1)2]=0A 1(−1)2+A 2(−13)2+A 3(13)2=13[13−(−1)3]=23求解得A 1=12,A 2=0,A 3=32, ∴求积公式为: ∫f (x )dx 1−1≈12f (−1)+32f (13)∵ 该求积公式对3个相异节点1,x,x 2均有余项E (f )=0,//注:参见P149定理8.1 ∴ 该求积公式至少具有2次代数精度。
令f(x)= x 3,代入求积公式有:12(−1)3+32(13)3=−0.4444∵ 函数f(x) = x 3的定积分结果为:∫x 3dx 1−1=14[(1)4—(−1)4]=0,与求积公式计算值不相等,∴ 该求积公式的最高代数精度为2次代数精度。
(4)∫f (f )ff f−f ≈f f f (f f )+f f f (f )+f f f (f )解:令f(x)=1,x,x 2,x 3代入有,【注:本例中需求解A 1、A 2、A 3、X 1共4个未知量,故需4个相异求积节点f(x)】{A 1+A 2+A 3=2A 1x 1+0+A 3=0A 1x 12+0+A 3(1)2=23A 1x 13+0+A 3(1)3=0求解得A 1=13,A 2=43,A 3=13,x 1=−1 ∴求积公式为: ∫f (x )dx 1−1≈13f (−1)+43f (0)+13f (1)∵该求积公式对4个相异节点1,x,x 2,x 3均有余项E (f )=0,//注:参见P149定理8.1 ∴该求积公式至少具有3次代数精度。
令f(x)= x 4,代入求积公式有:13(−1)4+0+13(1)4=23∵ 函数f(x) = x 4的定积分结果为:∫x 4dx 1−1=15[(1)5—(−1)5]=25,与求积公式计算值不相等,∴ 该求积公式的最高代数精度为3次代数精度。
(5)∫f (f )ff ff ≈f (f f )+f (f f )解:令f(x)=1,x,x 2代入有,{1+1=2x 1+x 2=2x 12+x 22=83求解得{x 1=1−√33x 2=1+√33或{x 1=1+√33x 2=1−√33∴求积公式为: ∫f (x )dx 20≈f (1−√33)+f (1+√33)∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0,//注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。
令f(x)= x 3,代入求积公式有:(1−√33)3+(1+√33)3=14[24—04]=4∵函数f(x) = x 4的积分结果为:∫x 3dx 20=14[24—04]=4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。
令f(x)= x 4,代入求积公式有:(1−√33)4+(1+√33)4=6.2222 ∵函数f(x) = x 4的积分结果为:∫x 4dx 20=15[25—05]=6.4 ,与求积公式的计算结果不相等, ∴该求积公式的最高代数精度为3次代数精度。
8.3 分别用复化梯形公式,复化Simpson公式,复化Cotes公式计算下列积分:解题要点:复化梯形公式【Tn,Un】-P154\P155,复化Simpson公式【Sn】-P155\P156,复化Cotes 公式【Cn】-P156。
若在积分围划分的小区间数n=2k,则直接用对应的公式从T1、U1开始计算,然后按照T2n、T4n的公式利用前面计算的数据进行计算,若n≠2k,在直接利用梯形求积公式8.7直接计算Tn和Un,再利用Tn、Un求解Sn、Cn。
(1)∫ff+f f ffff,f=f解:由题,设f(f)=ff+f f1)用复化梯形公式求解有//因为n=8=23,本题从T1、U1开始计算,然后按照T2n、T4n的公式利用前面计算的数据进行计算得到T10∵T1=12[f(0)+f(1)]=0.1, //见P154 公式8.7,n=1U1=f(12)=0.11764706 //见P154 Un的计算公式,n=1∴T2=12[T1+U1]=0.10882353//见P155 公式8.8∵U2=12[f(14)+f(34)]=0.11296096∴T4=12[T2+U2]=0.11089224∵U4==14[f(18)+f(38)+f(58)+f(78)]=0.11191244∴T8=12[T4+U4]=0.111402352)用复化Simpson公式求解有:∵S n=4T2n−T n3//见P155 公式8.12∴S8=4T16−T83//由此可知,要求出S8,必须先求出T16,进而得先求出U8∵U8=18∑f(x i+1/2)7i=1=18[f(116)+f(316)+f(516)+f(716)+f(916)+f(1116)+f(1316)+f(1516)]=0.11165540∴T16=12[T8+U8]=0.11152888∴S8=4T16−T83=0.111571063)用复化Cotes公式求解有:∵C n=16S2n−S n15//见P156 公式8.14∴C8=16S16−S815//由此可知需先求出S16,由复化Simpson公式可知需先求出T32,进而得知需先求U16。
∵U16=116∑f(x i+1/2)15i=1=116[f(132)+f(332)+f(532)+f(732)+f(932)+f(1132)+f(1332)+f(1532)+f(1732)+f(1932)+f(2132)+f(2332)+f(2532)+f(2732)+f(2932)+f(3132)]=0.11159294∴T32=12[T16+U16]=0.11156091∴ S 16=4T 32−T 163=0.11157159 ∴ C 8=16S 16−S 815=0.11157163(3)∫f −ffff f f , f=ff解:由题,设f (f )=f −ff1)用复化梯形公式求解有 //因为n=10≠2n,故本题直接用复化梯形公式直接计算得到T10∵ T n =h2[f (a )+f (b )+2∑f (x i )n −1i =1] , h =b −a n=110∴ T 10=120[f (0)+f (1)+2∑f (x i )9i =1],其中x i =a +ih =0.1i∴ T 10=120{f (0)+f (1)+2[f (0.1)+f (0.2)+f (0.3)+f (0.4)+f (0.5)+f (0.6)+f (0.7)+f (0.8)+f (0.9)]}=0.746210802)用复化Simpson 公式求解有: ∵ S n =4T 2n −T n3//见P155 公式8.12∴ S 10=4T 20−T 103//由此可知,要求出S 10,必须先求出T 20,进而得先求出U 10∵ U 10=110∑f (x i +1/2)7i =1=110[f (0.05)+f (0.15)+f (0.25)+f (0.35)+f (0.45)+f (0.55)+f (0.65)+f (0.75)+f (0.85)+f (0.95)]=0.74713088∴ T 20=12[T 10+U 10]=0.74667084 ∴ S 10=4T 20−T 103=0.746824193)用复化Cotes 公式求解有: ∵ C n =16S 2n −S n15//见P156 公式8.14∴ C 10=16S 20−S 1015//由此可知需先求出S 20,由复化Simpson 公式可知需先求出T 40,进而得知需先求U 20。