高等数学归纳笔记(全)
高等数学a1_学习笔记
第一章:函数与极限1.1函数的定义与性质1.2极限的概念与计算1.3右极限与左极限1.4极限的性质第二章:连续性2.1连续函数的定义2.2连续性的判别2.3连续函数的性质2.4介值定理第三章:导数与微分3.1导数的定义与几何意义3.2导数的计算法则3.3微分的概念与应用3.4逻辑与高阶导数第四章:应用导数4.1函数的单调性与极值4.2曲线的凹凸性与拐点4.3应用导数解决实际问题4.4L'Hôpital法则第五章:定积分5.1定积分的定义与性质5.2定积分的计算方法5.3牛顿莱布尼茨公式5.4定积分的应用第六章:不定积分6.1不定积分的基本概念6.2常见的不定积分公式6.3不定积分的计算技巧6.4分部积分法与换元积分法第1章:函数与极限函数的定义与性质函数的定义:一个函数是一个将每个输入(自变量)与一个唯一的输出(因变量)相对应的关系。
通常用f(x)表示,其中x是自变量。
定义域:函数的定义域是所有可能的自变量x的集合。
值域:函数的值域是所有可能的因变量f(x)的集合。
例子:f(x)=x^2,定义域为所有实数,值域为所有非负实数。
单调性:如果对于任意的x1<x2,有f(x1)<f(x2),则f(x)是单调递增的;反之则是单调递减的。
有界性:如果存在M,使得对所有x,|f(x)|≤M,则f(x)是有界的。
奇偶性:如果f(x)=f(x),则f(x)是奇函数;如果f(x)=f(x),则f(x)是偶函数。
周期性:如果存在T,使得f(x+T)=f(x),则f(x)是周期函数。
例子:正弦函数sin(x)是周期函数,其周期为2π。
复合函数:如果g(x)是另一个函数,则复合函数f(g(x))是将g(x)的输出作为f(x)的输入。
例子:若f(x)=x^2,g(x)=x+1,则复合函数f(g(x))=(x+1)^2。
反函数:若f(x)是单调函数,则存在反函数f^(1)(x),使得f(f^(1)(x))=x。
高等数学上册笔记手写
高等数学上册笔记手写
由于我无法直接手写笔记,我将为您提供一份高等数学上册的笔记提纲,您可以根据需要进行整理和补充。
高等数学上册笔记
第一章函数与极限
1. 函数的定义与性质
2. 极限的概念与性质
3. 极限的运算规则
4. 无穷小量与无穷大量
5. 函数的连续性与间断点
第二章导数与微分
1. 导数的概念与性质
2. 导数的运算规则
3. 高阶导数
4. 微分的概念与性质
5. 微分在近似计算中的应用
第三章导数的应用
1. 函数的单调性
2. 函数的极值与最值
3. 曲线的凹凸性及拐点
4. 洛必达法则
5. 不定积分的概念与性质
6. 不定积分的运算规则
7. 定积分的概念与性质
8. 定积分的运算规则及积分表的使用
9. 反常积分
10. 定积分的应用:面积、体积、长度等的计算第四章向量代数与空间解析几何
1. 向量的概念与表示方法
2. 向量的加法、数乘及向量的模
3. 向量的点积与叉积
4. 向量的混合积及其几何意义
5. 空间中的平面与直线方程
6. 向量在几何中的应用举例
7. 柱面坐标系与球面坐标系
8. 空间曲线在坐标面上的投影
9. 二重积分概念及计算方法
10. 二重积分的几何意义及物理意义(例如:面积、体积、质心等)
11. 二重积分的换元法及分块法等计算技巧。
高数基础知识总结
( ) sin x
=
x−
x3 3!
+
x5 5!
+Λ
+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x = 1−
x2 2!
+
x4 4!
−Λ
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a,b]上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(log a
lim
f (x) g(x)
=
A
(或
∞
)
7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)
高等数学笔记(含数一内容)
隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算
高等数学笔记
前言笔记规则== —— 表示定义—— 收敛 —— 发散第一章 函数与极限初等函数==由五类基本初等函数经过有限次加减乘除及复合运算并能用一个式子表达的函数。
定理(个人成果) 设()f x 、()g x 是初等函数,则在()f x 、()g x 的公共定义域内,0000(),1()[()()(()())](),2f x x x x x h x f x g x f x g x g x x x x x >⎧-==++-⎨<-⎩也是初等函数。
其中x x x x --称为定界系数。
注意:显然该函数存在断点!最值函数==1Max(A,B)=(A B )21Min(A,B)=(A B )2A B A B ⎧++-⎪⎪⎨⎪+--⎪⎩三角函数定理22cos 2222sin 22tan sec 1sin cos 1cot csc 1x x x x x x x x ÷÷⎧−−−→=-⎪+=⎨−−−→=-⎪⎩指数函数极限原则()()()()g x bf x a f x ag x b →⎫⇒→⎬→⎭隐蔽的函数关系(1In(In(x x x x -=-⇒+=--第二章 导数与微分(详见后文)第三章 微分中值定理与导数应用(详见后文) 第四章 不定积分2x-第五章 定积分三角积分说明:n m Z ∈、三角积分1 原理:循环区间内积分为0 cos d sin d 0nx x nx x ππππ--==⎰⎰三角积分2 原理:奇偶函数之积cos sin d 0mx nx x ππ-=⎰三角积分3 原理:积化和差后,利用三角积分1证明:0,cos scos d sin ssin d ,m nmx nx x mx nx x m n πππππ--≠⎧==⎨=⎩⎰⎰ 三角积分4 原理:与三角积分3相似,积化和差后,利用三角积分1证明:0,cos scos d sin ssin d ,m nmx nx x mx nx x m nπππ≠⎧==⎨=⎩⎰⎰三角积分5 原理:利用分部积分法求出递推关系220cos d sin d 0n I nx x nx x ππ===⎰⎰21n n n I I n --= 0134212531331n 24222n n n n n I n n I n n ππ--⎧⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅=⎪-⎩(n 为奇数)(为偶数),第六章 定积分的应用极坐标扇形面积21[()]d 2A βαϕθθ=⎰旋转体体积2[()]d ba V f x πθ=⎰曲线弧长第七章 微分方程微分方程基本概念微分方程==未知函数及其导数的关系式。
高等数学(函数与极限)完全归纳笔记
目录:函数与极限 (1)1、集合的概念 (1)2、常量与变量 (2)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学(一)学习笔记
π ,n ∈ Z)},为奇函数, π 为周期, 2
周期内单
π , 2
π ],则 y=arc sinx 为定义在区间 D 上的单值函数(即为反正弦函数。)单加 2 反余弦函数:y=Arccosx 定义域 D={ x 一 1 ≤ x ≤ 1},为多值函数,2 π 为周期。若限制值域为[0, + π ],则 y=arc cosx 为定义在区间 D 上的单值函数(即为反余弦函数。)单减 反正切函数:y=Arctgx 定义域 D={ x 一 ∞ ≤ x ≤ + ∞ },为多值函数, π 为周期。若限制值域为[-
x → x0
定理一:如果 lim
x → x0
f ( x) = A ,而且 A>0(或 A<0),那幺就存在着点 x0 的某一去心邻域,当 x 在该邻 f ( x ) = A , 那幺 A ≥ 0(或 A ≤ 0).
域时,就有 f(x)>0(或 f(x)<0). 定理二:如果在点 x0 的某一去心邻域内 f(x) ≥ 0(或 f(x ≤ 0), 而且 lim 可证明:f( x0 -0)=f( x0 +0)为 lim
x →∞
7、无穷小和无穷大 (1)、无穷小,极限为 0,则称函数为无穷小(当 x →
x0 或 x → ∞ ). x0 或 x → ∞ ),具有极限
A、定理一(无穷小与函数极限的关系):在自变量的同一变化过程中(x →
的函数等于它的极限与一个无穷小之和;反之,如果一函数可表示为一常数和无穷小之和,则这常数 即为这函数的极限。 B、运算法则:I,有限个无穷小的和也是无穷小。II,有界函数与无穷小的积是无穷小(常数与无穷 小的积是无穷小;有限个无穷小的积也是无穷小) C、无穷小的比较:
(完整版)高等数学笔记
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。
《高等数学》笔记-知识归纳整理
- 1 -第一章 函数与极限第一节 函数1.区间(interval):介于某两个实数之间的全体实数构成区间.这两个实数叫做区间的端点..,,b a R b a <∈∀且}{b x a x <<开区间),(b a 记作}{b x a x ≤≤闭区间],[b a 记作ox a bo xab}{b x a x <≤}{b x a x ≤<左闭右开区间左开右闭区间),[b a 记作],(b a 记作}{),[x a x a ≤=+∞}{),(b x x b <=-∞o x aoxb注:两端点间的距离称为区间的长度.无穷区间2 邻域.0,>δδ且是两个实数与设a ,叫做这邻域的中心点a .叫做这邻域的半径δ.}{),(δδδ+<<-=a x a x a U xaδ-a δ+a δδ,}{邻域的称为点数集δδa a x x <-记作二、函数的概念1.函数的定义函——信函单值对应多值函数不是函数自变量因变量对应法则(())x )(0x f f xyDW------函数的定义域D 和函数的对应规律f 函数的值域称为派生要素。
2. 函数的两个要素w={y │y=f(x), x ∈D}xaδ- a δ+ a δδ,邻域 的去心的 点 δa) , ( δ a U记作 .}0{),(δδ<-<=a x x a U知识归纳整理- 2 -❖定义域的求法❖在实际问题中,定义域由实际问题的具体条件来确定。
(即使实际问题故意义的取值范围)。
如时光、长度、分量必须大等于0 。
❖对于数学式子表达的函数,如果给出了取值范围就不必再求。
否则,则是使解析式故意义的x的集合(使对应的函数值唯一确定)。
1. 在分式中,分母应不为0;2. 在偶次根式中,被开方数不能为负数;3. 在对数式中,真数不能为0和负数;▪ 4. 在反三角函数式中,要符合反三角函数的定义域;▪ 5. 若函数表达式中含有分式、根式、对数式、反三角函数式等,则应取各部分定义域的交集。
(完整版)高等数学完全归纳笔记(全)
一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学第八章笔记
高等数学第八章笔记一、多元函数的基本概念。
1. 多元函数的定义。
- 设D是n维空间R^n中的一个非空子集,映射f:D→ R称为定义在D 上的n元函数,记为z = f(x_1,x_2,·s,x_n),(x_1,x_2,·s,x_n)∈ D。
- 当n = 2时,z=f(x,y),(x,y)∈ D,D是xy-平面上的一个区域。
2. 多元函数的极限。
- 设函数z = f(x,y)在点(x_0,y_0)的某去心邻域内有定义,如果对于任意给定的正数varepsilon,总存在正数δ,使得当0<√((x - x_0))^2+(y - y_{0)^2}<δ时,都有| f(x,y)-A|成立,则称常数A为函数z = f(x,y)当(x,y)to(x_0,y_0)时的极限,记作lim_(x,y)to(x_{0,y_0)}f(x,y)=A。
- 注意:(x,y)to(x_0,y_0)是指(x,y)以任何方式趋向于(x_0,y_0)。
3. 多元函数的连续性。
- 设函数z = f(x,y)在点(x_0,y_0)的某邻域内有定义,如果lim_(x,y)to(x_{0,y_0)}f(x,y)=f(x_0,y_0),则称函数z = f(x,y)在点(x_0,y_0)处连续。
- 如果函数z = f(x,y)在区域D内的每一点都连续,则称函数z = f(x,y)在区域D内连续。
二、偏导数。
1. 偏导数的定义。
- 设函数z = f(x,y)在点(x_0,y_0)的某邻域内有定义,固定y = y_0,函数z = f(x,y_0)在x = x_0处的导数,称为函数z = f(x,y)在点(x_0,y_0)对x的偏导数,记作f_x(x_0,y_0)或(∂ z)/(∂ x)|_(x_{0,y_0)},即f_x(x_0,y_0)=lim_Δ xto0frac{f(x_0+Δ x,y_0) - f(x_0,y_0)}{Δ x}。
高等数学二全部笔记
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n , (n 为实数)3.指数函数: y=a x , (a >0、a ≠1)4.对数函数: y=log a x ,(a >0、a ≠1)5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(lim 0左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。
高数笔记大一知识点总结
高数笔记大一知识点总结在大一的学习生涯中,高等数学(简称高数)是一个重要的课程。
高数作为理工科学生必修的数学基础课程,为我们后续学习许多专业课程打下了坚实的基础。
下面是我对大一所学高数知识点的总结。
1. 函数与极限1.1 函数函数是两个变量间的一种特殊关系,常用符号表示为y = f(x)。
我们常见的函数类型有线性函数、二次函数、指数函数等。
函数的定义域、值域以及图像是我们研究函数的重要几何特征。
1.2 极限极限是数列和函数的重要概念。
当自变量趋近于某个值时,函数的值或数列的项会趋近于一个特定的数。
极限的计算可以用极限的四则运算法则以及夹逼准则等方法。
2. 微分学微分学是高数中的一个重要分支,主要研究函数的导数和微分。
2.1 导数导数是函数在某一点上的变化率,用符号f'(x)表示。
导数的计算有基本的导数公式,还可以通过链式法则、隐函数求导等方法来求解。
导数的几何意义即为函数在该点处的切线斜率。
2.2 微分微分是导数的一个应用。
微分可以描述函数在某一点附近的局部线性变化情况。
微分的计算可以通过导数的乘法公式来进行,并且可以应用微分求近似值、判断极值等。
3. 积分学积分学是微分学的逆运算,主要研究函数的原函数和定积分。
3.1 原函数函数F(x)的导函数是f(x),则称F(x)为f(x)的原函数。
原函数可以看作是导数的逆运算。
3.2 定积分定积分是求曲线与x轴之间的面积或曲线某一部分的长度。
定积分的计算,可以通过基本的积分公式以及换元法、分部积分等方法进行。
4. 无穷级数无穷级数是由无穷多个数项相加所得到的和。
学习无穷级数,首先要了解级数的收敛性和发散性,以及收敛级数的和的计算方法。
5. 偏导数与多元函数多元函数是有多个自变量的函数,偏导数是多元函数的导数之一。
偏导数求解可以按照不同的自变量分别求导。
这些是大一学习高数的重要知识点的简要总结。
通过学习这些知识,我们不仅可以掌握基本的数学计算方法,还能够培养逻辑思维和解决实际问题的能力。
(完整版)高等数学完全归纳笔记(全)
一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高数笔记大一必备知识点总结
高数笔记大一必备知识点总结在大一学习过程中,高等数学是一个重要且基础的学科。
掌握高数的核心知识点对于接下来的学习和日后的科学研究具有至关重要的意义。
本文将对大一高数课程中的必备知识点进行总结和整理,以便学习者能够更全面地理解和巩固这些知识。
一、极限与连续1. 极限的概念和性质极限是函数或数列趋于无穷或某一点的过程,包括左极限和右极限。
介绍极限的定义、唯一性和性质,例如保号性、夹挤准则等。
2. 极限的计算方法掌握极限运算的基本方法,如常用极限公式、夹逼定理、洛必达法则等。
3. 连续与间断介绍函数连续与间断的概念,包括可接连性、第一类间断点和第二类间断点等。
二、导数与微分1. 导数的定义与运算法则理解导数的几何和物理意义,掌握用极限表示导数的定义,以及常用导数的运算法则。
2. 高阶导数与隐函数微分理解高阶导数的概念和计算方法,以及隐函数微分的基本原理和求解技巧。
3. 函数的单调性与极值介绍函数的单调性与极值的概念,以及通过导数判定函数的单调性和求解极值的方法。
三、定积分与不定积分1. 定积分的概念和性质理解定积分的几何和物理意义,介绍定积分的定义、性质和计算方法,包括区间的选择、分割求和法和牛顿-莱布尼茨公式等。
2. 不定积分的基本性质介绍不定积分的定义、基本性质和基本积分公式,包括换元积分法和分部积分法等。
3. 微积分基本定理了解微积分基本定理的表述和应用,掌握原函数和定积分的关系。
四、常微分方程1. 常微分方程的基本概念介绍常微分方程的定义和基本术语,如阶数、通解和特解等。
2. 一阶常微分方程解法掌握一阶常微分方程的可分离变量法、一阶齐次线性微分方程和一阶线性非齐次微分方程的解法。
3. 高阶常微分方程解法了解高阶常微分方程的特征方程法和常系数线性微分方程的解法。
通过对以上知识点的系统学习和掌握,大一的学生将能够建立起扎实的高数基础,为进一步学习相关专业课程打下良好的基础。
需要注意的是,高等数学是需要不断实践和巩固的学科,需要学生在课堂上学习与思考,在课后进行大量的习题练习,以便更好地理解和应用这些知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A ∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A ∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。
简称为集合A的补集,记作C U A。
即C U A={x|x∈U,且x A}。
集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。
例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。
学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。
⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。
试判断B是不是A的子集?是否存在实数a使A =B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b (a,b)半开区间a<x≤b或a≤x<b (a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。
如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。
即是:函数在此要求下严格增(减).⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。
如右图所示:5、复合函数复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。
6、初等函数⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。