《高等数学》考试大纲

合集下载

610高等数学考试大纲

610高等数学考试大纲

610高等数学考试大纲610高等数学是许多大学理工科专业必修的一门课程,其考试大纲通常涵盖了高等数学的基本概念、理论和应用。

以下是一份高等数学考试大纲的示例,供参考:一、函数、极限与连续性- 函数的概念与性质- 极限的定义与性质- 无穷小与无穷大- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的定义与应用- 相关变化率问题三、中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 洛必达法则- 泰勒公式与麦克劳林公式- 函数的单调性、极值与最值问题- 曲线的凹凸性与拐点- 函数图形的描绘四、不定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 有理函数的积分五、定积分与定积分的应用- 定积分的定义与性质- 定积分的计算方法- 定积分的几何应用(面积、体积等)- 定积分在物理中的应用(功、质心等)六、无穷级数- 数项级数的概念与性质- 正项级数的收敛性判别- 交错级数与绝对收敛- 幂级数与泰勒级数- 函数的级数展开七、多元函数微分学- 多元函数的概念与极限- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒公式八、重积分与曲线积分、曲面积分- 二重积分与三重积分的定义与计算- 重积分的几何与物理应用- 曲线积分与曲面积分的概念- 格林公式、高斯公式与斯托克斯公式九、微分方程- 微分方程的基本概念- 一阶微分方程的解法(分离变量法、变量替换法等)- 可分离变量的高阶微分方程- 线性微分方程与常系数线性微分方程- 非线性微分方程的解法简介十、傅里叶分析- 傅里叶级数- 狄利克雷条件- 傅里叶变换- 拉普拉斯变换十一、数值分析基础- 数值逼近与插值- 数值积分与数值微分- 线性方程组的数值解法十二、数学软件与计算工具- 基本的数学软件介绍- 编程解决数学问题的方法- 计算机辅助数学建模考试形式可能包括选择题、填空题、计算题、证明题和应用题等。

《高等数学》考试大纲

《高等数学》考试大纲

《高等数学》考试大纲一、考试目标及要求要求考生了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握上述各部分的基本方法。

应具有一定的抽象思维能力、逻辑推理能力、运算能力;有运用基本方法准确地计算;能综合运用所学知识分析并解决简单的实际问题。

二、考试内容及要求(一)函数、极限、连续1.考试内容(1)函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数的概念、基本初等函数的性质及其图形。

(2)数列极限与函数极限的概念、无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较、极限的四则运算、两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。

(3)函数连续的概念、 函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质2.考试要求(1)理解函数概念,知道函数的表示法;会求函数的定义域及函数值。

(2)掌握函数的奇偶性、单调性、周期性、有界性。

(3)理解复合函数与反函数的定义。

(4)掌握基本初等函数的性质与图像,了解初等函数的概念。

(5)理解极限概念及性质,掌握极限的运算法则。

(6)理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。

(7)掌握两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。

(8)理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。

(9)理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。

(二)一元函数微分学1.考试内容导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、基本初等函数的导数、导数的四则运算、复合函数、反函数、隐函数的导数的求法、高阶导数的概念和计算、微分的概念、函数可微与可导的关系、微分的运算法则及函数微分的求法、微分中值定理、洛必达(L’Hospital)法则、函数单调性、函数图形的凹凸性和拐点、函数的极值、函数最值。

《高等数学(二)》专升本考试大纲

《高等数学(二)》专升本考试大纲

高等数学(二)专升本考试大纲一、考试内容本次高等数学(二)专升本考试内容主要包括以下几个方面:1.函数的连续性与一致连续性2.曲线的切线与法线3.微分学的应用4.不定积分5.定积分与应用6.微分方程二、考试要求1.掌握函数的连续性与一致连续性的判定方法,并能灵活应用于解题过程中。

2.理解曲线的切线与法线的概念,并能运用导数的定义和性质求解切线和法线的方程。

3.了解微分学的基本概念,并能应用微分学知识解决实际问题。

4.掌握不定积分的定义和基本性质,并能进行常见函数的积分运算。

5.熟悉定积分的定义和基本性质,并能运用定积分求解简单的几何问题。

6.理解微分方程的概念,并能根据给定的微分方程解决实际问题。

三、考试形式本次高等数学(二)专升本考试采取闭卷形式,包括选择题和解答题。

1.选择题:共计50道选择题,每题2分,满分100分。

选择题主要测试考生对基本概念和理论的理解程度。

2.解答题:共计3道解答题,每题30分,满分90分。

解答题主要测试考生的问题分析和解决能力。

四、复习重点1.函数的连续性与一致连续性–连续函数的定义–连续函数的性质–一致连续函数的定义和判定方法2.曲线的切线与法线–切线的概念和性质–法线的概念和性质–切线和法线的方程求解方法3.微分学的应用–极值与最值–函数的增减与凹凸性–求解最值和极值问题4.不定积分–不定积分的定义和基本性质–常见函数的积分运算方法–积分表的使用技巧5.定积分与应用–定积分的定义和基本性质–定积分的计算方法–几何应用和物理应用6.微分方程–微分方程的基本概念和分类–解微分方程的一般步骤–常微分方程的应用五、备考建议1.提前制定复习计划,合理安排学习时间。

2.多做习题,加强对知识点的理解和应用。

3.注意整理复习笔记,方便日后的复习和回顾。

4.多参考往年的真题和模拟试卷,了解考试形式和难度。

5.针对考试要求的不同部分,进行有针对性的复习和训练。

六、考前注意事项1.睡眠充足,保持良好的精神状态。

高等数学考试大纲

高等数学考试大纲
3.会求解一阶线性微分方程。
(二)二阶常系数线性微分方程
1.理解二阶常系数线性微分方程解的结构。
2.会求解二阶常系数齐次线性微分方程。
3.会求解二阶常系数非齐次线性微分方程(非齐次项限定为(Ⅰ) f(x) ,其中 为x的n次多项式, 为实常数;(Ⅱ) ,其中 , 为实常数, , 分别为x的n次,m次多项式)。
2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“ ”,“ ”,“ ”,“ ”,“ ”,“ ”和“ ”型未定式的极限。
3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。
4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。
六、向量代数与空间解析几何
(一)向量代数
1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。
2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。
3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。
(二)平面与直线
5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。
6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。
四、无穷级数
(一)数项级数
1.理解ห้องสมุดไป่ตู้数收敛、级数发散的概念和级数的基本性质,掌握级数收敛的必要条件。
2.熟记几何级数 ,调和级数 和p—级数 的敛散性。会用正项级数的比较审敛法与比值审敛法判别正项级数的敛散性。
考试内容
一、函数、极限和连续
(一)函数

高等数学》考试大纲word

高等数学》考试大纲word

《高等数学》考试大纲一、考试基本要求:1. 熟练掌握:1)函数与极限;2)一元函数微积分学;3)微分方程;4)向量代数与空间解析几何;5)多元函数微积分学;6)无穷级数等方面的基本概念、基本理论和基本运算;2. 初步具备综合运用数学知识去分析问题和解决问题的能力;具备一定的抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力。

二、考核知识范围及考核要求:第一章函数与极限(一)函数1.知识范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)反函数:反函数的定义反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=ƒ(x)与其反函数y=ƒ-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1. 知识范围(1)数列极限的概念:数列数列极限的定义(2)数列极限的性质:唯一性有界性四则运算定理夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限函数极限的几何意义(4)函数极限的定理:唯一性定理夹逼定理四则运算定理(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷大量的性质两个无穷小量阶的比较(6)两个重要极限sinx 1lim = 1 lim(1 + )x = e x→0 x x→∞ x2. 要求(1)理解极限的概念(对极限定义中“ε- N”、“ε- δ”、“ε- M”的描述不作要求),能根据极限概念分析函数的变化趋势。

601高等数学考试大纲

601高等数学考试大纲

601高等数学考试大纲一、课程概述高等数学是理工科专业学生的一门基础课程,旨在培养学生的数学思维和分析问题的能力。

本课程内容广泛,涵盖了微积分、线性代数、常微分方程等数学分支,为学生进一步学习专业课程打下坚实的数学基础。

二、考试目标通过本课程的学习和考核,学生应能够:1. 掌握微积分的基本理论、方法和应用。

2. 理解线性代数的基本概念和运算规则。

3. 熟悉常微分方程的求解技巧和实际应用。

4. 培养解决实际问题时的数学建模能力。

三、考试内容1. 微积分部分- 极限与连续性:理解极限的概念,掌握极限的运算法则,理解函数的连续性。

- 导数与微分:掌握导数的定义、几何意义及物理意义,理解高阶导数,掌握微分法则。

- 微分中值定理及其应用:理解罗尔定理、拉格朗日中值定理和柯西中值定理,掌握洛必达法则。

- 积分学:掌握不定积分和定积分的计算方法,理解积分的几何意义和物理意义,掌握换元积分法和分部积分法。

- 级数:理解级数的收敛性,掌握几何级数、调和级数等常见级数的求和方法。

2. 线性代数部分- 矩阵理论:理解矩阵的运算规则,掌握矩阵的转置、逆矩阵和行列式。

- 线性方程组:掌握高斯消元法和克拉默法则,理解线性方程组的解的结构。

- 向量空间:理解向量空间的概念,掌握基、维数和坐标变换。

3. 常微分方程部分- 一阶微分方程:掌握可分离变量方程、齐次方程和非齐次方程的解法。

- 高阶微分方程:理解特征方程法、降阶法和常系数线性微分方程的解法。

- 微分方程的应用:理解微分方程在物理、工程等领域的应用。

四、考试形式考试将采用闭卷笔试的形式,题型包括选择题、填空题、计算题、证明题和应用题。

考试将全面考察学生对高等数学知识的掌握程度和应用能力。

五、评分标准1. 选择题和填空题:主要考察学生对基本概念和基本运算的掌握。

2. 计算题:考察学生的计算能力和对公式的熟练运用。

3. 证明题:考察学生的逻辑思维能力和数学推理能力。

4. 应用题:考察学生将数学知识应用于实际问题的能力。

高等数学(一)考试大纲

高等数学(一)考试大纲

高等数学(一)考试大纲一、考试性质二、考试目标《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。

三、考试内容和基本要求一、函数、极限与连续(一)考试内容函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。

(二)考试要求1.理解函数的概念,了解函数的奇偶性、单调性、周期性、有界性。

了解反函数的概念;理解复合函数的概念。

理解初等函数的概念。

会建立简单实际问题的函数关系。

2.理解数列极限、函数极限的概念(不要求做给出ε,求N或δ的习题);了解极限性质(唯一性、有界性、保号性)和极限的两个存在准则(夹逼准则和单调有界准则)。

3.掌握函数极限的运算法则;熟练掌握极限计算方法。

掌握两个重要极限,并会用两个重要极限求极限。

4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。

5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。

6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。

二、导数与微分(一)考试内容导数概念及求导法则;隐函数与参数方程所确定函数的导数;高阶导数;微分的概念与运算法则。

(二)考试要求1.理解导数的概念及几何意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程;2.掌握导数的四则运算法则和复合函数的求导法则;掌握基本初等函数的求导公式,会熟练求函数的导数。

3.掌握隐函数与参数方程所确定函数的求导方法(一阶);掌握取对数求导法。

3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。

会求简单函数的n 阶导数。

4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。

三、中值定理与导数应用(一)考试内容罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。

高等数学A1A2考试大纲.doc

高等数学A1A2考试大纲.doc

《高等数学A》考试大纲一、总要求学生应了解或理解《高等数学A》中函数、极限和连续、一元和多元微积分、空间解析几何、无穷级数、常微分方程的基本概念与基本理论;学会应用变量数学的方法分析和研究自然现彖中的数量关系,能运用基本概念、基本理论利基本方法进行推理证明及计算、能综合运用所学知识分析并解决实际问题。

木大纲对内容要求的高低用不同词汇加以区分;对概念和理论从高到低分“理解”、“ 了解”(或“知道”)两个层次;对方法和运算从高到低分“掌握”、“会”两个层次。

第一部分高等数学A1部分第一章函数与极限考试内容:映射和函数;数列的极限;函数的极限;无穷小、无穷大;极限运算法则;极限存在准则、两个重要极限;无穷小的比较;函数的连续性与间断点;连续函数的运算与初等函数的连续性;闭区间上连续函数的性质。

考试要求:1. 理解函数的概念,掌握函数的农示法,会建立简单应用问题中的函数关系式。

2. 了解函数的有界性、单调性、周期性和奇偶性。

3. 理解复合函数及分段函数的概念,了解反函数的概念。

4. 掌握基本初等函数的性质及其图形,了解初等两数的概念。

5. 理解极限的概念,理解函数左、右极限的概念,以及极限存在与左、右极限Z间的关系。

6. 掌握极限的性质及四则运算法则。

了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限的方法。

7. 理解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。

8. 理解函数连续性的概念(含左连续与右连续),会判别两数间断点的类型。

9. 了解初等函数的连续性和闭区间上连续函数的性质(最人值、最小值定理、零点定理与介值定理), 并会应用这些性质。

第二章导数与微分考试内容:导数的概念;函数的求导法则;高阶导数;隐函数及由参数方程所确定的函数的导数;相关变化率;函数的微分。

考试要求:1. 理解导数概念及导数的儿何童义,会求平面曲线的切线方程和法线方程.理解函数的町导性与连续性之间的关系。

(完整word版)河南专升本《高等数学》考试大纲

(完整word版)河南专升本《高等数学》考试大纲

《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。

考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。

考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。

2.掌握函数的单调性、奇偶性、有界性和周期性。

3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。

4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。

5.掌握基本初等函数的性质及其图像。

6.理解初等函数的概念。

7.会建立一些简单实际问题的函数关系式。

(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。

理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。

会比较无穷小量的阶(高阶、低阶、同阶和等价)。

会运用等价无穷小量替换求极限。

4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限: 1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。

(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。

会判断分段函数在分段点的连续性。

2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。

3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。

《高等数学》 二)考试大纲 (.

《高等数学》 二)考试大纲 (.

《高等数学》(二)考试大纲课程编号:040201课程类别:公共必修总学时数:75-85学 分 数:4.5一、考试对象本科理工科学生二、考试目的《高等数学》课程考试旨在考察一元微积分学知识的基础上,注重考察学生对于基本概念和定理的理解与掌握、熟练的基本运算能力和运用数学知识分析解决简单的实际问题的能力,以及一定程度的抽象思维能力和逻辑推理能力。

本门课程考核要求由低到高共分为“了解”、“掌握”、“熟练掌握”三个层次。

其含义:了解,指学生能懂得所学知识,能在有关问题中认识或再现它们;掌握,指学生清楚地理解所学知识(例如定理的条件与结论,公式的表述与使用范围等),并且能在基本运算和简单应用中正确地使用它们;熟练掌握,指学生能较为深刻理解所学知识,在此基础上能够准确、熟练地使用它们进行有关推导和计算,以及分析解决较为简单的实际问题。

三、考试方法和考试时间1、考试方法:(校统考 闭卷 笔试)2、记分方式:百分制,满分为100分3、考试时间:120分钟4、试题总数:26题5、命题的指导思想和原则命题的总的指导思想是:全面考查学生对本课程的基本原理、基本概念和主要知识点学习、理解和掌握的情况。

命题的原则是:题目数量多、份量小,范围广,最基本的知识一般要占60%左右,稍微灵活一点的题目要占20%左右,较难的题目要占20%左右。

其中绝大多数是中小题目,即使大题目也不应占分太多,应适当压缩大题目在总的考分中所占的比例。

客观性的题目应占比较重的份量。

6、题目类型(1)单项选择题(在下列各小题的备选答案中,请把你认为正确答案的题号填入题干的括号内。

少选、多选不给分。

每题2分,共20分)(2)填空题(每空3分,共15分)(3)计算题(八题,共46分)(4)应用题(两题,共15分)(5)证明题(每题4分,共4分)7、各类题目的特点及考试的目的(1) 选择题。

是从一个问题的若干个答案中选出正确的答案。

这类题目是把正确答案与相近的答案或似是而非的答案并列,它具有简单、明确、客观的特点。

《高等数学》考试大纲

《高等数学》考试大纲

《高等数学》考试大纲一、考试目的高等数学是理工科院校各专业学生的一门重要基础课程。

本考试旨在考察学生对高等数学的基本概念、基本理论和基本方法的掌握程度,以及运用所学知识解决问题的能力。

二、考试内容(一)函数、极限与连续1、理解函数的概念,掌握函数的表示方法,会求函数的定义域、值域。

2、理解函数的单调性、奇偶性、周期性和有界性。

3、掌握基本初等函数的性质及其图形。

4、理解数列极限和函数极限的概念,掌握极限的四则运算法则和两个重要极限。

5、了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。

6、理解函数连续的概念,会判断函数的连续性,掌握闭区间上连续函数的性质。

(二)一元函数微分学1、理解导数的概念,掌握导数的几何意义和物理意义,会求平面曲线的切线方程和法线方程。

2、掌握基本初等函数的导数公式,掌握导数的四则运算法则和复合函数的求导法则。

3、会求隐函数和由参数方程所确定的函数的导数。

4、了解高阶导数的概念,会求函数的二阶导数。

5、理解函数的微分概念,掌握微分的运算法则和一阶微分形式的不变性。

6、掌握罗尔定理、拉格朗日中值定理和柯西中值定理,会用中值定理证明简单的不等式和等式。

7、掌握函数单调性的判别方法,会求函数的单调区间。

8、掌握函数极值和最值的求法,会解决简单的实际应用问题。

9、会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平渐近线和垂直渐近线。

(三)一元函数积分学1、理解原函数和不定积分的概念,掌握不定积分的基本性质和基本积分公式。

2、掌握不定积分的换元积分法和分部积分法。

3、理解定积分的概念和几何意义,掌握定积分的基本性质。

4、掌握牛顿莱布尼茨公式,会用定积分计算平面图形的面积、旋转体的体积和曲线的弧长。

5、了解广义积分的概念,会计算简单的广义积分。

(四)向量代数与空间解析几何1、理解向量的概念,掌握向量的坐标表示和向量的线性运算。

2、掌握向量的数量积和向量积的计算方法,了解向量的混合积。

高等数学考试大纲(适合专升本考生)

高等数学考试大纲(适合专升本考生)

《高等数学I 》课程考试大纲一、课程基本信息1.课程性质:公共基础课2.适用对象:怀化学院专升本考生二、课程考试目的《高等数学》课程考试旨在考察学生对知识的掌握情况以及运用知识解决实际问题的能力.三、考试内容与要求第一章 函数极限与连续(一)考试内容一元函数的概念,函数的性质(有界性、单调性、奇偶性、周期性),反函数,基本初等函数的概念、性质及其图形,复合函数,初等函数,数列极限,函数极限,无穷小与无穷大,无穷小与极限之间的关系,无穷小与无穷大之间的关系,极限的运算法则,极限存在准则,两个重要极限,无穷小的比较,函数的连续性,函数的间断点及其类型,连续函数的运算定理,初等函数的连续性,闭区间上连续函数的基本性质.(二)考试要求1.理解函数、初等函数的概念;2.了解函数的性质以及反函数的概念;3.掌握基本初等函数的性质及其图形;4.理解极限的概念,思想方法;5.了解极限的,,N X εεδε---定义;6.掌握左、右极限的概念,左、右极限与双边极限的关系;7.掌握极限四则运算法则;8.了解两个极限存在准则,熟练掌握两个重要极限;9.理解无穷小的概念及与极限的关系;10.了解无穷小的比较;11.理解连续的两种定义,掌握连续性的证明方法、连续函数的运算性质,会判定间断点的类型;12.知道闭区间上连续函数的性质,会用零点定理判别方程的根。

第二章 导数与微分(一)考试内容导数的概念,基本初等函数的导数,函数的和,差、积、商的导数,反函数和复合函数的导数,高阶导数,由隐函数、参数方程确定的函数的导数,微分的基本公式,微分形式不变性,微分在近似计算中的应用.(二)考试要求1.理解导数的概念,掌握利用概念求某些特殊极限的方法;2.掌握导数的几何意义,掌握求切线和法线方程的方法,明确可导与连续的关系;2.熟练掌握导数的运算;3.理解微分的概念、几何意义、微分形式不变性,明确可导与可微的关系;4.掌握微分在近似计算中的应用;第三章中值定理与导数的应用。

高等数学(甲)考试大纲

高等数学(甲)考试大纲

高等数学(甲)考试大纲一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:1sin lim 0=→x x x ,e x x x =⎪⎭⎫ ⎝⎛+→11lim 0函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2. 理解函数的有界性、单调性、周期性和奇偶性。

掌握判断函数这些性质的方法。

3. 理解复合函数的概念,了解反函数及隐函数的概念。

会求给定函数的复合函数和反函数。

4. 掌握基本初等函数的性质及其图形。

5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。

6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。

7. 掌握极限存在的两个准则,并会利用它们求极限。

掌握利用两个重要极限求极限的方法。

8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。

11.理解函数一致连续性的概念。

二、一元函数微分学考试内容导数的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数的四则运算复合函数、反函数、隐函数的导数的求法参数方程所确定的函数的求导方法高阶导数的概念高阶导数的求法微分的概念和微分的几何意义函数可微与可导的关系微分的运算法则及函数微分的求法一阶微分形式的不变性微分在近似计算中的应用微分中值定理洛必达(L’Hospital)法则泰勒(Taylor)公式函数的极值函数最大值和最小值函数单调性函数图形的凹凸性、拐点及渐近线函数图形的描绘弧微分及曲率的计算考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。

高等数学(科目代号610)考试大纲

高等数学(科目代号610)考试大纲

高等数学(科目代号610)考试大纲考试内容:一元微积分、常微分方程一、函数、极限、连续考试内容:函数的概念及函数的性质,复合函数、反函数、隐函数分段函数的性质及其图形。

数列极限与函数极限的定义及其性质,函数的左极限与右极限无穷小和无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限;函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

考试要求:1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数、反函数、隐函数和分段函数的概念。

4、掌握基本初等函数的性质及其图形,理解初等函数的概念5、了解数列极限和函数极限(包括坐极限和右极限)的概念。

6、理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其无穷小的关系。

7、了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,要熟练应用两个重要极限。

8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。

二、一元函数微分学考试内容:导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、导数的四则运算、基本初等函数的导数、复合函数、反函数和隐函数的导数、高阶导数、微分的概念和运算法则、一阶微分形式的不变性。

罗尔定理和拉格郎日中值定理及其应用洛必达(L’Hospital)法则,函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数最大值和最小值。

考试要求:1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义。

2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法。

专升本《高等数学(一)》课程考试大纲

专升本《高等数学(一)》课程考试大纲

专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。

二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。

三、考试的内容要求第一章 函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。

(2)了解函数的有界性、单调性、周期性和奇偶性。

(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。

(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。

2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。

(2)掌握极限四则运算法则,会应用两个重要极限。

3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。

(2)了解无穷大的概念及其与无穷小的关系。

4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。

第二章 导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义。

2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。

3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。

4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

第三章 微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理及其简单应用。

2.洛必达法则掌握用洛必达法则求未定式极限的方法。

《高等数学》(自命题)考试大纲

《高等数学》(自命题)考试大纲

广东技术师范学院硕士研究生入学考试《高等数学》(自命题)考试大纲I、考试性质《高等数学》(自命题)是广东技术师范学院为攻读系统理论专业硕士学位研究生所设置的一门基础课考试科目。

它的评价标准是高等学校本科毕业生(含同学学历)应知应会的基本知识和技能的掌握情况、高等数学基础理论分析及实际应用能力水平,以及高等数学思想及方法的理解程度。

II、考查目标要求考生比较系统地理解高等数学的基本概念、基本理论、基本方法,具备综合运用高等数学知识分析问题和解决问题的能力,并注重考核与系统理论专业相关的高等数学知识。

第三、第四方向不考证明题,并且难度依第一和第二方向、第三方向、第四方向而难度有所降低。

III、使用专业:系统理论。

IV、考试形式和试卷结构1、答卷形式:闭卷、笔试,满分为150分。

2、答题时间:180分钟。

3、考试题目分为难、中、易三个等级,每份试卷中不同难度试题的分配比例是3 :4 :3 。

基本概念和基础知识约占 35%,需要灵活地运用所学知识来解决问题的试题约占35%,需要综合几个知识点来解决问题的试题约占 30%。

题目的形式包括选择题、计算题、证明题、分析论述题、综合应用题等。

题型不是关键,最关键的是对基本概念、基本理论、基本方法的正确理解和应用,尤其是对知识点的掌握程度。

因为,针对任一个知识点都可以产生多个不同类型的试题。

V、考试内容和考试要求一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1、理解函数的概念,掌握函数的表示法,并会建立常见应用问题中的函数关系。

2024年三年制专转本高等数学考试大纲

2024年三年制专转本高等数学考试大纲

2024年三年制专转本高等数学考试大纲2024年三年制专转本高等数学考试大纲参考内容高等数学是一门重要的数学学科,它在理工科和经济管理科学等领域有着广泛的应用。

下面是2024年三年制专转本高等数学考试的参考内容。

一、极限与连续1.极限的定义和性质2.函数的极限与极限的计算3.无穷大与无穷小的比较4.函数的连续性与间断点的分类5.闭区间上连续函数的性质与介值定理二、导数与微分1.导数的概念与求导法则2.高阶导数与高阶导数的计算3.隐函数与参数方程的导数4.导数在几何与物理问题中的应用5.微分的概念和运算法则三、不定积分与定积分1.不定积分的概念及常用的求导法则2.换元积分法与分部积分法3.定积分的概念与性质4.定积分的计算方法及应用5.定积分在几何与物理问题中的应用四、多元函数微分学1.二元函数的极限与连续性2.偏导数与全微分3.复合函数的偏导数与全微分4.隐函数的偏导数5.多元函数的极值与条件极值五、重积分与曲线积分1.重积分的概念、性质与计算方法2.极坐标与二重积分3.三重积分的计算与应用4.曲线积分的概念、计算与应用5.曲面积分的概念与计算六、常微分方程1.微分方程的基本概念2.一阶微分方程的解法3.二阶线性微分方程的解法4.常系数齐次线性微分方程的解法5.常微分方程在物理和生物学问题中的应用以上是2024年三年制专转本高等数学考试的参考内容,内容包括极限与连续、导数与微分、不定积分与定积分、多元函数微分学、重积分与曲线积分、常微分方程等。

考生需要详细学习和掌握这些内容,通过习题训练和实践应用,提高数学解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硕士《高等数学》考试大纲
课程名称:高等数学
科目代码:601
适用专业:工科各专业
参考书目:《高等数学》(上、下册),高等教育出版社,第六版,2007,同济大学
考试内容:
一、函数、极限、连续
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立
数列极限与函数极限的定义以及它们的性质函数的左极限与右极限无穷小和无穷大的概念及关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)
二、一元函数微分学
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平
面曲线的切线和法线及其方程基本初等函数的导数导数和微分的四则运算反函数、复合函数隐函数以及参数方程所确定的函数的微分法高阶导数的概念某些简单函数的n阶导数一阶微分形式的不变性微分在近似计算中的应用
罗尔(Rolle)定理拉格朗日(LAGRANGE)中值定理柯西(Cauchy)中值定理泰勒(Taylor)定理洛必达(L’HOspiial)法则函数的极值及其求法函数单调性函数图形凹凸性、拐点及渐进线函数图形的描绘函数最大值和最小值及其简单应用弧微分曲率的概念
三、一元函数积分学
原函数和不定积分的概念不定积分的基本性质基本积分公式
定积分的概念和基本性质定积分中值定理变上限定积分定义的函数及其导数牛顿一莱布尼茨(NewtOn一leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分的概念定积分的应用
四、常微分方程
常微分方程的概念微分方程的解、阶、通解、初始条件和特解可分离变量的方程齐次方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的一些简单应用
五、多元函数微分学
多元函数的概念二元函数的极限与连续性偏导数的定义及其计算法高阶偏导数全微分的定义多元复合函数的求导法则隐函数的求导多元函数微分学的几何应用空间曲线的切线和法平面曲面的切平面和法线方向导数与梯度多元函数的极值及最大值和最小值条件极值拉格朗日乘数法
六、多元函数积分学
二重积分的概念二重积分的性质利用直角坐标计算二重积分利用极坐标计算二重积分二重积分的应用曲面的面积平面薄片的质心平面薄片的转动惯量平面薄片对质点的引力。

相关文档
最新文档