高中数学会考模拟试题(附答案)教学内容

合集下载

2021年吉林普通高中会考数学模拟试题及答案

2021年吉林普通高中会考数学模拟试题及答案

2021年吉林普通高中会考数学模拟试题及答案注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时.将试卷和答题卡一并交回。

2.本试题分两卷.第1卷为选择题.第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间为100分钟。

3.第1卷选择题的答案都必须涂在答题卡上。

每小题选出答案后.用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后.再选涂其他答案标号。

选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上.注意字迹清楚.卷面整洁。

参考公式:标准差:锥体体积公式: V= 31S底·h其中.s 为底面面积.h 为高,柱体体积公式V=s.h球的表面积、体积公式S= 24R π V=343R π其中.s 为底面面积.h 为高, V 为体积 .R 为球的半径第1卷 (选择题 共50分)一、选择题(本大题共15小题.每小题的四个选项中只有一项是正确的.第1-10小题每 小题3分.第11-15小题每小题4分.共50分)1.设集合M={-2.0.2}.N={0}.则( ). A .N 为空集 B. N ∈M C. N M D. MN2.已知向量(3,1)=a .(2,5)=-b .那么2+a b 等于( ) A (1,11)- B (4,7) C (1,6) D (5,4)-3.函数2log (1)y x =+的定义域是( )222121[()()()]n s x x x x x x n =-+-++-A (0,)+∞B (1,)-+∞C (1,)+∞D [1,)-+∞4.函数sin y x ω=的图象可以看做是把函数sin y x =的图象上所有点的纵坐标保持不变.横坐标缩短到原来的12倍而得到的.那么ω的值为( ) A 14 B 12C 4D 25.在函数3y x =.2xy =.2log y x =.y =.奇函数是( )A 3y x = B 2xy = C 2log y x =D y =6.一个几何体的三视图如图所示.该几何体的表面积是( ) A 3π B 8π C 12π D 14π7.11sin 6π的值为( )A 12-B 2-C 12D 28.不等式2320x x -+<的解集为( )A {}2x x > B {}1x x > C {}12x x << D {}12x x x <>或9.在等差数列{}n a 中.已知12a =.24a =.那么5a 等于( )A .6B .8C .10D .1610.函数45)(2+-=x x x f 的零点为()俯视图左(侧)视图主(正)视图22A .(1,4)B .(4,1)C .(0,1),(0,4)D .1,411.已知平面α∥平面β.直线m ⊂平面α.那么直线m 与平面β的关系是( ) A 直线m 在平面β内 B 直线m 与平面β相交但不垂直 C 直线m 与平面β垂直 D 直线m 与平面β平行12. 在ABC ∆中.如果3a =2b =.1c =.那么A 的值是( )A 2πB 3πC 4πD 6π13.直线y= -12x+34的斜率等于 ( ) A .-12 B .34 C .12 D .- 3414.某城市有大型、中型与小型超市共1500个.它们的个数之比为1:5:9.为调查超市每日的零售额情况.需要通过分层抽样抽取30个超市进行调查.那么抽取的小型超市个数为( )A 5B 9C 18D 2015, .设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩.则2z x y =+的最小值等于 ( )A. 2B. 3C.4D.52021年吉林省普通高中学业考试模拟试题(数学) 注意事项:1.第Ⅱ卷共4页.用蓝、黑色钢笔或圆珠笔直接答在试卷上。

高三数学会考模拟练习及答案

高三数学会考模拟练习及答案

陶行知中学高三数学会考模拟试题班级:______________姓名: ______________成绩:________________一、选择题(每小题3分,共20个小题,共60分)241、若U={1,2,3,4,5},M={1,2},N={2,4},则C U (M ∪N)=( ) A 、{1,2,3} B 、{3,5} C 、{2} D 、Φ2、若直线过点)3,3(-,倾斜角为30°,则该直线方程为( )A 063=--y xB 01233=+-y xC 01233=--y xD 023=+-y x3、sin 690°的值是( ) A 、21 B 、21- C 、23 D 、23-4、数列{a n }的通项公式为12-=n n a ,则它的前n 项和是( )A 、12-⋅n nB 、2n+1C 、2n -1D 、2n -1-1 5、函数235)(2-+-=x x x f 的定义域为( )A 、(1,2)B 、[1,2]C 、(-∞,1)∪(2,+∞)D 、(-∞,1]∪[2,+∞)6、若奇函数f(x)的定义域为R ,则有A 、f (x )>f (-x )B 、f (x )≤f (-x )C 、f (x ) f (-x )≤0D 、f (x )f (-x )<07、在等差数列{a n }中,d=-3,a 7=10,则a 1=( ) A 、-39 B 、28 C 、39 D 、328、如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则( )(A) A x >B x ,sA >sB (B) A x <B x ,sA >sB (C) A x >B x ,sA <sB (D)A x <B x ,sA <sB9、平面α//平面β,直线m ⊂α,直线n ⊂β,则直线m 、n 的位置关系是( ) A 、平行 B 、相交 C 、异面 D 、平行或异面10、函数1sin 4sin 2-+=x x y 的最大、最小值分别为( ) A 、-4,-5 B 、4,-5 C 、-1,-4 D 、4,-411、已知)2,1(=a ,)1,(x b =,且b a 2+与b a -2平行,则x=( )A 、1B 、2C 、31D 、2112、不等式012≥+-x x 的解集为:( ) A .{}21≤≤-x x ;B{X<-1X >=2};C.{}21>-≤x x x 或;D.{}21<<-x x13、已知)0,2(π-∈x ,cosx =54,则tan2x =( ) A 、247 B 、247- C 、724 D 、724-14、某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( )(A )7 (b )15 (C )25 (D )3515、在等差数列{a n }中,如果a 2+a 4=m ,a 3+a 5=n ,则此数列前6项的和S 6=( )A 、m+nB 、)(45n m -C 、)(23n m + D 、2(m+n )16、在两个袋内,分别装着写有数字0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,则数字之和等于7的概率为( )A 、31B 、61C 、91D 、12117、过点(0,1)的直线与圆422=+y x 相交于A,B 两点,则|AB|的最小值为( ) A.2 B.32 C. 3 D.5218、长方体一个顶点上三条棱的长分别为3,4,5,且它的八个顶点都在同一球面上,则这个球的表面积是( )A 、π220B 、π225C 、π50D 、π20019、直角边之和为12的直角三角形面积的最大值等于( ) A 、16 B 、18 C 、20 D 、不能确定20、偶函数y=f(x)在区间(-∞,-1]上是增函数,则下列不等式成立的是( ) A 、)33()1(f f >- B 、)3()2(f f >- C 、)2()2(->f f D 、)3()21(f f >-二、填空题(每小题3分,共4个小题,共12分)21、将容量为n 的样本中的数据分成6组,绘制频率分布直方图。

2021年河北数学高三水平会考模拟试题及答案

2021年河北数学高三水平会考模拟试题及答案

2021-2021年河北数学高三水平会考模拟试题及答案班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.如图,,,M、N分别是BC、AB的中点,沿直线MN将折起,使二面角的大小为,则与平面ABC所成角的正切值为()A. B. C. D.【答案】C【解析】试题分析:设.过作,垂足为,则,,.考点:空间的二面角及线面角.2.执行下边的程序框图,输出m的值是().A.3B.4C.5D.6【答案】A【解析】试题分析:第一次执行循环体时:,,,选择“否”;第二次:,,,选择“否”;第三次:,,,选择“是”,故此输出的值为3.正解答案选A.考点:1.程序框图;2.幂运算.3.若tanα=3,,则tan(α﹣β)等于()A.﹣3B.C.3D.【答案】D【解析】∵tanα=3,∴故选D4.在等比数列( )A.B.4C.D.5【答案】B【解析】因为,又,所以,选B.5.某算法程序框图如图所示,若,则输出的结果是()A.B.C.D.【答案】D【解析】试题分析:根据框图可知,输出的是最大的数. ,所以,即. 又,所以.所以输出的为.考点:1、程序框图;2、比较大小.6.设全集是实数集R,,,则()A.B.C.D.【答案】A【解析】试题分析:∵,∴,故选A.考点:集合的补集与交集运算.7.已知是的一个零点,,则 ( )A.B.C.D.【答案】C【解析】试题分析:因为,函数在是单调减函数,所以,当是的一个零点时,在的两侧,函数值异号;如果,应有,故选C.考点:函数零点存在定理,函数的单调性.8.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则线段AB的中点M到原点的距离的最小值为( )A.2B.3C.3D.4【答案】C【解析】由题意知,M 点的轨迹为平行于l 1,l 2且到l 1,l 2距离相等的直线l,其方程为x+y-6=0, ∴M 到原点的距离的最小值d==3.9.已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+,则f(-1)=( ) A .-2 B .0 C .1 D .2【答案】A【解析】f(-1)=-f(1)=-2.10.已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题: ①若,,则;②若,,且,则;③若,,则; ④若,,且,则.其中正确命题的序号是( )A .①④B .②③C .②④D .①③【答案】B 【解析】 试题分析:当,时,有、等多种可能情况,所以①不正确;当,且时,由平面垂直的判定定理知,所以②正确;因为,,所以,③正确; ④若,,且,则或相交,其不正确,故选B.考点:平行关系,垂直关系. 评卷人 得 分二、填空题11.若x ,y 满足约束条件,则的最大值是.【答案】0【解析】约束条件的可行域如图所示,即△ABC 部分,目标函数过A(0,O3)时值最大,最大值为1-1=0.【考点】线性规划.12.设均为正实数,且,则的最小值为____________.【答案】16【解析】试题分析:由,化为,整理为,∵均为正实数,∴,∴,解得,即,当且仅当时取等号,∴的最小值为16,故答案为:16.考点:基本不等式.13.若海上有A、B、C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B、C间的距离是________海里.【答案】5【解析】由正弦定理,知,解得BC=5(海里).14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为.【答案】13+23+33+43+53+63=212【解析】由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.15.已知函数,函数,若存在,使得成立,则实数的取值范围是.【答案】.【解析】试题分析:当时,,此时函数单调递减,则有,,当,,此时,则函数在上单调递增,,即,故函数在上的值域为,,所以,所以,由于,,,故有或,解得.考点:1.函数的值域;2.存在性命题评卷人得分三、解答题16.某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.【答案】(1)(2)【解析】分析:根据韦恩图,正确理解“只属”、“最多”.从图中可以看出,3个球队共有20名队员.(1)记“随机抽取一名队员,该队员只属于一支球队”为事件A,则P(A)==.故随机抽取一名队员,该队员只属于一支球队的概率为.(2)记“随机抽取一名队员,该队员最多属于两支球队”为事件B,则P(B)=1-P(B)=1-=.故随机抽取一名队员,该队员最多属于两支球队的概率为.17.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐【答案】(2,2),【解析】因为直线l的参数方程为(t为参数),由x=t+1,得t=x-1,代入y =2t,得到直线l的普通方程为2x-y-2=0.同理得到曲线C的普通方程为y2=2x.联立方程组解得公共点的坐标为(2,2),18.设△ABC的内角A,B,C所对的边分别为a,b,c.已知a=1,b=2,.(1)求边c的长;(2)求cos(A﹣C)的值.【答案】(1)2 (2)【解析】(1)由,结合已知条件及向量的数量积的定义可求cosC,然后利用c2=a2+b2﹣2abcosC可求c(2)由(1)中所求cosC,利用同角平方关系可求sinC,然后结合正弦定理及三角形的大边对大角可判断A为锐角,进而可求cosA=,最后代入cos(A﹣C)=cosAcosC+sinAsinC可求(1)由,得abcosC=.…(2分)因为a=1,b=2,所以,…(4分)所以c2=a2+b2﹣2abcosC=4,所以c=2.…(7分)(2)因为,C∈(0,π),所以sinC==,…(9分)所以=,…(11分)因为a<c,所以A<C,故A为锐角,所以cosA==所以cos(A﹣C)=cosAcosC+sinAsinC=…(14分)考点:平面向量数量积的运算;两角和与差的余弦函数;余弦定理点评:本题主要考查了同角平方关系、正弦定理及余弦定理、和差角公式的综合应用,解题的关键是公式的熟练掌握19.中央电视台星光大道某期节目中,有5位实力均等的选手参加比赛,经过四轮比赛决出周冠军(每一轮比赛淘汰l位选手).(1)求甲、乙两位选手都进入第三轮比赛的概率;(2)求甲选手在第三轮被淘汰的的概率.【答案】(1)(2)【解析】试题分析:(1)由于甲、乙两位选手都进入第三轮比赛,故第一、第二轮淘汰的是另三位选手中的两位选手,所以甲、乙两位选手都进入第三轮比赛的概率为6分(2)甲选手在第三轮被淘汰的概率为 12分考点:古典概型点评:主要是考查了古典概型的概率的计算,结合组合数公式来得到,属于基础题。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D)3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2(B )2-(C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m << (C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π- (B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是(A ) (B ) (C )(D )11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 (A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质: (1)定义域是{x | x ∈R ,且x ≠0}; (2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是 (A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55 (C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2(B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-4CADB20.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____. 23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。

高中数学会考模拟试题(附答案)

高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每题5分,总分值60分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,那么=)(B C A U 〔 〕A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为〔 〕 A .6π B .3π C .23π D .56π3.函数y = 〕A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞4.某赛季,甲、乙两名篮球运发动都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,那么甲、乙两名运发动得分的平均数分别为〔 〕 A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,那么点P 到点A 的距离小于1的概率为〔 〕A .4π B .14π- C .8π D .18π-6.向量a 与b 的夹角为120,且1==a b ,那么-a b 等于〔 〕 A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示〔单位:cm 〕,〔 A .212cm π B. 215cm π C. 224cm πD. 236cm π8.假设372log πlog 6log 0.8a b c ===,,,那么〔 〕 A . a b c >> B . b a c >> C . c a b >>D . b主视图6侧视图图2图19.函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,那么函数)(x f 的解析式是〔 〕A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,那么这个三角形最小角的余弦值为〔 〕A .378 B .34C .74D .18 11.在等差数列{}n a 中, 284a a +=,那么 其前9项的和9S 等于 ( )A .18B .27C .36D .912.实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 那么z=y-x 的最大值为〔 〕A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是〔 〕A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫⎝⎛-0,21 C .⎪⎭⎫ ⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是〔 〕 A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于〔 〕 A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M 〔3,0〕作圆的割线l ,使它被该圆截得的线段最短,那么直线l 的方程是〔 〕A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每题5分,总分值20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,假设输入的x 值为3, 那么输出的()h x 的值为 .19.假设函数84)(2--=kx x x f 在[]8,5上是单调函数,那么k的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,那么这个球的外表积是21.两条直线82:,2)3(:21-=+=++y mx l y m x l . 假设21l l ⊥,那么m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,总分值80分. 解答须写出文字说明、证明过程和演算步骤. 24.〔本小题总分值10分〕在△ABC 中,角A ,B ,C 成等差数列.〔1〕求角B 的大小;〔2〕假设()sin A B +=sin A 的值.25.:a 、b 、c 是同一平面内的三个向量,其中a =〔1,2〕 〔Ⅰ〕假设|c |52=,且a c //,求c 的坐标; 〔Ⅱ〕假设|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.〔本小题总分值12分〕如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.〔1〕求证://PB 平面ACE ;〔2〕假设四面体E ACD -的体积为23,求AB 的长.图427.〔本小题总分值12分〕某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取假设干人组成调查小组,有关数据见下表〔单位:人〕 〔1〕求x ,y 的值;〔2〕假设从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. 〔本小题总分值12分〕数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.〔1〕求数列{}n a 与{}n b 的通项公式;〔2〕求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. 〔本小题总分值12分〕直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S 〔其中O 为坐标原点〕.〔1〕当0k =,02b <<时,求S 的最大值; 〔2〕当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查根本知识和根本运算.共4小题,每题5分,总分值20分.13.()22225x y ++=〔或224210x y y ++-=〕 14.915.()0,+∞〔或[)0,+∞〕 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:〔1〕在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.〔2〕方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由〔1〕知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解〔Ⅰ〕设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分〔Ⅱ〕0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……〔※〕 ,45)25(||,5||222===b a 代入〔※〕中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.〔1〕证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .〔2〕解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,那么PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:〔1〕由题意可得,3243648x y==, 解得2x =,4y =.〔2〕记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,那么从兴趣小组A ,B 抽取的5人中选2人作专题发言的根本领件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,那么X 包含的根本领件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 应选中的2人都来自兴趣小组B 的概率为310.28.解:〔1〕因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. 〔2〕由〔1〕可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 那么 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:〔1〕当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.〔2〕设圆心O 到直线2y kx =+的距离为d,那么d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB d k=⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

高中会考练习题及讲解数学

高中会考练习题及讲解数学

高中会考练习题及讲解数学### 高中数学会考练习题及讲解#### 一、选择题1. 题目:已知函数 \( f(x) = 3x^2 - 4x + 5 \),求导数 \( f'(x) \)。

选项:A. \( 6x - 4 \)B. \( 9x - 4 \)C. \( 3x + 1 \)D. \( 6x + 2 \)2. 题目:已知三角形 ABC 的三边长分别为 a, b, c,且满足\( a^2 + b^2 = c^2 \),该三角形是:选项:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定#### 二、填空题1. 题目:圆的面积公式为 \( A = πr^2 \),如果半径 r = 4,那么圆的面积是 ________。

2. 题目:已知等差数列的首项为 2,公差为 3,求第 10 项的值。

#### 三、解答题1. 题目:解不等式 \( |x - 3| + |x + 2| \geq 5 \)。

2. 题目:已知函数 \( y = x^3 - 3x^2 + 2 \),求函数的极值点。

#### 四、综合题1. 题目:某工厂生产一种产品,其成本函数为 \( C(x) = 1000 +50x \),收入函数为 \( R(x) = 150x - x^2 \)。

求工厂的盈利函数\( P(x) \) 并找出盈利最大时的产量 x。

#### 练习题讲解1. 选择题讲解:- 第一题:求导数,\( f'(x) = 6x - 4 \),故选 A。

- 第二题:根据勾股定理的逆定理,是直角三角形,故选 B。

2. 填空题讲解:- 第一题:将 r = 4 代入面积公式,得 \( A = 16π \)。

- 第二题:等差数列的第 n 项公式为 \( a_n = a_1 + (n - 1)d \),代入得 \( a_{10} = 2 + 3 \times (10 - 1) = 29 \)。

3. 解答题讲解:- 第一题:分情况讨论,当x ≤ -2 时,不等式变为 \( -2x - 1 \geq 5 \);当 -2 < x < 3 时,不等式变为 \( 5 \geq 5 \),恒成立;当x ≥ 3 时,不等式变为 \( 2x + 1 \geq 5 \),解得x ≥ 2。

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)一、单选题1.设全集{}0,1,2,3,4U =,已知集合{}{}0,1,2,0,2,3A B ==,则如图所示的阴影部分的集合等于( )A .{}0,2B .{}3C .{}3,4D .{}1,4【答案】B【分析】根据韦恩图得解【详解】因为{}{}0,1,2,0,2,3A B ==,阴影部分表示的集合为(){}3U C A B =,故选:B 2.复数13ii=+( ) A .311010i - B .311010i + C .131010i - D .131010i + 【答案】B【分析】直接利用复数代数形式的乘除运算化简即可.【详解】因为复数()()()13131313i i i i i i -=++- 331101010i i +==+. 故选:B【点睛】本小题主要考查复数的除法运算,属于基础题.3.从2019年末开始,新型冠状病毒在全球肆虐.为了研制新型冠状病毒疫苗,某大型药企需要从150名志愿者中抽取15名志愿者进行临床试验,现采用分层抽样的方法进行抽取,若这150名志愿者中老年人的人数为50人,则老年人中被抽到进行临床试验的人数是( )A .15B .10C .5D .1【答案】C【分析】根据分层抽样中抽样比公式进行求解即可.【详解】设老年人中被抽到进行临床试验的人数是x ,因此有15050515x x=⇒=, 故选:C4.若sin αcos α0<,则角α的终边位于 A .第一、二象限 B .第二、三象限C .第二、四象限D .第三、四象限【答案】C【分析】由sin αcos α0<可得sin α0,cos α>0<⎧⎨⎩ 或sin α>0,cos α0⎧⎨<⎩又三角函数在各个象限的符号可求角α的终边所在象限.【详解】由sin αcos α0<可得sin α0,cos α>0<⎧⎨⎩ 或sin α>0,cos α0⎧⎨<⎩当sin α0cos α>0<⎧⎨⎩时角α的终边位于第四象限,当sin α>0cos α0⎧⎨<⎩时角α的终边位于第二象限.故选C.【点睛】本题考查角函数在各个象限的符号,属基础题. 5.若一组数据的茎叶图如图,则该组数据的中位数是A .79B .79.5C .80D .81.5【答案】A【分析】由给定的茎叶图得到原式数据70,71,72,76,82,82,85,87,再根据中位数的定义,即可求解.【详解】由题意,根据给定的茎叶图可知,原式数据为:70,71,72,76,82,82,85,87, 再根据中位数的定义,可得熟记的中位数为7682792+=,故选A. 【点睛】本题主要考查了茎叶图的应用,以及中位数的概念与计算,其中真确读取茎叶图的数据,熟记中位数的求法是解答的关键,属于基础题. 6.()cos 1050︒-的值为( )A .B .C .12-D .12【答案】A【分析】将1050-︒表示为360k α︒⨯+的形式,利用诱导公式求解. 【详解】1050360330-︒=-⨯+︒,根据诱导公式:()cos 1050cos30-︒=︒=故选:A.【点睛】本题考查诱导公式的使用,属基础题.7.直线1:310l x y ++=和直线2:2610l x y -+=的位置关系是 A .重合 B .垂直C .平行D .相交但不垂直【答案】B【分析】由两直线的斜率关系可得结论.【详解】因为已知两直线的斜率分别为13k =-,213k =,121k k =-,所以12l l ⊥. 故选:B .【点睛】本题考查两直线的位置关系,掌握两直线位置关系的判断方法是解题关键.在斜率都存在的情况下,121k k =-⇔两直线垂直,12k k =且纵截距不相等⇔两直线平行.8.下列函数中,在区间(0,1)上是递增函数的是 A .y =|x +1| B .y =3﹣xC .y 1x=D .24y x =-+【答案】A【分析】根据基本初等函数的单调性,分别求得选项中函数的单调性,即可作出判定,得到答案.【详解】由题意,对于A 中,函数1,111,1x x y x x x +≥-⎧=+=⎨--<-⎩,函数在[1,)-+∞上单调递增,可得在区间(0,1)也单调递增,所以是正确的;对于B 中,函数3y x =-在R 上单调递减,在区间(0,1)也单调递减,所以是不正确的; 对于C 中,函数1y x=在(0,)+∞上单调递减,在区间(0,1)也单调递减,所以是不正确的;对于D 中,函数24y x =-+在(0,)+∞上单调递减,在区间(0,1)也单调递减,所以是不正确的. 故选A.【点睛】本题主要考查了基本初等函数的单调性的判定及应用,其中解答中熟记基本初等函数的单调性是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.若数列{}n a 满足:11a =,12n n a a +=(*n N ∈),则5a =( ) A .8 B .16C .32D .9【答案】B【分析】根据等比数列的定义,结合等比数列的通项公式进行求解即可. 【详解】由1122n n n na a a a ++⇒==,所以数列{}n a 是以2为公比的等比数列, 又因为11a =,所以11122n n n a --=⨯=,因此51452216a -===,故选:B10.不等式2450x x +->的解集为( ) A .()1,5- B .()5,1-C .()(),15,-∞-+∞D .()(),51,-∞-⋃+∞【答案】D【分析】根据一元二次不等式的解法进行求解即可.【详解】2450(5)(1)01x x x x x +->⇒+->⇒>或5x <-, 故选:D11.《易经》是中国文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(——表示一根阳线,一一表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有1根阳线和2根阴线的概率为( )A.18B.14C.38D.12【答案】C【分析】直接根据概率公式计算即可.【详解】从八卦中任取一卦,基本事件有188C=种,其中恰有1根阳线和2根阴线,基本事件共有3种,∴从八卦中任取一卦,这一卦的三根线中恰有1根阳线和2根阴线的概率为38 p=故选:C【点睛】具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.12.以下函数图象中为奇函数的一项是()A.B.C.D.【答案】A【分析】根据奇函数的性质进行判断即可.【详解】因为奇函数的图象关于原点对称,所以只有选项A 符合, 故选:A13.已知向量()1,1AB =,()2,1BC =-,则AC =( ) A .5 B .5C .3D .3【答案】B【分析】先把向量AB 和BC 相加得到向量AC 的坐标,再利用向量AC 的坐标算出向量AC 的模长.【详解】(1,1)(2,1)(1,2)AC AB BC =+=+-=-, ()22125AC =-+=.故选:B .14.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A .点()2,3B .点()2,4C .点()3,4D .点()2.5,5【答案】C【分析】根据线性回归方程必过样本中心点进行求解即可. 【详解】因为323413573,444x y ++++++====,所以y 关于x 的回归方程必过点()3,4, 故选:C15.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为 A .12π B .16π C .20π D .24π【答案】A【分析】先求出外接球的半径,再求球的表面积得解. 【详解】由题得正方体的对角线长为3 所以23=2,3,=43=12R R S ππ∴=球. 故选A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题16.AB AD -=________. 【答案】DB【分析】根据平面向量减法的几何意义进行求解即可.【详解】由平面向量减法的几何意义可知:AB AD DB -=, 故答案为:DB17.等比数列{}n a 的首项11a =,48a =,则4S =___________. 【答案】15【分析】设等比数列{}n a 的公比为q ,根据题中条件求出q 的值,再利用等比数列求和公式可计算出4S 的值. 【详解】11a =,48a =,所以3418a q a ==,所以2q ,因此,()()4414111215112a q S q-⨯-===--,故答案为15.【点睛】本题考查等比数列求和,对于等比数列,一般是通过建立首项和公比的方程组,求出这两个量,再结合相关公式进行计算,考查运算求解能力,属于中等题. 18.lg0.01+log 216=_____________. 【答案】2【详解】lg0.01+log 216=-2+4=2【解析】本题考查对数的概念、对数运算的基础知识,考查基本运算能力.19.已知()y f x =是定义在R 上的奇函数,且当0x >时,()12xf x =+,则(3)f -=________.【答案】-9【详解】()y f x =是定义在R 上的奇函数,所以()()()333129f f -=-=-+=-.答案为:-9.20.在ABC 中,若30A =︒,AB =2AC =,则ABC 的面积S 是________.【分析】利用公式1sin 2s bc A =即可. 【详解】1sin 2s bc A =12sin 302s ∴=⨯⨯︒=【点睛】本题考查三角形的面积公式,要根据不同条件灵活选择1sin 2s ab C =,1sin 2s ac B =,1sin 2s bc A =三个公式.三、解答题21.已知α为锐角,且3sin 5α=. (1)求cos α的值. (2)求sin 24απ⎛⎫+ ⎪⎝⎭的值.【答案】(1)45;(2【分析】(1)根据同角的三角函数关系式中的平方和关系进行求解即可; (2)根据正弦、余弦的二倍角公式,结合两角和的正弦公式进行求解即可.【详解】(1)因为α为锐角,且3sin 5α=,所以4cos 5α===;(2)因为3sin 5α=,4cos 5α=,所以3424sin 22sin cos 25525ααα==⨯⨯=,2247cos 22cos 12()1525αα=-=⨯-=,因此247sin 2sin 2cos cos 2sin 444252252ππαααπ⎛⎫+=+=⨯+⨯= ⎪⎝⎭22.设n S 为等差数列{}n a 的前n 项和,57a =-,555S =-. (1)求{}n a 的通项公式; (2)求n S 的最小值及对应的n 值.【答案】(1)217n a n =-;(2)当8n =时,n S 的值最小,且864.S =- 【分析】(1)利用等差数列的通项公式以及前n 项和公式即可求解. (2)利用等差数列的前n 项和公式配方即可求最值. 【详解】解:(1)设等差数列{}n a 的公差为d .由题意可得515147,54555,2a a d S a d =+=-⎧⎪⎨⨯=+=-⎪⎩解得115,2a d =-=.故11()217n a a n d n =+-=-. (2)由(1)可得()2116.2n n n n S na d n n -=+=- 因为28()64,n S n =--所以当8n =时,n S 取得最小值,最小值为864.S =-23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形, PA ⊥平面ABCD ,且PA AD =,点E 为线段PD 的中点.(1)求证://PB 平面AEC ; (2)求证:AE ⊥平面PCD . 【答案】(1)见解析(2)见解析【详解】试题分析:(1)连结,AC BD 交于点0,连结OE ,通过中位线的性质得到//PB OE ,由线面平行判定定理得结果;(2)通过线面垂直得到AE ⊥ CD ,通过等腰三角形得到AE ⊥ PD ,由线面垂直判定定理可得AE ⊥平面PCD .试题解析:(1)证明:连结,AC BD 交于点0,连结OE ,∵四边形ABCD 为正方形,∴O为AC 的中点,又∵E 为PC 中点,∴OE 为PBD △的中位线 ∴ //PB OE ,又∵,,OE AEC PA AEC ⊂⊄面 //PB 平面AEC .(2)∵四边形ABCD 为正方形,∴ AD CD ⊥,PD CD ⊥,∴CD ⊥面PAD ∴AE ⊥ CD ,又∵PA AD =,E 为PD 中点 ∴AE ⊥ PD ,∴AE ⊥面PCD .点睛:本题主要考查了线面平行的判定,面面平行的判定,属于基础题;主要通过线线平行得到线面平行,常见的形式有:1、利用三角形的中位线(或相似三角形);2、构造平行四边形;3、利用面面平行等;垂直关系中应始终抓住线线垂直这一主线.. 24.如图,动物园要围成一个长方形的虎笼.一面可利用原有的墙,其他各面用钢筋网围成.现有可围36m 长网的材料,虎笼的长、宽各设计为多少时,可使虎笼面积最大?【答案】虎笼的长、宽各设计为18m,9m 时,可使虎笼面积最大【分析】设虎笼的长为m x ,宽为m y ,根据已知可得236x y +=,求出虎笼面积的表达式,最后利用消元思想、基本不等式进行求解即可. 【详解】设虎笼的长为m x ,宽为m y ,因此有236x y +=,设虎笼面积为S ,所以218(362)2(18)2()1622y y S xy y y y y -+==-=-≤⋅=, 当且仅当18y y -=时取等号,即9,18y x ==时,S 有最大值,最大值为162, 所以虎笼的长、宽各设计为18m,9m 时,可使虎笼面积最大.25.已知以点()1,2A -为圆心的圆与直线1l :270x y ++=相切,过点()2,0B-的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点.(1)求圆A 的方程;(2)当MN =时,求直线l 的方程.【答案】(1)22(1)(2)20x y ++-=;(2)2x =-或3460x y -+=.【分析】(1)设出圆A 的半径,根据以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切.点到直线的距离等于半径,我们可以求出圆的半径,进而得到圆的方程;(2)根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,我们可以结合直线l 过点(2,0)B -,求出直线的斜率,进而得到直线l 的方程. 【详解】(1)设圆A 的半径为R ,由于圆A 与直线1:270l x y ++=相切,R ∴== ∴圆A 的方程为22(1)(2)20x y ++-=;(2)①当直线l 与x 轴垂直时,易知2x =-符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为(2)y k x =+,即20kx y k -+=,连接AQ ,则AQ MN ⊥||MN =||1AQ ∴=, 则由||1AQ ==,得34k =,∴直线:3460l x y -+=. 故直线l 的方程为2x =-或3460x y -+=.【点睛】本题考查的知识点是直线和圆的方程的应用、直线的一般式方程和圆的标准方程,其中(1)的关键是求出圆的半径,(2)的关键是根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,求出弦心距(即圆心到直线的距离).。

山东省高中会考数学模拟试题两份带答案

山东省高中会考数学模拟试题两份带答案

B 至少一个白球;至少一个黑球
C 至少一个白球;一个白球一个黑球
D 至少一个白球,红球、黑球各一个
9、已知 sin cos 1 ,0 ,则sin cos 的值是
3
A
2
8
1
B
4
பைடு நூலகம்
2
2
B 2个
D 0个
B 四棱柱
0
0或1
C
3
深的入精贯习神彻中部和落纪选。要实委拔深锋求中机任入队,为央关用学员”特的和、工习装的别情省组中作《、标本是形、织央坚条中统准质“和市原组守例源国一和九处委则织为、》,共思条使个分关、部人遵等标 弘产想件命严规于优《做守法准 扬党行章;,禁定从良关事党规和 党地动党学进止。严作于的章制条 的方个,规习一、治风加基县、度件 优委全认。党步九党动,强准处维,。 良员面真着规明个的实牢换和级护学认 传会”学,眼确一重效记届底以党习教真 统工战习充明要“律大;入风线上章市育学 和作略习中分确掌四”决要党气。党,委、习 作条布近、展基握个纪策在充誓监员坚加全理《 风例局平五示本廉服律部学分词督领定强体论中 ;》、总中共标洁从要,署,发的导理领党武国 深《贯全全产准自”求做。关挥牢通(干想导员装共 刻中彻市会党、律的,合键机记知川部(区信班学。,产 汲国落X精人树准要重格在关党》委要二X域念子习根进党 取共实年神的立则求点党系做党的和办学)中;思党据一廉 违产五在,优行规掌员统。组宗中〔深学心认想章省步洁 纪党大全进良为定掌握”先要织旨央2一系全 关”真政,委坚自 违党0发体一风规的握“学深战,、1层列体 于提学治要办定律 法组6展党步貌范“四习〕入斗深省,讲党 在供习建深公理准 反工理题员巩和,四的个教1学堡入委系话员 全坚党设入4厅想则 面作念学中固时组个领廉育号习垒领、统。讲 体强的领个印信》 典条,习开拓代织必导洁实)贯作会市学着定党保历实会专。发念《 型例实讨展精和须干”施和彻用党委习眼理课 员证史施党题的,中(现一”论“党神引部方《习和员有领加想, 中。意的组《提国 的试X、学 制,的;导“必四案中近党条关悟强X信支 开学见性织关高共 教行二总习 度按党群要广四须个〉共事平员件严党理念部 展习等质讨于党产 训)、体讨 要照章众带大个具自的X业总先和肃章论,书 “革制、论照在性党 ,》主X要论 求“党路着坚备觉通“书锋义换,武学明记命度市宗,入全觉纪 自《要求” ,四规线问员持的知十记模务届深习确给 党先文委旨每党省悟律 觉内。 党个、教题逐”六,》三头开系范、纪刻教政支 章辈件办、个志党;处 讲政容,以 小讲学育条项(五落展列作权律把育治部 党和,公指专愿员要分 政领带党 组(系实,逐掌基X”于实“重用利握动方党 规先学室导题谈中坚条 治导X头组 每课一列践针句握本发“全两要,“委员向、进关思集理开持例 、干观严中 月”)讲活对通各条展七面学讲领明两办部”讲 学典于想中想展学》 讲,守心 底要学话动问读类件良定个从一话导确个〔署、党 系型印学、“用等 规温在政组求党,和题违好共有严做,带先2,“课 列发奋习谈学结党 矩入推0关治形 织,做“改章纪开产之治”全头合1以坚,用〈斗讨信党合内 、讲动6键纪式 一开合三,行局党”学面、格〕华党持邀好关目论念章、法 守话志改时律, 次展格严进明和人“责习贯以党2民支根请红于标不,党创规 纪愿革8刻和定 党三一确“性理五任教彻上号族部本党色在、得对规先, 律做和发保站政期 员组实步做决锻想个。育落率)优为宗校教全少照、争尊 ,合入展持得治组 集班”坚合胜,炼信必实下,三秀单旨教育市于入学优崇格党稳公出规织 中子学专持格全向和念须基党,结、,传位师资党1党系,誓定仆,矩集 学成习题问党天面党道,”础的为合主站统开敢、员讲誓列进章员词实情危,中 习员教题。小的德牢等十协我要稳美展于专中规词讲一”,践怀险带学 。到育导的康理修固重八调”局(措政德一担家开矩找话步学交中精,时头习 支联(成向、论养树要大推中实三施治,次当学展、标,强习流建神牢候, 部系以果建和,立论进奋际)全立筑主作者“有(准做化教思功,记豁固每区下;注成路心党述十“发,开面场牢题为给学国纪一、合宗育想立推共得树次 季县简要重线存的,八四有现展从,拒党”特律)找格旨实体业动产出立确 度X称突活方敬意认届为制“严把腐日、员章X色,开差党观施会。X党,和定 召“出述针畏识真三、定四局治理防活“干党X社讲展距员念方。《员在贯1开两正县,政、践中加建如个带个党想变动坚部规会道“。”案党永X彻一学面(处领策手党行、快功下讲头专等信的,守讲、X主德两党学干委远落次党一二级会看握员“四发立实党事讲题方念防组纪党学义、重支习部会是实全中做)以贯齐戒意三展业施课党开新面时线织律课系道有温部教要读的劳五体央”开上穿,尺识严、。方”“课展要的时;党底,列路品两书育讲本工动大党决学展其认,三科案。十,交中求深处始员线鼓讲全、行对记方话)作人发员定习“中真廉强实学习党三局流国,刻处终重励话体“,照作案精》方民展会,教三领的贯洁化”发系支五党研特坚内体保温树普党建五讲”学》神为法的理议2育个导马彻从党要展列部”组讨0理 情色持涵现入立通员位奉主习。基1》普念,)干克省政的求、讲要规书6。念 怀社以和为干党清要与一献题动本纳通,分县部思委、宗和话结划记按怎 、会知要行事志风员坚全体、党员教入一带别处要主、从旨好谐,合开给照么 务主促求动创愿正、持面”有日,材学员头围级义市严意干发要专局“办 实义行。的业、气学建总作活领,习,攻绕以做立委治识部展重起三、 思要力重”做成体为动导深内密坚“上结场决家,标。点步会新 想“知着量开温3结小的布。干入容切克坚党合观策,积准学、一战 作四行重;拓入(合康要局合4部学。联难员,月点部带极,习“课略 风个合学坚进党三,社求、格带习深系、干对底方署头践带《决怎 。全一习定取誓)坚会和“党头《入群敢部照前法,弘行头习胜么 要面,领正的词做相内四员重习领众于要习,做扬社坚近全干 深”做会确精,合适容个。近会,担以近结领政社会定平面” 入战讲习的气对格应;全引平关全当《平合会治主理总小学 领略政近神党、重面导总于心,习总贯上主义想书康习 会布治平,员有点”党书改全带近书穿的义核信记、研 我局、总方平。效学战员记革意平记其明核心念系建讨 国、有书向常着服习略强系发为谈关中白心价列成; 发五信记,时眼务习布化列展人治的人价值重区注 展大念来经候党国近局政重稳民国坚;值要域重 战发,川常看和家平、治要定服理定践体讲中同 略展视主得国治总五意讲、务政信行系话心X机理察动出家书大识话内;》X仰党和读遇念重向,事和记发,读工政加《追的中本、要党业“对展保本作外强习求宗(中社讲的五四理持(“交党近、旨2会话央新位川念政02存国平历,10主和看发一工、治61凭防总年史6义系齐展体年作全本、、书版担核列对”版的面色留治记)当心重党建)系深史党重》意价要员设》列化、治要,识值指的,改资国讲重、观示X要革政治话点真X和将、、事军文领挚全毛育业的章会为面泽人发重选理民从东”展要编想严同的体论(信治志作系领念党用。导、等结中全方合国体面起梦党来、员,学加快

(完整word版)高中数学会考两套模拟试卷(附答案)

(完整word版)高中数学会考两套模拟试卷(附答案)

高二数学会考模拟试卷一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于()A {}1B {}3,2,0C {}3,2,1,0D {}3,2,12、b a >,则下列各式正确的是( ) A 22+>+b aB b a ->-22C b a 22->-D 22b a >3、函数12)(2+=x x f 是()A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数4、 点A (0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=5、在空间中,下列命题正确的是( ) A 平行于同一平面的两条直线平行 B 平行于同一直线的两个平面平行 C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行6、已知,a b R +∈,且1ab =,则a b +的最小值是( ) A1 B2C3D47、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是( )A OC AB = B AB ∥DEC BE AD = D FC AD = 8、已知向量(3,1),(1,2)a b =-=-,则2a b -=( ) A (7,0) B (5,0)C (5,-4)D (7,-4)9、“0=x ”是“0=xy ”的( ) A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件10、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y = C 24y x = D 24x y =11、不等式0)2)(1(<++x x 的解集是( ) A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或12、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭D 21y x =-13、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11614、5(12)x -的展开式中2x 的系数是 ( ) A10 B -10 C40 D -4015、双曲线19422=-y x 的离心率是 ( ) A 32B 49 C25 D 213 16、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( ) A60个 B30个 C24个 D12个17、若α∈(0,2π),且sin α=54,则cos2α等于( )A257 B —257 C1 D 5718、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 19、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或420、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为 ( )B C21、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k +=--有( ) A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。

高三会考数学模拟试卷答案

高三会考数学模拟试卷答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |2|D. |-2|答案:B2. 函数f(x) = 2x + 3的图像是()A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像答案:A3. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10 =()A. 29B. 28C. 27D. 26答案:A4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则a^3 > b^3C. 若a > b,则a^2 > b^2D. 若a > b,则a^3 < b^3答案:B5. 若log2x + log2y = 3,则xy的值为()A. 2B. 4C. 8D. 16答案:C6. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 4答案:B7. 函数y = (x - 1)^2 + 3的图像是()A. 抛物线B. 直线C. 双曲线D. 椭圆答案:A8. 已知等比数列{an}的首项a1 = 3,公比q = 2,则第5项a5 =()A. 24B. 12C. 6D. 3答案:A9. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3答案:B10. 已知函数f(x) = |x| + 1,则f(-1)的值为()A. 0B. 1C. 2D. 3答案:C11. 若log2x - log2y = 1,则x与y的比值为()A. 2B. 1/2C. 4D. 1/4答案:A12. 圆的标准方程为(x - 2)^2 + (y - 3)^2 = 25,则该圆的圆心坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A二、填空题(本大题共8小题,每小题5分,共40分)13. 若等差数列{an}的首项a1 = 3,公差d = 2,则第n项an = _______。

安徽普通高中会考数学真题及答案

安徽普通高中会考数学真题及答案

2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。

因此,答案为A。

2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。

3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(本大题共19个小题,每小题3分,共57分;在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合P={0,2,4},Q={0,1,3,5},则P∪Q=A){0} B){7} C){0,1,2,3,4,5} D)φ 2.函数y =A)[2,+∞) B )[-2,+∞) C)(-∞,-2] D)(-∞,2] 3.在正方体ABCD -A1B1C1D1中,BC1与AC 所成角为A)30° B)45° C)60° D)90°4.函数11||y x =-A)是奇函数但不是偶函数 B)是偶函数但不是奇函数 C)既是奇函数又是偶函数 D)既不是奇函数又不是偶函数 5.已知数列{}n a 满足11a =,12n n a a +=+,则4a =A)5 B)6 C)7 D)86.函数cos()42xy π=-的最小正周期为A)2πB)π C)2π D)4π7.圆22210x y x ++-=的圆心和半径为A)(1,0),2B)(-1,0),2C)(1,0),2 D)(—1,0),2 8.1tan 151tan 15-+的值为A)3 B)33C)1 D)229.设0b a >>,则下列各式中正确的是A)2a b a b+>>>B)2a b b a+>>>C)2a b a b +>>>D)2a b b a +>>>10.函数21(0)y x x =+<的反函数为A))y x R =∈B) )y x R =∈C)1)y x =≥D) 1)y x =≥11.已知数列{}n a 满足前n项和21()nn sa n N *=-∈则3a =A)2 B)4 C)8 D)1612.已知向量()1,sin a θ=- ,1,cos 2b θ⎛⎫= ⎪⎝⎭ ,若a b ⊥ ,且θ为锐角,则θ= A)12πB)6πC)4π D)3π13.“0ab <”是“方程22ax by c +=表示双曲线”的 A) 充分不必要条件 B)必要不充分条件 C)充要条件 D)既不充分也不必要条件14.由数字0,1,2,3,4,5组成没有重复数字的五位数中,偶数的个数为A)120 B)240 C)96 D)312 15.在(1-x)4展开式的各项中,系数最大是A)—4 B)4 C)—6 D)6 16.已知G为△ABC所在平面上一点,若GCGB GA ++=0 ,则G 为△ABC 的A)内心 B)外心 C)重心 D)垂心17.将函数()y f x =的图象按(,2)4a π=-- 平移得到函数sin y x =的图象,则函数()f x 为 A)sin()24x π++ B)sin()24x π+-C)sin()24x π-+ D)sin()24x π--18.椭圆2214xym+=的离心率为0.5,则m的值为A)3 B)316 C)3或316 D)-3或-31619.从甲口袋内摸出1个白球的概率是31,从乙口袋内摸出1个白球的概率是21,从两个口袋内各摸出1个球,至少有一个是白球的概率为A)61B)23 C)65 D)21第Ⅱ卷(非选择题,共43分)二、填空题(本大题共5个小题,每小题3分,共15分;请直接在每小题的横线上填写结果) 20.已知球面的表面积为36π,则此球的半径为21.已知3cos 5θ=,且θ∈(—2π,0),则sin2θ=________22.61⎛⎝的展开式的常数项为_________(用数字作答)23.函数f (x) =2-x -x1(x>0)的最大值为________24.过点A(—1,1)的一束光线射向x 轴,经反射后与圆()2211x y -+=(相切,则入射线所在直线的方程为______________三、解答题(本大题共4小题,共28分;要求写出必要的文字说明、演算步骤或推理过程) 26.(本题满分6分)甲、乙二人独立地破译一个密码,他们能译出密码的概率分别为13和14,求: (Ⅰ)恰有1人译出密码的概率; (Ⅱ)至多有1人译出密码的概率.参考答案选择题CDCBC , DBBBD , BCADD , CCCB 填空题:20.3; 21.2425-; 22.52-; 23.0; 24.4310x y ++=解答题26.解:设甲、乙二人独立破译密码分别为事件A 、B.则11(),()34P A P B ==(Ⅰ)恰有1人译出密码概率为11115()()()()()(1)(1)343412P A B A B P A P B P A P B +=⋅+⋅=⋅-+-⋅=(Ⅱ)至少有1人译出密码的概率为11111()1()()13412P A B P A P B -⋅=-⋅=-⋅=。

高中会考数学练习题及讲解目

高中会考数学练习题及讲解目

高中会考数学练习题及讲解目# 高中会考数学练习题及讲解## 一、选择题1. 题目:已知函数 \(f(x) = 3x^2 - 2x + 1\),求导后得到的导数函数为:- A. \(6x - 2\)- B. \(6x^2 - 4x + 1\)- C. \(f'(x) = 6x - 2\)- D. \(3x - 2\)答案:C解析:根据导数的定义,对于函数 \(f(x) = 3x^2 - 2x + 1\),其导数 \(f'(x)\) 计算如下:\[f'(x) = \frac{d}{dx}(3x^2 - 2x + 1) = 6x - 2\]2. 题目:下列哪个选项是不等式 \(x^2 - 5x + 6 \leq 0\) 的解集? - A. \(x \leq 1\) 或 \(x \geq 6\)- B. \(1 \leq x \leq 6\)- C. \(x \leq 6\) 或 \(x \geq 1\)- D. \(2 \leq x \leq 3\)答案:B解析:首先解方程 \(x^2 - 5x + 6 = 0\),得到 \(x = 2\) 或\(x = 3\)。

由于这是一个开口向上的二次函数,不等式 \(x^2 - 5x + 6 \leq 0\) 的解集是 \(x\) 在两个根之间,即 \(1 \leq x \leq 6\)。

## 二、填空题1. 题目:若 \(\sin(\alpha) = \frac{3}{5}\) 且 \(\alpha\) 在第一象限,求 \(\cos(\alpha)\) 的值。

答案:\(\frac{4}{5}\)解析:根据三角函数的基本关系,\(\sin^2(\alpha) +\cos^2(\alpha) = 1\)。

由于 \(\sin(\alpha) = \frac{3}{5}\),我们可以解出 \(\cos(\alpha)\):\[\cos(\alpha) = \sqrt{1 - \sin^2(\alpha)} = \sqrt{1 -\left(\frac{3}{5}\right)^2} = \frac{4}{5}\]2. 题目:若 \(\log_{10}(100) = 2\),求 \(\log_{10}(0.01)\) 的值。

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(二)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(二)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(二)一、单选题1.已知集合M ={0,3},则M 的真子集个数为( ) A .1 B .2C .3D .4【答案】C【分析】根据真子集的定义即可求出真子集的个数. 【详解】因为集合M ={0,3},所以M 的真子集为{}{}φ,0,3,共3个. 故选:C2.某工厂10名工人某天生产同一型号零件的件数分别是15,17,14,10,15,17,17,16,14,12,则这组数据的众数为( ) A .17 B .16C .15D .14.7【答案】A【分析】根据同一型号零件的数据,结合众数的概念,即可求解,得到答案.【详解】由题意,同一型号零件的件数分别是15,17,14,10,15,17,17,16,14,12,结合众数的概念,可得数据的众数为17. 故选:A .【点睛】本题主要考查了众数的概念及其应用,其中解答中熟记众数的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 3.如果cos 0θ<,且tan 0θ>,则θ是( ) A .第一象限的角 B .第二象限的角 C .第三象限的角 D .第四象限的角【答案】C【分析】根据三角函数在各象限的符号确定即可.【详解】因为cos 0θ<则θ在第二、第三象限或x 轴的负半轴上,tan 0θ>则θ在第一、第三象限,所以θ是第三象限的角. 故选:C【点睛】本题主要考查了角在各象限的三角函数的符号,属于容易题. 4.下列直线中,与直线210x y -+=垂直的是 A .230x y --= B .230x y -+=C .250x y ++=D .250x y +-=【答案】C【分析】求出选项中各直线的斜率,判断所求斜率与直线210x y -+=的斜率之积为是否为1-即可得结果.【详解】直线210x y -+=的斜率为12, 而直线230x y --=的斜率为2 ,230x y -+=的斜率为12, 250x y ++=的斜率为2- ,250x y +-=的斜率为12-,可得直线210x y -+=的斜率与250x y ++=的斜率之积为-1,∴与直线210x y -+=垂直的是250x y ++=,故选C.【点睛】本题考查了直线的一般式方程求直线斜率以及斜率与直线垂直的关系,考查了两直线垂直与斜率间的关系,是基础题. 5.已知数列的通项公式为12n n a ,则3a =( )A .4B .6C .4±D .8±【答案】A【分析】利用数列的通项公式12n n a 求解. 【详解】因为数列的通项公式为12n na ,则31324a -==,故选:A6.不等式23100x x --<的解集是( ) A .(2,5)- B .(5,2)-C .(,5)(2,)-∞-+∞D .(,2)(5,)-∞-⋃+∞【答案】A【分析】化为(2)(5)0x x +-<可解得结果.【详解】因为23100x x --<,所以(2)(5)0x x +-< 解得25x -<<,所以不等式的解集为{|25}x x -<<, 故选:A.【点睛】本题考查了一元二次不等式的解法,属于基础题.7.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,已知恰有800个点落在阴影部分,据此可估计阴影部分的面积是A .165B .185C .10D .325【答案】B【分析】边长为3的正方形的面积S 正方形=9,设阴影部分的面积为S 阴,由几何概型得8002000S S =阴正方形,由此能估计阴影部分的面积. 【详解】解:为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,则边长为3的正方形的面积S 正方形=9, 设阴影部分的面积为S 阴,∵该正方形内随机投掷2000个点,已知恰有800个点落在阴影部分, ∴8002000S S =阴正方形, 解得S 阴800800189200020005S =⨯=⨯=正方形, ∴估计阴影部分的面积是185.故选:B .【点睛】本题考查阴影面积的求法,考查几何概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.下表是某工厂1~4月份用电量(单位:万度)的一组数据:由散点图可知,用电量y与月份x 间有线性相关关系,其回归直线方程是ˆ0.7yx a =-+,则a =( )A .10.5B .5.75C .5.2D .5.15【答案】B【分析】求出x ,y ,再由0.7y x a =-+得出a 的值.【详解】1234 4.545 2.52.5,444x y ++++++====0.7y x a ∴=-+,即40.7 2.5 5.75a =+⨯=故选:B9.下列函数是奇函数且在(0,)+∞上单调递减的是 A .2y x =- B .y x =C .12log y x =D .1y x=【答案】D【分析】根据题意,依次分析选项:对于A 、不是奇函数;对于B 、y=x 3不符合单调性的要求,对于C 、y=12log x 不是奇函数,不符合题意,对于D 、由反比例函数的性质可得其符合题意;综合可得答案. 【详解】根据题意,依次分析选项:对于A 、2y x ,不是奇函数,不符合题意=-;对于B 、y=x 是奇函数但其在(0,+∞)上单调递增,不符合题意; 对于C 、y=12log x 是对数函数,不是奇函数,不符合题意;对于D 、y=1x,是奇函数,且其在(0,+∞)上单调递减,符合题意; 故选D .【点睛】本题考查函数奇偶性与单调性的判定,关键是熟悉常见函数的奇偶性、单调性. 10.化简AB BD CD +-=A .ACB .0C .BCD .DA【答案】A【分析】根据向量的加法、减法运算法则即可求解【详解】由题,AB BD CD AD CD AD DC AC +-=-=+=, 故选:A【点睛】本题考查向量的加法、减法运算,属于基础题 11.函数2sin y x x =∈R ,的最大值为 A .2- B .1-C .1D .2【答案】D【分析】由正弦函数的性质,可得1sin 1x -≤≤,即可求解函数2sin y x x =∈R ,的最大值,得到答案.【详解】由正弦函数的性质,可得1sin 1x -≤≤,所以22sin 2x -≤≤ 所以函数2sin y x x =∈R ,的最大值为2,故选D.【点睛】本题主要考查了三角函数的图象性质的应用,其中解答中熟记正弦函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.12.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .28cm π B .212cm πC .216cm πD .220cm π【答案】B【详解】试题分析:由题意正方体的外接球的直径就是正方体的对角线长,求出正方体的对角线长,即可求出球的表面积.解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R ,R=,S=4πR 2=12π故选B【解析】球内接多面体;球的体积和表面积. 13.函数24y x =-的零点为( ) A .0 B .4-C .2D .(2,0)【答案】C【分析】令240y x =-=求解. 【详解】令240y x =-=, 解得2x =,故选:C14.若复数()1ni +为实数,则正整数n 的最小值为( ) A .2 B .4 C .6 D .8【答案】B【分析】根据题意可知n 只能为偶数,分别计算()()241,1++i i 比较即可. 【详解】因为()212i i +=,()()42124i i +==-, 所以正整数n 的最小值为4. 故选:B【点睛】本题考查复数的运算,属基础题.15.如图,直线l 与⊙O 相交于点,A B ,点A 的坐标为(4,3),则点B 的坐标为( )A .(4,3)-B .(4,3)--C .()3,4-D .(3,4)--【答案】B【分析】根据关于原点对称的点的坐标特点,两个点关于原点对称,它们的坐标符号相反,即可得解.【详解】由图可以发现,点A 与点B 关于原点对称, 由点A 的坐标为(4,3),所以点B 的坐标为(4,3)-- 故选:B二、填空题16.已知(3,0)A ,(8,0)B ,则AB 的坐标为________. 【答案】(5,0)【分析】利用向量的坐标运算直接得解. 【详解】(3,0)A ,(8,0)B ,(5,0)AB ∴=故答案为:(5,0)17.等差数列10,8,6,…的第10项为________.【答案】8-【分析】由等差数列的定义得出1,a d ,进而由通项公式得出第10项. 【详解】由题意可知,110,8102a d ==-=-, 则第10项为101910928a a d =+=-⨯=-. 故答案为:8-.18.已知lg 2x =-,则x =________. 【答案】210-【分析】根据lg 2x =-,由指数与对数互化求解. 【详解】因为lg 2x =-, 所以x =210-, 故答案为:210-19.在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知 1123a b sinA ===,,,则sin B =______. 【答案】23; 【详解】根据正弦定理知,sin sin a bA B =,所以sin 2sin 3b A B a ==,故填23. 20.奇函数()f x 在[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=________.【答案】15-【分析】由条件可得()()31,68f f =-=,然后利用奇偶性可得()()31,68f f -=-=-,然后可算出答案.【详解】因为()f x 在[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为1-, 所以()()31,68f f =-= 因为()f x 是奇函数所以()()31,68f f -=-=-,所以()2(6)(3)28115f f -+-=⨯-+=- 故答案为:15-三、解答题21.已知函数2()12sin f x x =-. (1)求6f π⎛⎫⎪⎝⎭; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最小值. 【答案】(1)12;(2)0. 【分析】(1)直接求出答案即可;(2)当,46x ππ⎡⎤∈-⎢⎥⎣⎦时1sin 22x ⎡⎤∈-⎢⎥⎣⎦,然后可求出答案. 【详解】(1)221112sin 126622f ππ⎛⎫⎛⎫=-=-⨯= ⎪ ⎪⎝⎭⎝⎭(2)当,46x ππ⎡⎤∈-⎢⎥⎣⎦时,1sin 22x ⎡⎤∈-⎢⎥⎣⎦,所以21sin 0,2x ⎡⎤∈⎢⎥⎣⎦ 所以min 1()1202f x =-⨯= 22.甲虫是行动较快的昆虫之一,如表记录了某种类型的甲虫的爬行速度:(1)你能建立一个等差数列的模型,表示甲虫的爬行距离和时间之间的关系吗? (2)利用建立的模型计算,甲虫1min 能爬多远?它爬行49cm 需要多长时间? 【答案】(1)9.8s t =;(2)甲虫1min 能爬588cm ,爬行49cm 需要5s 时间. 【分析】(1)由等差数列的定义得出甲虫的爬行距离和时间之间的关系; (2)由9.8s t =求解即可.【详解】(1)由图表可知,从第二项起,每一项和前一项的差都是常数9.8,是一个等差数列的数列模型,19.8a ∴=,9.8d =,甲虫的爬行距离和时间之间的关系:9.8s t =; (2)当1min 60t s ==,609.8588cm s =⨯=,49cm s =,59.8st ==.答:甲虫1min 能爬588cm ,它爬行49cm 需要5s .23.如图,在正方体1111ABCD A B C D -中,2AB =,点P 为1DD 的中点.(1)证明:直线1//BD 平面PAC ; (2)求异面直线1BD 与AP 所成角的正弦值. 【答案】(1)证明见解析;(2)105. 【分析】(1)连接BD ,设AC 和BD 交于点O ,证得1//PO BD ,利用线面平行的判定定理,即可证得1//BD 平面P AC.(2)由1//PO BD ,得到APO ∠为异面直线1BD 与AP 所成角,在直角APO △中,即可求解.【详解】(1)如图,连接BD ,设AC 和BD 交于点O ,则O 为BD 的中点, 连接PO ,因为P 是1DD 的中点,所以1//PO BD ,又因为PO ⊂平面P AC ,1BD ⊄平面P AC ,所以直线1//BD 平面P AC.(2)由(1)知:1//PO BD ,所以异面直线1BD 与AP 所成角即为PO 与AP 所成角, 即APO ∠为1BD 与AP 所成角, 因为5PA PC ==122AO AC ==PO AC ⊥, 在直角APO △中,所以210sin 55AO APO AP ∠===, 所以1BD 与AP 所成角的正弦值为105.24.如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原来的墙,其他各面用钢筋网围成.若现有36m 长的钢筋网材料,求可围成每间虎笼的最大面积是多少?并求岀最大面积时每间虎笼的长、宽各是多少?【答案】虎笼面积最大272,每间虎笼长9m 2,宽3m . 【分析】设围成每间虎笼的长x m ,宽y m ,由题意可知2318x y +=,利用基本不等式求最值即可.【详解】设围成每间虎笼的长x m ,宽y m , 由题意可知:4636x y +=,即2318x y +=.2326x y xy +≥2618xy ∴,812762xy ≤=,当且仅当23x y =时取等号. 解方程组232318x y x y =⎧⎨+=⎩,可得92x =,3y =,∴每间虎笼长9m 2,宽3m 时,虎笼面积最大272. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.第 11 页 共 11 页 25.已知直线:1l y kx =+,圆22:(1)(1)9C x y -++=.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点;(2)当k 取何值时,直线l 被圆C 截得的弦长最短,并求出最短弦的长.【答案】(1)证明见详解;(2)12k =,最短弦长为4. 【分析】(1)根据圆的方程,得到圆心坐标与半径r ,再由点到直线距离公式,求出圆心到直线的距离d ,比较d 与r 的大小,即可得出结果;(2)先根据圆的性质,得到弦长=(r 是圆的半径,d 是圆心到直线l 的距离),由题意,得到直线l 恒过点(0,1)A ,当AC 与直线l 垂直时,所求弦长最短,从而可求出结果.【详解】(1)因为圆22:(1)(1)9C x y -++=的圆心为(1,1)C -,半径3r =, 圆心到直线:1l y kx =+的距离d =, 而222222244(2)719011k k k k d r k k ++-----=-=<++,即d r <, ∴不论k 为何实数,直线l 和圆C 总有两个交点;(2)根据圆的性质可得:弦长的一半,圆心到弦的距离,圆的半径,三者满足勾股定理;即弦长=(r 是圆的半径,d 是圆心到直线l 的距离),而圆心(1,1)C -,直线l 恒过点(0,1)A ,因此当AC 与直线l 垂直时,所求弦长最短.此时,2AC k =-,12k =,所求最短弦长为4=.【点睛】本题主要考查判定直线与圆位置关系,以及求圆的弦长的最值问题,熟记直线与圆位置关系的判定方法,以及圆的弦长的几何求法即可,属于常考题型.。

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析高中会考数学模拟试题与答案解析一、选择题1. 若函数 f(x) = 2x^2 - 5x + 3,求 f(2) 的值。

解析:将 x=2 代入函数 f(x),得 f(2) = 2(2)^2 - 5(2) + 3 = 8 - 10 + 3 = 1。

2. 设直线 y = mx + c 与曲线 y = 2x^2 - x + 1 相切,则常数 m 的值为多少?解析:相切的直线与曲线有且仅有一个交点。

首先,求出曲线的导函数 f'(x) = 4x - 1。

然后,令导函数与直线的斜率相等,即 4x - 1 = m。

由于相切,令导函数与直线在交点处的函数值相等,即 2x^2 - x + 1 = mx + c。

联立两个方程,求解得 m = 2,c = 2。

二、填空题1. 直线 x - 3y - 3 = 0 与直线 5x + ky - 7 = 0 平行,则 k 的值为______。

解析:两条直线平行,斜率相等。

将两条直线的方程转化为一般式,得到 y = (1/3)x - 1 和 y = -(5/k)x + 7/k。

比较斜率,得 (1/3) = -(5/k),解得 k = -15。

2. 已知集合 A={1, 3, 5, 7},集合 B={2, 4, 6, 8},则 A ∪ B = ______。

解析:集合的并集是指将两个集合中的元素合并,形成一个新的集合,不包括重复的元素。

将集合 A 和集合 B 合并,得到集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}。

三、解答题1. 解方程 3x + 2 = 4x - 1,并判断方程的解是否正确。

解析:将方程化简,得到 x = 3。

验证解是否正确,将 x = 3 代入方程,两边相等,方程的解是正确的。

2. 函数 y = 2x^2 + bx + 3 与 x 轴交于两个点 A(-1, 0) 和 B(2, 0),求常数 b 的值。

解析:由题意得到两个方程,-1:0 = 2(-1)^2 + b(-1) + 3 和 2:0 =2(2)^2 + b(2) + 3。

高中数学会考模拟试题一

高中数学会考模拟试题一

5.直线Q 与两条直线y = 1, (1,—1),那么直线Q 的斜率是 23 A. - B. - C. 32) 23 - D.—— 32兀6.为了得到函数y = 3sin2x , x e R 的图象,只需将函数y = 3sm (2x - -3), x e R 的9.如果a = (—2,3), b = (x , — 6),而且a 1 b ,那么x 的值是( )C. 9D. —9 a 2 二 3,a 7 =13,则 $ 1。

等于()高中数学会考模拟试题(一)一. 选择题:(每小题2分,共40分) 1.已知I 为全集,P 、Q 为非空集合,且P 5 Q ^ I ,则下列结论不正确的是( )A. P u Q = IB. 2.若 sin(180o+a ) = 3 P u Q =Q C. P c Q =。

D .P c Q =。

贝 U cos(2700+a )=( ) 1 A. 3 1 B. - 3 2%: 2 2<2C. ——D.——— 33 x 2 3,椭圆天十乙J 标是( ) y 2y = 1上一点P 到两焦点的距离之积为m 。

则当m 取最大值时,点P 的坐A. (5,0)和(—5,0) 卢3V 巨、工,5 3工;3、B. (2,)和(2,一下)C. (0,3)和(0, — 3) z 5;3 3、 / D .(—,2) 和 ( 4,函数y = 2sin x - cos x +1 - 2sin 2 x 的最小正周期是5 <3 3二,2)() 兀A.一 2B.九C. 2兀D. 4兀 x - y — 7 = 0分别交于P 、 Q 两点。

线段PQ 的中点坐标为图象上所有的点( )兀A.向左平行移动y 个单位长度兀C.向左平行移动下个单位长度 611 A.30。

B.45。

8.如果a > b则在①11C.1兀B.向右平行移动y 个单位长度兀D.向右平行移动下个单位长度61160o D. 90o② a 3 > b 3,③ lg(a 2 +1) > lg(b 2 +1),④ 2 a > 2 b中,正确的只有 ( B. ) ①和③ C. ③和④ D. ②和④ A. 4 B. —410.在等差数列{a j 中,A. 19B. 50C. 100D. 12011 . a > 1,且 \ > :是 log |x |> log bl 成立的()I xy 丰 0 a aB. 必要而不充分条件 D. 既不充分也不必要条件12 .设函数 f (xg (x ) = lg1-x ,则()21 + xA. 3或 9 B. 6 或 9 C, 3 或 6 D. 6 14 .函数y = - ;x 2-1 (x < -1)的反函数是()…、x +1..................... ,、15 .若 f (x ) = ,g (x ) = f -1(—x ),贝U g (x )( )x -1A.在R 上是增函数 B,在(-8 , -1)上是增函数 C.在(1, +8)上是减函数 D.在(-8,-1)上是减函数16 .不等式log 1 (x + 2) > 10g l x 2的解集是()22A. { x I x < -1 或 x > 2 }B. { x I -1 < x < 2 }C. { x I -2 < x < -1}D. { x I -2 < x < -1 或 x > 2 }17 . 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( )A. 12B. 24C. 36D. 2818 .若a 、b 是异面直线,则一定存在两个平行平面a 、p ,使( )A. a u a , b u pB. a ±a , b ± pC. a //a , b ± PD. a u a , b ± P—b-19.将函数 y = f (x )按 a = (-2,3)平移后,得到 y = 4x2-2x +4,则 f (x )=()A . 4x 2+2x +4 + 3B . 4 x 2 -6x +12 + 3C . 4x 2-6x +12 - 3D . 4 x 2-6x +920.已知函数f (x ) , x e R ,且f (2 - x ) = f (2 + x ),当x > 2时,f (x )是增函数,设 a = f(1.2。

2021年江苏高二水平数学会考模拟试题及答案解析

2021年江苏高二水平数学会考模拟试题及答案解析

2021-2021年江苏高二水平数学会考模拟试题及答案解析班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.已知a,b∈R,下列四个条件中,使a<b成立的必要而不充分的条件是()A.|a|<|b|B.2a<2b C.a<b﹣1D.a<b+1【答案】D【解析】试题分析::“a<b”不能推出“|a|<|b|”,“|a|<|b|”也不能推出“a<b”,故选项A是“a<b”的既不充分也不必要条件;“a<b”能推出“2a<2b”,“2a<2b”也能推出“a<b”,故选项B是“a<b”的充要条件;“a<b”不能推出“a<b-1”,“a<b-1”能推出“a<b”,故选项C是“a<b”的充分不必要条件;“a<b”能推出“a<b+1”,“a<b+1”不能推出“a<b”,故选项D是“a<b”的必要不充分条件;故选:D.考点:必要条件、充分条件与充要条件的判断.2.已知的展开式中,奇数项的二项式系数之和是64,则的展开式中,的系数是()A.280B.-280C.-672D.672【答案】A【解析】试题分析:因为的展开式中,奇数项的二项式系数之和是64,在二项展开式中,奇数项的二项式系数之和与偶数项系数之和相等。

所以,n=7,,其展开式中的项是,系数为280.考点:本题主要考查二项式系数的性质,二项式定理。

点评:中档题,在二项展开式中,奇数项的二项式系数之和与偶数项系数之和相等。

对计算能力要求较高。

3.已知数列{ an }的通项公式为an =2n(n N*),把数列{an}的各项排列成如图所示的三角形数阵:记M(s,t)表示该数阵中第s行的第t个数,则数阵中的偶数2 010对应于()A.M(45,15)B.M(45,25)C.M(46,16)D.M(46,25)【答案】A【解析】试题分析:由数阵的排列规律知,数阵中的前n行共有,当n=44时,共有990项,又数阵中的偶数2 010是数列{an }的第1 005项,且+15="1" 005,因此2021是数阵中第45行的第15个数故选A考点:数列的通项公式点评:解决的关键是对于数阵的数字规律能结合等差数列的通项公式和求和来得到,属于基础题。

新课程高三会考模拟数学参考答案

新课程高三会考模拟数学参考答案

新课程高三会考模拟数学参考答案一、选择题(本题共30小题,每小题2分,共60分.)BBBCD ABDAA ADBDB CCACB ADCBB BCABB二、填空题:(本大题共5小题,每题3分,共15分.)31.存在一个0x ,使得20012x x +<. 32.1 .33.14.34.8. 35.—8.三、解答题:(本大题共6小题,共25分.)36.(本小题满分6分)9,134π-,----------------------各3分37(本小题满分6分)解:(1)根据题意得:⎪⎩⎪⎨⎧∈≤≤+-∈≤≤++-=Nt t t N t t t t S ,5031),2002(45,301),3021)(2002( ⎩⎨⎧∈≤≤+-∈≤≤++-=Nt t t N t t t t ,5031,900090,301,600402————--————————3分 (2)①当N t t ∈≤≤,301时,,6400)20(2+--=t S当20=t 时,S 的最大值为6400②当5031≤≤t ,N t ∈时,为减函数900090+-=t S ,S t ,31时当=的最大值是621062106400< ,∴当20=t 时,日销量额S 有最大值6400.——-----------------3分38.(本小题满分6分)2222-=x y ;08222=--+x y x ;是定值,为5----------------------各2分 39. (本小题满分7分)(文科)证明:(1)∵E,F 分别是AB BD ,的中点.∴EF 是△ABD 的中位线,∴E F ∥AD ,∵E F ∥⊄面ACD ,AD ⊂面ACD ,∴直线E F ∥面ACD ;-----------------3分(2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD又EF ∩CF=F,∴BD ⊥面EFC ,∵B D ⊂面BCD ,∴面EFC ⊥面BCD ----------------------------------------------4分(理科)(1分(2)||AF =2a a 或.--------------------------------------4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学会考模拟试题(附答案)高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U I ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( )A .6π B .3π C .23π D .56π3.函数y =)A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞4.某赛季,甲、乙两名篮球运动员都参加了7情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( )A .14、12B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120o ,且1==a b ,则-a b 等于( )图A .1B .3C .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),则该几何体的表面积...为( ) A .212cm π B. 215cm πC. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >> B . b a c >> C . c a b >> D . b c a >>9.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34C .74D .18 11.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( ) A.1 B.0 C.-1 D.-265主视65侧视俯视图1 Oxy1112π图13. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1 B .⎪⎭⎫ ⎝⎛-0,21 C .⎪⎭⎫ ⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,21 14.函数|2|sin x y =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+o o o o 等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( ) A .03=-+y x B .03=--y x C .034=-+y x D .034=--y x二、填空题:本大题共4小题,每小题5分,满分20分.17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3,则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是 20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是否是 开始 ()()h x f x = ()()f xg x >输出输入结束()()h x g x =图21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为 三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤.24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为23,求AB 的长.图527.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)(1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =.所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sin sin 1246A πππ⎛⎫==+ ⎪⎝⎭sin coscossin4646ππππ=+12222=+⨯=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c Θ x y y x a a c 2,02),2,1(,//=∴=-∴=Θ ……2分 由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+Θ ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===Θ代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a θΘ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点, 所以EO 是△DPB 的中位线. 所以PB EO P .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB P 平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EH PA P . 因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===g g g .解得2x =. 故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-, 当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则 213572321124822n n n n n T ----=++++++L , ①即 111357232122481622n n n n n T ---=++++++L , ②①-②,得2111112111224822n n n n T --=++++++-L11121211212n nn -⎛⎫- ⎪-⎝⎭=+--精品文档收集于网络,如有侵权请联系管理员删除 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =,,所以21AB x x =-= 所以12S AB b =g g=22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d =. 因为圆的半径为2R =,所以2AB ===.于是241121k S AB d k =⨯===+, 即2410k k -+=,解得2k =.故实数k的值为22-2-+2-。

相关文档
最新文档