湖北省襄阳市普通高中2014-2015学年高一上学期2月调研统一测试数学试题扫描版无答案
湖北省襄阳市2023-2024学年高一上学期12月月考数学试题含答案

襄阳2023-2026届高一上学期12月月考数学试卷(答案在最后)一、单选题1.已知角α的终边经过点()3,4-,则cos α的值为()A.35 B.45-C.35±D.45±【答案】A 【解析】【分析】利用三角函数的定义即可得解.【详解】因为角α的终边经过点()3,4-,所以3cos 5α==.故选:A.2.在平面直角坐标系中,点()tan 2023,sin 2023P ︒︒位于第()象限.A.一B.二C.三D.四【答案】D 【解析】【分析】利用诱导公式判断得P 点坐标的符号,从而得以判断.【详解】因为()tan 2023tan 5360223tan 2230︒=⨯︒+︒=︒>,()sin 2022sin 5360222sin 2220︒=⨯︒︒+︒=<,所以()tan 2023,sin 2023P ︒︒在第四象限;故选:D.3.函数()3ln f x x x=-的零点所在的大致区间为()A.()0,1 B.()1,2 C.()2,e D.()e,3【答案】D 【解析】【分析】由题意可知()f x 在()0,∞+递增,且()()e 0,30f f ,由零点存在性定理即可得出答案.【详解】易判断()f x 在()0,∞+递增,()()3e lne 0,3ln310ef f =-=-.由零点存在性定理知,函数()3ln f x x x=-的零点所在的大致区间为()e,3.故选:D.4.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知lg 20.3010≈,lg30.4771≈,设4054N =⨯,则N 所在的区间为()A.()101110,10 B.()111210,10C.()121310,10 D.()131410,10【答案】C 【解析】【分析】先求出lg N 的值,结合选项即可判断.【详解】4051020423N =⨯=⨯,()10200lg lg 10lg 1002.30103220lg 3200.477112.552N ⨯≈⨯==+⨯=+,所以N 所在的区间为()121310,10.故选:C5.已知奇函数()f x 的定义域为()(),00,∞-+∞U ,且对任意两个不相等的正实数12,x x ,都有()()()12120x x f x f x -->⎡⎤⎣⎦,在下列不等式中,一定成立的是()A.()()12f f ->-B.()()12f f -<-C.()()21f f -> D.()()21f f -<【答案】A 【解析】【分析】由题意得到()f x 在()0,∞+单调递增,可得到()()12f f <,结合奇函数的性质即可得解.【详解】因为对任意两个不相等的正实数12,x x ,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在()0,∞+单调递增,则()()12f f <,因为()f x 是定义域为(,0)(0,)-∞+∞ 的奇函数,则()()()()11,22f f f f =--=--,所以()()12f f --<--,即()()12f f ->-,故A 正确,B 错误;而CD ,由于()f x 不连续,故无法判断()()2,1f f -的大小关系,故CD 错误.故选:A.6.已知3log 2a =,ln 3ln 4b =,23c =.则a ,b ,c 的大小关系是()A.a b c <<B.a c b<< C.c<a<bD.b a c<<【答案】B 【解析】【分析】根据对数函数的性质及对数的运算性质判断即可.【详解】∵2333332log 3log log log 23c a ====,∴c a >,又2344442ln 3log 4log log log 33ln 4c b =====,∴c b <,∴a c b <<.故选:B .7.设a 为实数,若关于x 的不等式270x ax -+≥在区间()2,7上有实数解,则a 的取值范围是()A.(),8∞- B.(],8∞-C.(,-∞ D.11,2⎛-∞⎫ ⎪⎝⎭【答案】A 【解析】【分析】参变分离,再根据对勾函数的性质,结合能成立问题求最值即可.【详解】由题意,因为()2,7x ∈,故7a x x ≤+在区间()2,7上有实数解,则max 7a x x ⎛⎫<+ ⎪⎝⎭,又()7g x x x =+在(上单调递减,在)上单调递增,且()7112222g =+=,()()777827g g =+=>,故78x x ⎛⎫+< ⎪⎝⎭.故7a x x ≤+在区间()2,7上有实数解则8a <.故选:A8.已知1,0,0x y x y +=>>,则121xx y ++的最小值为()A.43B.54C.1D.3【答案】B 【解析】【分析】结合“1”的代换和基本不等式求解即可.【详解】因为1,0,0x y x y +=>>,所以()21212152122224244244x y x x y x x x x y x x y x x y x y x y x x y x x y x x y ++++++=+=+=+=++³+=+++´+++,当且仅当242x y x x x y +=+时,即21,33x y ==时,取等号.故选:B二、多选题9.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()22f x x x =-,则()A.()f x 的最小值为1- B.()f x 在()1,1-上单调递减C.()0f x ≤的解集为(][],20,2-∞-⋃ D.存在实数x 满足()()2f x f x +=-【答案】BCD 【解析】【分析】根据函数()f x 是定义在R 上的奇函数,可以写出函数()f x 的解析式,进而判断函数单调性即可判断AB ;画出函数的图形即可判断C ,特殊值代入即可得D.【详解】由题意可知当0x <时,()()()2222f x f x x x x x=--=-+=--即()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩所以,函数()f x 的图像如下:显然,函数()f x 没有最小值,故A 错误;根据函数图像可得()f x 在()1,1-上单调递减,故B 正确;令()0f x ≤得(][],20,2-∞-⋃,故C 正确;由图可知,令0x =得()()200f f ==,故D 正确.故选:BCD.10.下列说法正确的是()A.若,a b n >为正整数,则n n a b >B.若0,0b a m >>>,则a m ab m b+>+C.22222a ba b ++≥D.若0απ<<,则0sin 1α<<【答案】BC 【解析】【分析】利用不等式性质、基本不等式及正弦函数的图象性质逐个选项判断即可得到答案.【详解】对于A ,若1,1,2a b n ==-=,则n n a b =,故A 错误;对于B ,0,0b a m >>>时,a m aab bm ab am b a b m b+>⇔+>+⇔>+,故B 正确;对于C ,由20,20a b >>,则2222222a b ab a b ++≥⨯=⨯,当且仅当a b =时取等号,故C 正确;对于D ,当π2α=时,πsin 12=,故D 错误;故选:BC .11.某同学在研究函数()()1||xf x x x =∈+R 性质时,给出下面几个结论,其中正确的结论有()A.函数()f x 的图象关于点(0,0)对称B.若12x x <,则()()12f x f x >C.函数()f x 的值域为(1,1)-D.函数()()2xg x f x =-有三个零点【答案】ACD 【解析】【分析】利用奇函数的定义判断选项A ;按0x ≥和0x <时分别化简()f x ,结合反比例函数的性质可得函数的单调性和值域,判断选项B 和C ;将函数零点问题转化为方程根,直接求解判断选项D .【详解】因为函数()f x 的定义域为全体实数,()()1||1||x xf x f x x x --==-=-+-+,所以()f x 是奇函数,其图象关于原点对称,故A 正确;当0x ≥时,1()111x f x x x ==-++,显然函数单调递增,此时0()1f x ≤<.当0x <时,1()111x f x x x==-+--,显然函数单调递增,此时()10f x -<<.因此函数()f x 在R 上是单调递增的,值域为()1,1-,因此B 错误,C 正确;由()()0()0221||2x x x x g x f x f x x x =-=⇒=⇒=⇒=+或1x =或=1x -,所以D 正确,故选:ACD .【点睛】方法点睛:本题考查函数的奇偶性和单调性,考查函数的零点,考查学生运算求解能力,函数零点的求法主要有两种:1.代数法:求方程()0f x =的实数根;2.几何法:对于不能用求根公式的方程,可以画出()y f x =的图象,或者转化为两个图象的交点问题.12.已知函数()()()1101xf x x x x =--⋅>,()()()1lg 1g x x x x x =--⋅>的零点分别为12,x x,则()A.1210x x ⋅<B.12lg x x =C.12111x x += D.124x x +>【答案】BCD 【解析】【分析】根据函数10x y =,lg y x =与1xy x =-的图象关于直线y x =对称建立12,x x 的关系,从而逐项分析判断即可得解.【详解】因为()()()1101xf x x x x =--⋅>,()()()1lg 1g x x x x x =--⋅>,令()0f x =,()0g x =,得101x x x =-,lg 1x x x =-,因为10x y =与lg y x =互为反函数,所以它们的图象关于直线y x =对称,因为1111x y x x ==+--,所以由1y x=的图象向右向上各平移一个单位得到1xy x =-图象,故函数1xy x =-的图象关于直线y x =对称,即可知点,A B 关于直线y x =对称,作出1xy x =-,10x y =与lg y x =的大致图象,如图,由图象可知A 的横坐标为1x ,B 的横坐标为2x ,对于A ,由上述分析得121110,xx x =>,则11010x >,所以11211010xx x x ⋅=⋅>,故A 错误;对于B ,由上述分析得212212lg ,11x x x x x x ==>>-,故B 正确;对于C ,由2112122121111x x x x x x x x x =⇒=+⇒+=-,故C 正确;对于D ,()211212122124121x x x x x x x x x x ⎛⎫+=+=≥++⎪++⎝⎭,当且仅当2211x x x x =,即122x x ==时,等号成立,显然(2)2lg 20g =-≠,则22x ≠,故等号不成立,所以124x x +>,故D 正确.故选:BCD.【点睛】关键点睛:本题解决的关键是理解指数函数10x y =与对数函数lg y x =互为反函数,其图象关于y x =对称,而1x y x =-的图象也关于y x =对称,从而得解.三、填空题13.已知扇形的弧长为6,圆心角弧度数为3,则其面积为______________;【答案】6【解析】【分析】根据扇形面积公式21122S lr r α==求解即可.【详解】扇形的弧长为6,圆心角弧度数为3,则扇形的半径623r ==,所以该扇形的面积162S lr ==.故答案为:6【点睛】此题考查求扇形的面积,根据圆心角、半径、弧长的关系求解.14.已知函数()()log 21a f x x =++(0a >,且1a ≠)的图像恒过点P ,若点P 是角θ终边上的一点,则sin θ=______________.【答案】2【解析】【分析】利用对数函数的性质求得定点P ,再利用三角函数的定义即可得解.【详解】因为()()log 21a f x x =++(0a >,且1a ≠)的图像恒过点P ,令21x +=,则=1x -,1y =,所以()1,1P -,所以sin 2θ==.故答案为:2.15.已知函数()211ln 3x f x x +⎛⎫=- ⎪⎝⎭,则满足不等式()31log 9f x <的x 的取值范围是___________.【答案】10,(3,)3⎛⎫+∞ ⎪⎝⎭【解析】【分析】先判断函数的奇偶性和单调性,然后利用奇偶性的性质和单调性解不等式即可.【详解】因为()211ln 3x f x x +⎛⎫=- ⎪⎝⎭,所以其定义域为{}0x x ≠,又()()22()1111ln ln 33x x f x x x f x -++⎛⎫⎛⎫-=--=-= ⎪⎪⎝⎭⎝⎭,所以()f x 为偶函数,当0x >时,()211ln 3x f x x +⎛⎫=- ⎪⎝⎭,因为2113x y +⎛⎫= ⎪⎝⎭和ln y x =-在()0,∞+上均单调递减,所以()211ln 3x f x x +⎛⎫=- ⎪⎝⎭在()0,∞+上单调递减,又()119f =,所以()31log 9f x <可化为()3log (1)f x f <,所以()()3log 1fx f <,则3log 1x >,则3log 1x <-或3log 1x >,解得103x <<或3x >,所以不等式的解集为10,(3,)3⎛⎫+∞ ⎪⎝⎭,故答案为:10,(3,)3⎛⎫+∞ ⎪⎝⎭.16.已知函数()f x 的定义域为[)0,∞+,且()[)()[)()[)221,0,1log 3,1,222,0,x x f x x x f x x ∞⎧-∈⎪=-∈⎨⎪-∈+⎩,函数()()122x g x f x -=-在区间[]0,a 内的所有零点的和为16,则实数a 的取值范围是_____________.【答案】[)7,9【解析】【分析】函数()()122x g x f x -=-的零点转化为函数()y f x =的图象与函数122x y -=的图象的交点的横坐标,作出它们的图象,观察图象可得结果.【详解】函数()()122x g x f x -=-的零点即为函数()y f x =的图象与函数122x y -=的图象的交点的横坐标,因为()[)()[)()[)221,0,1log 3,1,222,0,x x f x x x f x x ∞⎧-∈⎪=-∈⎨⎪-∈+⎩,先利用指数函数与对数函数的性质作出函数()y f x =在区间[0,2)上的图象,又当2x ≥时,()2(2)f x f x =-,即每过两个单位,将()f x 的图象向右平移2个单位,同时将对应的y 坐标变为原来的两倍,再作出函数122(0)x y x -=≥的图象,如图所示:由图象可得:11x =,23x =,35x =,L ,21n x n =-,则()2113521nii xn n ==++++-=∑ ,因为()()122x g x f x -=-在区间[]0,a 内的所有零点的和为16,所以216n =,得4n =,结合图象,可得实数a 的取值范围是[)7,9.故答案为:[)7,9.【点睛】关键点睛:本题解决的关键是作出()f x 的大致图象,从而利用数形结合即可得解.四、解答题17.已知函数()f x =的定义域为集合A ,集合{}|211B x m x m =-<≤+.(1)当0m =时,求A B ⋃;(2)若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.【答案】(1){}14x x -<≤(2)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先利用具体函数定义域与指数函数解不等式求得集合A ,从而利用集合的并集运算即可得解;(2)由题意得到B 是A 的真子集,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系即得解.【小问1详解】因为()f x =,所以1620210x x ⎧-≥⎨->⎩,解得142x <≤,所以142A x x ⎧⎫=<≤⎨⎬⎩⎭,当0m =时,集合{11}B x x =-<≤,所以14}A B x x ⋃=-<≤.【小问2详解】因为x A ∈是x B ∈的必要不充分条件,则B 是A 的真子集,因为{}|211B x m x m =-<≤+,当B =∅时,211m m -≥+,解得2m ≥,符合题意;当B ≠∅时,则211121214m m m m -<+⎧⎪⎪-≥⎨⎪+≤⎪⎩(等号不同时成立),解得324m ≤<,综上,34m ≥,故m 的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭.18.已知集合(){}22log 2log 0A x x x =⋅≤.(1)求集合A ;(2)求函数()2144x x y x A +=+∈的值域.【答案】(1)112A xx ⎧⎫=≤≤⎨⎬⎩⎭;(2)[]18,68.【解析】【分析】(1)根据对数函数的单调性得到22log 0log 2x x ≤≤且0x >,由此求解出x 的取值范围,则集合A可知;(2)采用换元法令[]42,4xt =∈,将函数变形为关于t 的二次函数,根据二次函数的对称轴以及开口方向确定出单调性并求解出最值,由此可求函数的值域.【详解】(1)因为()22log 2log 0x x ⋅≤,且2log y x =在()0,∞+上单调递增,所以22log 0log 20x x x ≤≤⎧⎨>⎩,所以222log log 1log 20x x x ≤≤⎧⎨>⎩,所以120x x x ≤≤⎧⎨>⎩,所以112A x x ⎧⎫=≤≤⎨⎬⎩⎭;(2)因为21144,12x x y x +⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭,所以()2444x x y =⋅+,令[]42,4x t =∈,所以24y t t =+,对称轴为18t =-且开口向上,所以22max min 44468,42218y y =⨯+==⨯+=,所以函数的值域为[]18,68.19.设a 为实数,给定区间I ,对于函数()f x 满足性质P :存在x I ∈,使得()()21f x f x ≥+成立.记集合()(){|M f x f x =具有性质}P ..(1)设[)()0,,I f x =+∞=,判断()f x M ∈是否成立并说明理由;(2)设(]()20,1,log I g x a x ==+,若()g x M ∈,求a 的取值范围.【答案】(1)()f x M ∈,理由见解析(2)[)1,+∞【解析】【分析】(1)利用函数满足性质P 的定义取值判断并说理即可;(2)根据函数满足性质P 的定义,将问题转化为能成立问题,从而得解.【小问1详解】()f x M ∈,理由如下:因为[)()0,,I f x =+∞=,取1x =,此时()()2122f f =>=,所以()f x M ∈.【小问2详解】因为(]()20,1,log I g x a x ==+,()g x M ∈,所以存在(]0,1x ∈,使得()()()222122log log 1g x g x a x a x ≥+⇒+≥++,所以221log x a x +≥,令()()221log 01x h x x x +=<≤,令22211111124x t x x x x +⎛⎫==+=+- ⎪⎝⎭,因为01x <≤,所以11x ≥,所以2211111122424t x ⎛⎫⎛⎫=+-≥+-= ⎪ ⎪⎝⎭⎝⎭,所以()[)1,h x ∈+∞,则1a ≥,所以a 的取值范围[)1,+∞.20.已知定义在()(),00,∞-+∞U 上的函数()f x 满足()()()1f xy f x f y +=+,且()f x 在()0,∞+上单调递减.(1)证明:函数()f x 是偶函数;(2)解关于x 的不等式()()122f x f -+≥.【答案】(1)证明见解析;(2)13,11,22⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦ .【解析】【分析】(1)利用赋值法及偶函数的定义计算即可;(2)根据(1)的结论及函数的性质计算即可.【小问1详解】令1x y ==得()()()1111f f f +=+,即()11f =;令1x y ==-得()()()1111f f f +=-+-,即()11f -=.令1y =-得()()()11f x f x f -+=+-,即()()f x f x -=,所以()f x 是偶函数得证;【小问2详解】由已知定义()()()12221f x f f x -+=-+,所以()()122f x f -+≥即()221f x -≥,所以()()221f x f -≥,因为()f x 是偶函数,且在()0,∞+单调递减,所以()22131122220x x x x ⎧-≤⇒≥≥≠⎨-≠⎩,即()()122f x f -+≥的解集为13,11,22⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦.21.已知产品利润等于销售收入减去生产成本.若某商品的生产成本C (单位:万元)与生产量x (单位:千件)间的函数关系是3C x =+;销售收入S (单位:万元)与生产量x 间的函数关系是1835,06814,6x x S x x ⎧++<<⎪=-⎨⎪≥⎩.(1)把商品的利润表示为生产量x 的函数;(2)当该商品生产量x (千件)定为多少时获得的利润最大,最大利润为多少万元?【答案】(1)1822,06811,6x x y x x x ⎧++<<⎪=-⎨⎪-≥⎩(2)生产量为5千件时,最大利润为6万元【解析】【分析】(1)设利润是y (万元),由y S C =-即可得利润关于生产量x 的函数;(2)分别由基本不等式和一次函数的单调性求得分段函数两段的最值即可求解.【小问1详解】设利润是y (万元),因为产品利润等于销售收入减去生产成本,则1835(3),06814(3),6x x x y S C x x x ⎧++-+<<⎪=-=-⎨⎪-+≥⎩,所以1822,06811,6x x y x x x ⎧++<<⎪=-⎨⎪-≥⎩.【小问2详解】当06x <<时,189222(8)1888y x x x x ⎡⎤=++=--++⎢⎥--⎣⎦186≤-=,当988x x-=-,即5x =时,max 6y =,当6x ≥时,11y x =-是减函数,6x =时,max 5y =,所以当5x =时,max 6y =,所以生产量为5千件时,最大利润为6万元.22.已知函数()1ln1x f x x -=+.(1)求不等式()()()ln 20f f x f +>的解集;(2)函数()()20,1x g x aa a =->≠,若存在[)12,0,1x x ∈,使得()()12f x g x =成立,求实数a 的取值范围;(3)已知函数()()ln 1h x x x =--在区间()1,+∞单调递减.试判断()*111120N 2462f f f f n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++++>∈ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭是否恒成立,并说明理由.【答案】(1)1e 1,3e 1-⎛⎫ ⎪+⎝⎭(2)()2,+∞(3)恒成立,理由见解析【解析】【分析】(1)先求出()f x 的定义域,判断其奇偶性及单调性,从而将所求不等式化为111lnln 12x x --<<+,由此得解;(2)将问题转化为()f x 和()g x 在[)0,1x ∈上的值域的交集不为空集;分类讨论1a >和01a <<两种情况,分别求出两函数的值域,从而得解;(3)将问题转化为判断ln(21)20n n -++>,再利用()()ln 1h x x x =--的单调性即可得解.【小问1详解】因为()1ln 1x f x x -=+,由101x x ->+,可得11x -<<,即()f x 的定义域为()1,1-;又()()l 111ln n 1x f x f x x x x +-==-+-=--,所以()f x 为奇函数,当01x <<时,易得()1ln12ln 11f x x x x ⎛⎫==-+ ⎪+⎝-⎭+单调递减,所以()f x 在()1,1-上单调递减,且()f x 的值域为R ,不等式()()()ln 20f f x f +>,可化为()()()()ln 2ln 2f f x f f >-=-,所以()()11ln 2f x f x ⎧-<<⎪⎨<-⎪⎩,即()1ln 2f x -<<-,即111ln ln 12x x --<<+,即111e 12x x -<<+,解得1e 13e 1x -<<+,则原不等式的解为1e 1,3e 1-⎛⎫ ⎪+⎝⎭;【小问2详解】函数()()20,1x g x a a a =->≠,若存在[)12,0,1x x ∈,使得()()12f x g x =成立,则()f x 和()g x 在[)0,1x ∈上的值域的交集不为空集;由(1)可知:01x ≤<时,()1ln12ln 11f x x x x ⎛⎫==-+ ⎪+⎝-⎭+单调递减,所以()f x 的值域为(],0-∞;若1a >,则()2x g x a =-在[)0,1上单调递减,所以()g x 的值域为(]2,1a -,此时只需20a -<,即2a >,所以2a >;若01a <<,则()2xg x a =-在[)0,1上单调递增,可得()g x 的值域为[)1,2a -,此时[)1,2a -与(],0-∞的交集显然为空集,不满足题意;综上,实数a 的范围是()2,+∞;【小问3详解】()*111120N 2462f f f f n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++++>∈ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭ 恒成立,理由如下:因为2121ln l 2n 1212111n n f n nn ⎛⎫ -⎪⎝-==++⎭,所以1111135ln ln l 1n 2462l 223n 157f n f f f n n ⎛⎫⎛⎫⎛⎫⎛⎫++++=+++ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭-⎝⎭+ ()211ln ln 2111351ln 35722n n n n -⎛=⨯⨯⨯⨯⎫==-+ ⎪++⎝⎭,因为()()ln 1h x x x =--在区间()1,+∞单调递减,所以当1x >时,()(1)0h x h <=,所以(21)0h n +<,即[]1n(21)(21)10n n +-+-<,即ln(21)20n n +-<,所以ln(21)20n n -++>,即()*111120N 2462f f f f n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++++>∈ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】关键点睛:解函数不等式,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.。
2024-2025学年湖北省襄阳市高三上学期10月月考数学检测试题(含解析)

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符2024-2025学年湖北省襄阳市高三上学期10月月考数学检测试题合题目要求的.1. 已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =( )A. {}2,0,1,2,4- B. {}2,0,2,4- C. {}0,2,4 D. {}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2. 设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >的充分不必要条件.故选:A3. 已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为( )A. 1B.12C. 1或12-D. 1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4. 已知3322x y x y ---<-,则下列结论中正确的是( )A. ()ln 10y x -+> B. ln0yx> C. ln 0y x +> D. ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=, 故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5. 从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为( )A. 126个 B. 112个 C. 98个 D. 84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6. 若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是( )A. 78a = B. 135********a a a a a +++⋅⋅⋅+=C. 754S = D. 24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7. 已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为( )A13B.C.D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a+=,即2a +=,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知:|BF 1|+|BF 2|=2a2a =,.2bcm+=;即2c c-=+3c=,所以椭圆C的离心率cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8. 圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A. [)1,+∞ B. [)2,+∞C. )∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率. ()P A ,()()0,1P B ∈,则下列说法正确的是( )A. 若A ,B 互斥,则()()()P A B P A P B ⋃=+B. 若()()()P AB P A P B =,则A ,B 相互独立C 若A ,B 互斥,则A ,B 相互独立D. 若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,.对于选项B ,由相互独立事件概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10. 已知函数()sin sin cos 2f x x x x =-,则( )A. ()f x 的图象关于点(π,0)对称B. ()f x 的值域为[1,2]-C. 若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D. 若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61i i ax =∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,的综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得sin x =,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11. 在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是( )A 对任意三点,,ABC ,都有()()(),,,d C A d C B d A B +≥;B. 已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C. 到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D. 定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹.与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M ab {}max ,x a y b =--,若y b x a -≥-,则y b =-,两边平方整理得x a =;此时所求轨迹为x a=(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b=(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12. 若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】―2【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13. 已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14. 数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V π3B =,所以1sin 2ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当a c ==时取等号,所以BD .16. 已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x = (2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为y x =,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设A (x 1,y 1),B (x 2,y 2),则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-, 则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mm m-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17. 如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z 轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量n 1=(x 1,y 1,z 1),则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z =1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n ∴︒==111==1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x y z=,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨==⎪⎩,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,121212·1cos ,4·n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,121212·1cos ,4·n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18. 已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 图象在点(1,f (1))处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn ++++-+++->∈N .【答案】(1)0y = (2)[)1,+∞ (3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln x x xλ≥+,求出函数()212ln xg x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,f (1)=0,的则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点(1,f (1))处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数ℎ(x )在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以φ(x )在(1,+∞)上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭ ⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19. 已知整数4n …,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9. (2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列{a n }的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列{b n }的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。
高一数学上学期第一次联考试卷(含解析)-人教版高一全册数学试题

某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.84.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10 5.(5分)函数的定义域是()A.B.C.D.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x08.(5分)下列图象中表示函数图象的是()A.B.C.D.9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B=.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷参考答案与试题解析一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}考点:交、并、补集的混合运算.专题:计算题.分析:由全集U,找出不属于集合S的元素,求出S的补集,找出不属于集合T的元素,求出T的补集,找出两补集的公共元素,即可确定出所求的集合.解答:解:∵全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},∴C U S={2,4,6,7,8},C U T={1,2,4,5,7,8},则(C U S)∩(C U T)={2,4,7,8}.故选B点评:此题考查了交、并、补集的混合运算,其中补集即为全集中不属于集合的元素组成的集合,交集即为两集合的公共元素组成的集合,在求补集时注意全集的X围.2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A考点:集合的包含关系判断及应用.专题:探究型.分析:利用元素和集合A的关系,以及集合Φ,{0}中元素与集合A的元素关系进行判断.解答:解:A.0为元素,而A={x|x>﹣1},为集合,元素与集合应为属于关系,∴A错误.B.{0}为集合,集合和集合之间应是包含关系,∴B错误.C.∅为集合,集合和集合之间应是包含关系,∴C错误.D.{0}为集合,且0∈A,∴{0}⊆A成立.故选D.点评:本题考查了元素和集合以及集合与集合之间的关系.元素与集合之间应使用“∈,∉”,而集合和集合之间应使用包含号.3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.8考点:函数的值.专题:计算题.分析:欲求f{f}的值应从里向外逐一运算,根据自变量的大小代入相应的解析式进行求解即可.解答:解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f}=f(f(0))=f(2)=4故选C.点评:本题主要考查了分段函数求值,同时考查了分类讨论的数学思想和计算能力,属于基础题.4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10考点:函数解析式的求解及常用方法.专题:换元法;函数的性质及应用.分析:【方法﹣】用换元法,设t=x﹣1,用t表示x,代入f(x﹣1)即得f(t)的表达式;【方法二】凑元法,把f(x﹣1)的表达式x2+4x﹣5凑成含(x﹣1)的形式即得f(x)的表达式;解答:解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.点评:本题考查了函数解析式的常用求法的问题,是基础题.5.(5分)函数的定义域是()A.B.C.D.考点:函数的定义域及其求法.专题:计算题.分析:函数式由两部分构成,且每一部分都是分式,分母又含有根式,求解时既保证分式有意义,还要保证根式有意义.解答:解:要使原函数有意义,需解得,所以函数的定义域为.故选C.点评:本题考查了函数的定义域及其求法,解答的关键是保证构成函数式的每一部分都要有意义,属基础题.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.考点:函数单调性的性质.专题:计算题.分析:由已知中函数的解析式,结合二次函数的图象和性质,可以判断出函数y=x2+(2a ﹣1)x+1图象的形状,分析区间端点与函数图象对称轴的关键,即可得到答案.解答:解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.点评:本题考查的知识点是函数单调性的性质,其中熟练掌握二次函数的图象和性质是解答本题的关键.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否完全相同即可.解答:解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评:本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.8.(5分)下列图象中表示函数图象的是()A.B.C.D.考点:函数的图象;函数的概念及其构成要素.专题:作图题.分析:根据函数的定义,对任意的一个x都存在唯一的y与之对应可求解答:解:根据函数的定义,对任意的一个x都存在唯一的y与之对应而A、B、D都是一对多,只有C是多对一.故选C点评:本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应或多对一,但是不能多对一,属于基础试题9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)考点:函数单调性的性质.专题:常规题型.分析:把函数单调性的定义和定义域相结合即可.解答:解:由f(x)是定义在(0,+∞)上的增函数得,⇒2<x<,故选 D.点评:本题考查了函数的单调性的应用,是基础题,本题易错点是不考虑定义域.10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10考点:函数奇偶性的性质.分析:根据f(x)=ax3+bx﹣4,可得f(x)+f(﹣x)=﹣8,从而根据f(2)=6,可求f (﹣2)的值.解答:解:∵f(x)=ax3+bx﹣4∴f(x)+f(﹣x)=ax3+bx﹣4+a(﹣x)3+b×(﹣x)﹣4=﹣8∴f(x)+f(﹣x)=﹣8∵f(2)=6∴f(﹣2)=﹣14故选A.点评:本题以函数为载体,考查函数的奇偶性,解题的关键是判断f(x)+f(﹣x)=﹣8,以此题解题方法解答此类题,比构造一个奇函数简捷,此法可以推广.二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B={0,3}.考点:交集及其运算.专题:计算题.分析:将A中的元素代入x=3a中计算确定出B,求出两集合的交集即可.解答:解:∵A={0,1,2,3},B={x|x=3a,a∈A}={0,3,6,9},∴A∩B={0,3}.故答案为:{0,3}点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.考点:函数的值域;二次函数的性质.专题:计算题.分析:先对二次函数进行配方找出对称轴,利用对称轴相对区间的位置求出最大值及最小值,得函数的值域.解答:解:∵y=x2﹣4x+6=(x﹣2)2+2,x∈∴当x=2时,y min=2;当x=4时,y max=6∴函数的值域为故答案为:点评:本题主要考查二次函数在闭区间上的最值,属于基本试题,关键是对二次函数配方后,确定二次函数的对称轴相对闭区间的位置,以确定取得最大值及最小值的点.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于{(3,﹣1)}.考点:交集及其运算.分析:集合M,N实际上是两条直线,其交集即是两直线的交点.解答:解:联立两方程解得∴M∩N={(3,﹣1)}.故答案为{(3,﹣1)}.点评:本题主要考查了集合的交运算,注意把握好各集合中的元素.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.考点:函数解析式的求解及常用方法.专题:计算题;方程思想.分析:由2f(x)+3f(﹣x)=x2+x,用﹣x代入可得2f(﹣x)+3f(x)=x2﹣x,由两式联立解方程组求解.解答:解:∵2f(x)+3f(﹣x)=x2+x,①∴2f(﹣x)+3f(x)=x2﹣x,②得:f(x)=故答案为点评:本题主要考查函数的解析式的解法,主要应用了方程思想求解.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为0或1.考点:子集与真子集.专题:探究型.分析:根据集合A的子集只有两个,则说明集合A只有一个元素,进而通过讨论a的取值,求解即可.解答:解:∵集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,∴集合A只有一个元素.若a=0,则方程ax2+2x+1=0,等价为2x+1=0,解得x=﹣,方程只有一解,满足条件.若a≠0,则方程ax2+2x+1=0,对应的判别式△=4﹣4a=0,解得a=1,此时满足条件.故答案为:0或1.点评:本题主要考查利用集合子集个数判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,注意对a进行讨论,防止漏解.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)考点:交、并、补集的混合运算.专题:集合.分析:(1)由B与C求出B与C的交集,找出A与B月C交集的交集即可;(2)根据全集A求出B与C并集的交集,再求出与A交集即可.解答:解:(1)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∩C={3},则A∩(B∩C)={3};(2)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∪C={1,2,3,4,5,6},∴∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0},则A∩∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0}.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).考点:集合关系中的参数取值问题.专题:计算题.分析:(1)由A∩B={2}可知3分别是方程x2+ax+12=0,x2+3x+2b=0的根,代入可求a,b 及集合A,B(2)由题意可得U=A∪B={﹣5,2,6},结合已知A,B可求解答:解:(1)∵A∩B={2}∴4+2a+12=0即a=﹣84+6+2b=0即b=﹣5 …(4分)∴A={x|x2﹣8x+12=0}={2,6},B={x|x2+3x﹣10=0}={2,﹣5} …(8分)(2)∵U=A∪B={﹣5,2,6}∴C u A={﹣5},C u B={6}∴C u A∪C u B={﹣5,6} …(12分)点评:本题主要考查了集合的交集的基本运算及并集的基本运算,属于基础试题18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.考点:指数函数综合题.专题:计算题.分析:(1)设t=3x,由 x∈,且函数t=3x在上是增函数,故有≤t≤9,由此求得t 的最大值和最小值.(2)由f(x)=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,由此求得f(x)的最大值与最小值.解答:解:(1)设t=3x,∵x∈,函数t=3x在上是增函数,故有≤t≤9,故t的最大值为9,t的最小值为.(2)由f(x)=9x﹣2×3x+4=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为 67.点评:本题主要考查指数函数的综合题,求二次函数在闭区间上的最值,属于中档题.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:先求出奇函数的表达式,然后根据表达式作出函数的图象.解答:解:(1)先作出当x≥0,f(x)=x2﹣2x的图象,然后将图象关于原点对称,作出当x<0的图象.如图:(2)设x<0,则﹣x>0,代入f(x)=x2﹣2x得f(﹣x)=(﹣x)2﹣2(﹣x),因为函数f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),即f(x)=﹣x2﹣2x,所以函数的表达式为:点评:本题的考点是利用函数的奇偶性求函数的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.考点:函数单调性的判断与证明.专题:计算题;证明题;函数的性质及应用.分析:(1)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论.(2)利用函数的单调性求最值.解答:解(1)证明:任取3≤x1<x2≤5,则,f(x1)﹣f(x2)=﹣=,∵3≤x1<x2≤5,∴x1﹣x2<0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴上是增函数,(2)∵上是增函数,∴当x=3时,f(x)有最小值,当x=5时,f(x)有最大值f(5)=.点评:本题考查了函数单调性的证明及函数单调性的应用,证明一般有两种方法,定义法,导数法,可应用于求最值.属于基础题.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:应用题;压轴题.分析:(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.解答:解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.点评:本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.考点:函数单调性的性质;函数的值.专题:函数的性质及应用.分析:(1)由函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1,能求出f(9)和f(27).(2)由f(x)+f(x﹣8)<2,知f(x)+f(x﹣8)=f<f(9),再由函数f(x)在定义域(0,+∞)上为增函数,能求出原不等式的解集.解答:解:(1)由原题条件,可得到f(9)=f(3×3)=f(3)+f(3)=1+1=2,f(27)=f(3×9)=f(3)+f(9)=1+2=3;(2)f(3)+f(a﹣8)=f(3a﹣24),又f(9)=2∴f(3a﹣24)<f(9),函数在定义域上为增函数,即有3a﹣24<9,∴,解得a的取值X围为8<a<11.点评:本题考查抽象函数的函数值的求法,考查不等式的解法,解题时要认真审题,仔细解答,注意合理地进行等价转化.。
2014~2015学年度第二学期期末武汉市部分学校高中一年级调研测试数学

2014〜2015学年度第二学期末武汉市部分学校高一年级调研测试数学试卷武汉市教育科学研究院命制说明:本试卷分为第I卷和第n卷两部分。
第I卷为选择题,第n卷为非选择题。
第I 卷为1至2页,第n卷为3至4页。
本试卷满分150分,考试用时120分钟。
注意:请考生用钢笔或黑色水性笔将自己的姓名、班级等信息及所有答案填写在答题卷相应的位置上。
(选择题,共50 分)1A.-2A. 0.12B. 2.12C. 2.10D. 0.10、选择题:本大题共10小题,每小题有一项是符合题目要求的。
cos42 5分,共50分。
在每小题列出的四个选项中,只1.sin72cos72 sin42 2•不等式2x23的解集是3A. 1,2 B. 32,C.D.3•关于x的二次不等式ax2bx 0恒成立的充要条件是a 0A. b24ac 0B. ab24acaC. b2D.4aca 0b24ac 04•若实数x,y满足14x 2y的取值范围是2015 . 6. 30 D. 15.已知数列a n中,311 4 1 /,a n 1 (n4 a n 11),则a201514A. -B. 5C D. 2015456.在下列命题中,错误的是A. 如果一个直线上的两点在平面内,那么这条直线在此平面内B. 过不在一条直线上的三点,有且只有一个平面C. 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线D. 平行于同一个平面的两条直线平行7. 《莱因德纸草书》是世界上最古老的数学著作之一•书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的二是较小的两份之和,问最7小1份为()A. !.■ B . _i.i C . D. __3368. 一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为11 1 1A. —B. —C. —D.-8 7 6 59.数列a n的前n项和为S n,若印1耳1 3S n(n 1),则a6A. 3 44B. 3 44 1C. 45D. 45110. “祖暅原理”是我国古代数学学家祖暅在研究球的体积的过程中发现的一个原理。
2024-2025学年湖北省襄阳市襄阳五中高三(上)月考数学试卷(9月份)(含答案)

2024-2025学年湖北省襄阳五中高三(上)月考数学试卷(9月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数2+i1−3i 在复平面内对应的点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知实数a >1,b >0,满足a +b =3,则2a−1+1b 的最小值为( )A. 3+224B. 3+222C. 3+422D. 3+4243.中国古建筑的屋檐下常系挂风铃,风吹铃动,悦耳清脆,亦称惊鸟铃.若一个惊鸟铃由铜铸造而成,且可近似看作由一个较大的圆锥挖去一个较小的圆锥,两圆锥的轴在同一条直线上,截面图如图,其中O 1O 3=20cm ,O 1O 2=2cm ,AB =16cm ,若不考虑铃舌,则下列数据比较接近该惊鸟铃质量的是(参考数据:π≈3,铜的密度为8.96g/cm 3)( )A. 1kgB. 2kgC. 3kgD. 0.5kg4.已知定义在R 上的奇函数f(x)满足f(2−x)=f(x),当0≤x ≤1时,f(x)=2x −1,则f(log 212)=( )A. −13B. −14C. 13D. 125.在△ABC 中,D 为边BC 上一点,∠DAC =2π3,AD =4,AB =2BD ,且△ADC 的面积为43,则sin∠ABD =( )A.15− 38B.15+ 38C.5− 34D.5+ 346.已知随机事件A ,B 满足P(A)=13,P(A|B)=34,P(B|A)=716,则P(B)=( )A. 14B. 316C. 916D. 41487.直线l 过双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左顶点A ,斜率为12,与双曲线的渐近线分别相交于M ,N 两点,且3AM =AN ,则E 的离心率为( )A.2B.3C. 2D.58.已知函数f(x)=e x −aln(ax−a)+a(a >0),若存在x 使得关于x 的不等式f(x)<0成立,则实数a 的取值范围( )A. (0,e 2)B. (0,e e )C. (e 2,+∞)D. (e e ,+∞)二、多选题:本题共3小题,共18分。
2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。
湖北省襄阳市高一上学期期末数学试题(解析版)

湖北省襄阳市高一上学期期末数学试题一、单选题1.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}2【答案】D【解析】试题分析:{}{}2|603,2Q x R x x =∈+-==-{}2P Q ∴⋂=【考点】集合的交集运算 2.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【答案】B【解析】设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1, ∴2313824l ππαα=∴= 故选B3.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:则方程237x x +=近似解(精确到0.1)可取为( ) A .1.32 B .1.39C .1.4D .1.3【答案】C【解析】由图表可知,函数()f x 的零点介于1.375到1.4375之间,所以方程237x x +=的近似解介于1.375到1.4375之间,结合精确度和选项可得答案.【详解】由图表可知,函数()237x f x x =+-的零点介于1.375到1.4375之间, 故方程237x x +=的近似解也介于1.375到1.4375之间,由于精确到0.1,结合选项可知1.4符合题意, 故选:C . 【点睛】本题考查二分法求方程的近似解,属于基础题.4.下列说法中正确的是( )A .第一象限角一定不是负角B .-831°是第四象限角C .钝角一定是第二象限角D .终边与始边均相同的角一定相等 【答案】C【解析】试题分析:比较锐角和第一象限角的关系,比较第一象限角和第二象限角的关系,比较负角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论.第一象限的角一定不是负角,不正确,例如-300°,对于-831°是第四象限角,应该是第三象限角,错误,对于D ,由于终边与始边均相同的角一定相等,比如0和3600,因此错误,故排除法得到C 。
湖北襄阳市2015届普通高中调研统一测试

湖北襄阳市2015届普通高中调研统一测试高三2013-12-27 20:54湖北襄阳市2015届普通高中调研统一测试高三语文一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.沽(gū)酒憎恶(wù)暖和(huo)不省(xǐng)人事B.游说(shuì)吁(yū)气手腕(wàn)垂头丧(sàng)气C.秩(chì)序粗鄙(bǐ)角隅(yǔ)方兴未艾(ài)D.付梓(zǐ)剖(pāo)析复辟(bì)落叶翩翩(piān)2.下列各组词语中,没有错别字的一组是A.撮合俱乐部树起衣领性情孤僻B.斩截孤零零索然无味清沁肺腑C.接壤吊脚楼没精打彩心慌意乱D.影射映象派回肠荡气居高临远3.依次填入下列横线处的词语,最恰当的一组是①最妙的是东边日出西边雨,那时的云,就有了更大的,有了水的加入,有了光的加入,幻化得更加。
②在最伟大的人物中间,巴尔扎克是名列前茅者;……他的所有作品仅仅形成了一部书,……这里有大量的真实、亲切、家常、琐碎、粗鄙。
但是有时通过撕破表面、充分揭示的现实,让人马上看到最阴沉和最悲壮的理想。
A.发现空前断然纷繁复杂B.发挥空灵突然形形色色C.发育空阔悄然各种各样D.发生空蒙毅然五花八门4.下列各项中,没有语病的一项是A.德化窑位于福建德化县戴云山,是与江西景德镇、湖南醴陵齐名的中国古代三大瓷都;宋代开始,德化瓷就通过各国商船源源不断奔向世界各地。
B.最近,烟台大学餐厅保洁员们吃学生剩饭倡导节俭的行为引发了强烈的社会影响,让“光盘”之风势不可挡。
C.对于《中国汉字听写大会》这样的文化节目,我们更需要悉心地培育其成长的土壤,而不是让它在舆论的疾风暴雨中夭折。
D.由于地缘原因,亚洲诸国与日本形成了较为紧密的产业供应链关系,只要“安倍经济学”失败,不仅会重创日本经济,也将对亚洲各国的经济带来冲击。
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。
XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。
$\{2\}$。
B。
$\{1,2\}$。
C。
$\{0,1,2\}$。
D。
$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。
$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。
2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。
利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。
3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。
$(1,+\infty)$。
B。
$[1,+\infty)$。
C。
$(0,+\infty)$。
D。
$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。
由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。
4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。
$y=-|x|$。
B。
$y=x$。
C。
$y=|x|$。
湖北省襄阳四校2024-2025学年高一上学期期中考试数学试题(含答案)

襄州二中宜城二中枣阳二中枣阳师范2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。
第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( ){}0,2,3,5,7∅{}02210x x -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x =3y x =2y x =3y x =-22ac bc >a b>()0,m ∈+∞b b m a a m +<+a b >11a b <a b >x y >ax by >22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥A .B .C .D .8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A.B .C .D二、选择题:本题共3小题,每小题6分,共18分。
数学理卷·2014届湖北省襄阳市高三第二次调研统一测试(2014.03)word版

2014年高考襄阳市普通高中第二次调研统一测试理科数学一、选择题(本大题共l0小题。
每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知全集U=R,集合,则图中阴影部分所表示的集合为2.在复平面内,复数i(i-1)对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列命题的否定为假命题的是B.任意一个四边形的四个顶点共圆C.所有能被3整除的整数都是奇数4.将函数y=sin2x(x∈R)的图像分别向左平移m(m>O)个单位,向右平移n(n>0)个单位,所得到的两个函数图象都与函数y=sin(2x+)的图象重合,则m+n的最小值为5.等比数列{a n}的前n项和为S n,若a3=6,S3=,则公比q的值为A.1 B.-C.1或-D.-1或-6.右图是某几何体的三视图,则该几何体的体积为A.1 B.C.D.7.在平面区域内任取一点P(x,y),若(x,y)满足2x+y≤b的概率大于,则b的取值范围是A.(-∞,2) B.(0,2) C.(1,3) D.(1,+∞。
)8.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A、B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为A.x=-1 B.x=-2 C.x=1 D.x=29.给出下列命题:①向量a、b满足|a|=|b|=|a-b|,则a、b的夹角为30°;②a·b>0是向量a、b的夹角为锐角的充要条件;③将函数y=|x-1|的图象向左平移一个单位,得到函数y=|x|的图象;④在△ABC中,若,则△ABC为等腰三角形.以上命题正确的个数是A.1个 B.2个 C.3个 D.4个10.如图,偶函数f(x)的图像形如字母M,奇函数g(x)的图像形如字母N,若方程f(f(x))=0,f(g(x))=0,g(g(x))=0,g(f(x))=0的实根个数分别为a、b、c、d,则a+b+c+d=A.27 B.30 C.33 D.36二.填空题(本大题共6小题,考生共需作答5小题,每小题5分,共25分。
湖北省云学部分重点高中2024-2025学年高二上学期11月联考数学试卷(A)含答案

2024年湖北云学部分重点高中高二年级11月联考数学试卷(A )(答案在最后)命题单位:考试时间:2024年11月13日下午15:00-17:00时长:120分钟试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()12i 43i z -=-,则z 的虚部为()A.i B.i- C.1D.1-【答案】D 【解析】【分析】根据给定条件,利用复数的除法计算,再利用共轭复数及虚部的意义判断得解.【详解】依题意,43i (43i)(12i)105i 2i 12i (12i)(12i)5z --++====+--+,所以2i z =-的虚部为1-.故选:D2.已知直线1l :630x my ++=与2l :()3410x m y +--=,若1l 与2l 互相平行,则它们之间的距离是()A.15B.1C.12D.110【答案】C 【解析】【分析】根据两直线平行满足的系数关系可得8m =,即可利用平行线间距离公式求解.【详解】若1l 与2l 互相平行,则需满足()()6436133m m⎧-=⎪⎨⨯-≠⨯⎪⎩,解得8m =,故直线1l :6830x y ++=与2l :6820x y +-=,故两直线间距离为12=,故选:C3.已知空间向量()1,2,4a =- ,()1,4,2b =- ,()4,4,c z = ,若()2a b c +⊥,则z =()A.52-B.12-C.52D.12【答案】C 【解析】【分析】根据向量垂直,数量积为0求参数的值.【详解】因为()21,6,8a b +=-,且()2a b c +⊥ ,所以()20a b c +⋅= ⇒()()1,6,84,4,0z -⋅=⇒42480z -+=⇒20582z ==.故选:C4.已知实数x ,y 满足方程2240x y x +-=,则22y x ++的最大值为()A.12B.34C.0D.43【答案】D 【解析】【分析】根据点和圆、直线和圆的位置关系求得正确答案.【详解】由2240x y x +-=得()22222x y -+=,所以(),x y 在以2,0为圆心,半径为2的圆上,()()2222y y x x --+=+--表示圆上的点和点()2,2--连线的斜率,设过()2,2--的圆的切线方程为()22,220y k x kx y k +=+-+-=,2,0到直线220kx y k -+-=2=,解得0k =或43k =,所以22y x ++的最大值为43.故选:D5.如图,在ABC V 中,2AD DB =,P 为CD 上一点,且13AP AC AB λ=+ ,若1AC =,3AB =,π3BAC ∠=,则AP BC ⋅ 的值为()A.236-B.72-C.92D.4【答案】B 【解析】【分析】由已知结合向量共线定理可得49λ=,进而根据向量数量积的运算律即可求解.【详解】因为2AD DB = ,13AP AC AB λ=+,故1332AP AC AD λ=+ ,由于P 在CD 上,所以13132λ+=,故49λ=,则1429AP AC AB =+,又1AC =,3AB =,π3BAC ∠=,所以133122AB AC ⋅=⨯⨯= ,则2214114()()39399AP BC AC AB AC AB AC AC AB AB⋅=+⋅-=⋅-+ 113471939292=⨯+⨯-⨯=-.故选:B.6.某中学研究性学习小组为测量如图所示的铜雕的高度,在和它底部位于同一水平高度的共线三点,,A B C 处测得铜雕顶端P 处仰角分别为πππ,,643,且10m AB BC ==,则该铜雕的高度为()A. B. C. D.【答案】B【解析】【分析】设P 的投影为O ,且PO x =m ,利用锐角三角函数表示出CO 、BO 、AO ,再在BOC 和BOA △中分别用余弦定理得到方程,解得即可.【详解】设P 的投影为O ,且PO x =m ,在Rt POC △中,π3PCO ∠=,所以CO =,在Rt POB △中,π4PBO ∠=,所以BO x =,在Rt PAO △中,π6∠=PAO,所以AO =,在BOC 和BOA △中分别用余弦定理得222210010033cos cos 02020x x x x OBC OBA x x+-+-∠+∠=+=,解得x =x =-,即该铜雕的高度为.故选:B7.M 为椭圆22159x y +=上任意一点,()0,2A -,()1,1B ,则MA MB +的最大值为().A.3+B.6+C.6+D.6+【答案】D 【解析】【分析】由条件可知6MA MB MB MF +=-+,当且仅当M ,B ,F 三点共线且点M在第二象限时,66MA MB BF +=+=+【详解】由椭圆22159x y +=,可得3a =,b =2c =,所以可知()0,2A -为椭圆的下焦点,设()0,2F 为椭圆上焦点,又因为M 为椭圆上任意一点,所以由椭圆定义可知:26MA MF a +==,即()66MA MB MF MB MB MF +=-+=-+,因为当M ,B ,F 三点共线且点M 在第二象限时MA MB +有最大值,即66MB MF BF -+=+,又因为BF ==,所以66MA MB BF +=+=+故选:D.8.正方形11ABB A 的边长为12,其内有两点P 、Q ,点P 到边1AA 、11A B 的距离分别为3,2,点Q 到边1BB 、AB 的距离也是3和2.现将正方形卷成一个圆柱,使得AB 和11A B 重合(如图).则此时P 、Q 两点间的距离为()A.61ππ B.πC.63ππ D.64ππ【答案】C 【解析】【分析】过点,P Q 分别作底面的平行圆,利用空间向量数量积的运算律求解即得.【详解】过点P 作平行于底面的截面圆1O ,过点Q 作平行于底面的截面圆2O ,126O O =,设圆柱的底面圆半径为r ,则2π12r =,解得6πr =,于是12222π,3O P O Q r +〈〉== ,由1122PQ PO O O O Q =++ ,得||PQ =π==,所以P 、Q 两点间的距离为63ππ.故选:C【点睛】关键点睛:求出空间两点的距离,借助空间向量表示及空间向量数量积是解决问题的关键.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知曲线方程22145x y m m+=-+表示椭圆,则下列说法正确的是()A.m 的取值集合为{}54m m -<<B.当2m =时,焦点坐标为(0,5C.当1m =-时,记椭圆所包围的区域面积为S ,则85S <D.当152m -<<-时,随着m 越大,椭圆就越接近于圆【答案】BCD 【解析】【分析】根据椭圆的基本性质对选项逐一判断即可.【详解】A 选项,因为22145x y m m +=-+,则4050m m ->⎧⎨+>⎩,且45m m -≠+,所以m 的取值范围是115,,422⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭,故A 选项错误;B 选项,当2m =时,椭圆方程为22127x y +=,则椭圆表示焦点在y 轴上的椭圆,且725c =-=所以焦点坐标为(0,5;C 选项,当1m =-时,椭圆方程为22154x y +=,则椭圆表示焦点在x 轴上的椭圆,且25a =,24b =,则椭圆所包围的区域面积为S ,且2285S a b <⨯=,则C 选项正确;D 选项,152m -<<-时,曲线方程22145x y m m +=-+表示焦点在x 轴上的椭圆,则24a m =-,25b m =+,222129244c m e a m m--===---,则当152m -<<-,时,离心率表示单调递减的函数,则随着m 越大,椭圆的离心率越接近0,椭圆越圆,故D 选项正确.故选:BCD10.如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是线段CD 上动点,则下列说法正确的是()A.平面1BB P ⊥平面1111D C B AB.1B P 的最小值为C.若直线BP 与1B D 所成角的正弦值为5,则14DP =D.若P 是线段CD 的中点,则1AA 到平面1BB P 的距离为5【答案】ABD 【解析】【分析】A 利用面面垂直的判定判断;B 根据正方体的结构特征易得1CD CB ⊥,结合P 是线段CD 上动点,即可判断;C 将已知化为直线1B E 与1B D 所成角为θ,令DP x =且01x ≤≤,应用余弦定理列方程求参数;D 化为求A 到平面1BB P 的距离d ,等体积法求距离.【详解】A :由题意1BB ⊥面1111D C B A ,1BB ⊂面1BB P ,故平面1BB P ⊥平面1111D C B A ,对;B :由题意CD ⊥面11BCC B ,1CB ⊂面11BCC B ,则1CD CB ⊥,又P 是线段CD 上动点,显然P 与C 重合时1B P ,对;C :若PE 平行于侧棱,交11C D 于E ,连接1,B E DE ,显然1PBB E 为矩形,所以1//BP B E ,故直线BP 与1B D 所成角,即为直线1B E 与1B D 所成角,为θ,由sin cos 55θθ=⇒=,而2221111cos ||2B E B D DE B E B D θ+-=⋅,令DP x =且01x ≤≤,则2211(1)B E x =+-,213B D =,221DE x =+,所以22|5=,可得22(2)333(1)5x x -=+-,整理得221(21)(1)0x x x x +-=-+=,可得12x =或1x =-(舍),错;D :显然C 中P 为CD 的中点,而11//AA BB ,1AA ⊄面1BB P ,1BB ⊂面1BB P ,所以1//AA 面1BB P ,即1AA 到平面1BB P 的距离,即为A 到平面1BB P 的距离d ,由11B PAB A BB P V V --=,且BP =,即1111111132322d ⨯⨯⨯⨯=⨯⨯⨯⨯,所以d =.故选:ABD11.已知圆22:9O x y +=,P 为直线60x y -+=上一动点,过P 向圆O 引两条切线,PA PB ,,A B 为切点,则下列四个命题正确的是()A.直线210x my m -+-=与圆O 总有两个交点.B.不存在点P ,使π3APB ∠=.C.直线AB 过定点()1.5,1.5-.D.过()2,2Q 作互相垂直的两条直线分别交圆O 于E 、F 和G 、H ,则四边形EGFH 面积的最小值为6【答案】ACD 【解析】【分析】利用直线210x my m -+-=过定点且定点在圆内判断A ,假设存在点P ,利用三角形边长关系和PO 的取值范围判断B ,求出以OP 为直径的圆的方程,结合条件可得公共弦AB 的方程,即可求出定点判断C ,设O 到直线EF ,GH 的距离为12,d d ,利用圆的几何性质求弦长,EF GH ,再结合面积公式和12d d 的取值范围判断D.【详解】选项A :因为直线210x my m -+-=过定点()12,,且22129+<,即该定点在圆O 内,所以直线210x my m -+-=与圆O 总有两个交点,A 说法正确;选项B :连接,OA OB ,因为,A B 为切点,所以PAO 与PBO全等,假设存在点P ,使π3APB ∠=,则π6APO ∠=,此时26PO AO ==,因为PO ≥=P ,使π3APB ∠=,B 说法错误;选项C :设(),P m n ,则60m n -+=,以OP 为直径的圆的方程为2222224m n m n x y +⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即220x y mx ny +--=,又圆22:9O x y +=,两圆作差可得公共弦直线AB 方程为9mx ny +=,消去n 可得()69mx m y ++=,整理得()690m x y y ++-=,令0690x y y +=⎧⎨-=⎩可得直线AB 过定点()1.5,1.5-,C 说法正确;选项D :设O 到直线EF ,GH 的距离为12,d d ,则222128d d OQ +==,因为2129EF d =-,229GH d =-,所以()()()2222222212121212499481949EF GH d d d d d d d d =--=-++=+,又因为120d d ≥,当且仅当EF 或GH 过原点时等号成立,所以12EF GH ≥,四边形EGFH 面积162S EF GH =≥,即四边形EGFH 面积的最小值为6,D 说法正确;故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.设圆M :()22236x y -+=,()2,0A -为圆M 内一点,P 为圆上任意一点,线段AP 的垂直平分线l和半径MP 相交于Q ,当点P 在圆上运动时,点Q 的轨迹方程为______.【答案】22195x y +=【解析】【分析】数形结合,分析出动点Q 满足的条件,再根据椭圆定义,即可求得其方程.【详解】根据题意,作图如下所示:由题可知:PQ QA =,且6PQ QM +=,故64QA QM AM +=>=,故点Q 的轨迹是椭圆,设其方程为22221(0)x y a b a b+=>>,故26a =,3a =,2c =,故2225b a c =-=,故其方程为:22195x y +=.故答案为:22195x y +=.13.已知圆台上、下底面半径分别为1和2,母线与底面所成角为45︒,则圆台的外接球体积与圆台体积之比为______.【答案】2057【解析】【分析】根据题意结合轴截面可知121O O =,即可得圆台的体积,根据圆台的结构特征列式求球的半径和体积,即可得结果.【详解】由题意可知:上底面半径11r =,下底面半径22r =,由轴截面可知:45ABC ∠=︒,可知121O O =,可得圆台的体积(17ππ4π133V =++⨯=圆台,设外接球的半径为R ,则2221122222R O O r R O O r ⎧=+⎨=+⎩,即()222222114R O O R O O ⎧=++⎪⎨=+⎪⎩,解得21O O R =⎧⎪⎨=⎪⎩,(假设球心在圆台内,则()222222114R O O R O O ⎧=-+⎪⎨=+⎪⎩,此时无解)可得球的体积34205ππ33V ==球,所以20537π73V V ==球圆台.故答案为:714.已知M 是椭圆22110x y +=上一点,线段AB 是圆()22:64C x y +-=的一条动弦,且AB =则MA MB ⋅的最大值为_______.【答案】70【解析】【分析】设AB 中点为N ,易得CN =,点N 的轨迹为以()0,6为圆心,r =为半径的圆,MA MB⋅可转化为()()22MA MB MN NA MN NB MN NA ⋅=+⋅+=-,max max MA MC r =+,设出点M 的参数方程,求出max MC ,即可得解.【详解】如图,设AB 中点为N ,由AB AN =⇒=,CN ==,故点N 的轨迹为以()0,6为圆心,r =()()()()2222MA MB MN NA MN NB MN NA MN NA MN NA MN ⋅=+⋅+=+⋅-=-=- ,max max MN MC r =+,设),cos Mθθ,则MC =====,当且仅当2cos 3θ=-时,max MC ==所以maxmax MNMC r =+=()2maxmax272270MA MBMN⋅=-=-= 故答案为:70【点睛】关键点点睛:由向量的数量积求解椭圆上一点与定点距离问题,转化法和参数方程是解决本题关键,还综合了余弦函数求最值问题,试题整体难度不大,但综合性强,是一道跨知识点考查相对不错的题!四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.直线l 经过两直线1l :310x y -+=和2l :3220x y +-=的交点.(1)若直线l 与直线210x y ++=垂直,求直线l 的方程.(2)若点()4,2A到直线l 的距离为4,求直线l 的方程.【答案】(1)210x y -+=(2)0x =或1518y x =-+【解析】【分析】(1)方法一:求出两直线交点坐标,再由垂直关系计算可得结果;方法二:设出两直线组成的直线系方程,再由垂直关系计算可得结果;(2)方法一:分斜率是否存在进行讨论,利用点到直线距离公式计算可得结果;方法二:利用直线系方程求得参数值即可得直线方程.【小问1详解】方法一:由3103220x y x y -+=⎧⎨+-=⎩得交点()0,1,因为l 与直线210x y ++=垂直,所以设l :20x y λ-+=,()0,1代入得1λ=,所以l 的方程为210x y -+=;方法二:设l :()313220x y x y λ-+++-=,整理得()()3321120x y λλλ++-+-=,当l 与直线210x y ++=垂直,所以()()3312210λλ+⋅+-=,解得17λ=-,所以l 的方程为1113321120777x y ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+⨯-+⨯--+-⨯-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即210x y -+=.【小问2详解】方法一:当l 的斜率不存在时,l 为0x =,满足题意,当l 的斜率存在时,设l :1y kx =+,则()4,2A 到直线l的距离为4d ==,解得158k =-,此时直线l 的方程为1518y x =-+,综上,直线l 的方程为0x =或1518y x =-+.方法二:()4,2A到直线l 的距离为4d ==,化简得2428130λλ-+=,解得12λ=或132λ=,所以直线l 的方程为0x =或15880x y +-=.16.某地区有小学生9000人,初中生8600人,高中生4400人,教育局组织网络“防溺水”网络知识问答,现用分层抽样的方法从中抽取220名学生,对其成绩进行统计分析,得到如下图所示的频率分布直方图.(1)成绩位列前10%的学生平台会生成“防溺水达人”优秀证书,试估计获得“防溺水达人”的成绩至少为多少分;(2)已知落在60,70内的平均成绩为67,方差是9,落在[)60,80内的平均成绩是73,方差是29,求落在[)70,80内的平均成绩和方差.(附:设两组数据的样本量、样本平均数和样本方差分别为:m ,1x ,21s ;n ,2x ,22s ,两组数据总体的样本平均数为w ,则总体样本方差()()222221122m n s s x w s x w m n m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦++)【答案】(1)88分(2)平均成绩为76,方差为12【解析】【分析】(1)根据百分位数的计算公式,即可求即可,(2)计算频率,即可得比例,即可根据总体方差的计算公式求解.【小问1详解】前4组的频率之和为0.100.150.150.300.700.90+++=<,前5组的频率之和为0.700.250.950.90+=>,第90%分位数落在第5组,设为x ,则()0.70800.0250.90x +-⨯=,解得88x =.“防溺水达人”的成绩至少为88分.【小问2详解】[)60,70的频率为0.15,[)70,80的频率为0.30,所以[)60,70的频率与[)60,80的频率之比为0.1510.150.303=+[)70,80的频率与[)60,80的频率之比为0.3020.150.303=+设[)70,80内的平均成绩和方差分别为2x ,22s 依题意有212736733x =⨯+,解得276x =,()()2222122996773767333s ⎡⎤⎡⎤=⨯+-+⨯+-⎣⎦⎣⎦,解得2212s =所以[)70,80内的平均成绩为76,方差为12.17.如图,由等腰PAD △与直角梯形ABCD 组成的平面图形,已知2AD PD DC ===,4AB =,120PDA ∠=︒,//AB DC ,AB AD ⊥,现将PAD △沿AD 折起,使其成四棱锥P ABCD -,且PB =(1)证明:平面PAB ⊥平面PBC ;(2)求二面角A PC B --的正切值.【答案】(1)证明见解析(2)3【解析】【分析】(1)根据勾股定理与线面的判定定理证得AB ⊥平面PAD ,再利面面垂直的判定与性质定理,结合线面垂直的性质定理证得CF ⊥平面PAB ,进而得证;(2)根据题意建立空间直角坐标系,求出平面PAC 的法向量,求出平面PBC 法向量,利用空间向量法求二面角,结合三角函数的基本关系式即可得解.【小问1详解】在PDA 中,2PD AD ==,120PDA ∠=︒,22222222cos12012PA ∴=+-⋅⋅⋅︒=,又4AB =,PB =,222PB AB PA ∴=+,PA AB ∴⊥,又AB AD ⊥,,,AD PA A AD PA =⊂ 平面PAD ,AB ∴⊥平面PAD ,AB ⊂ 平面ABCD ,AB ⊂平面PAB ,所以平面PAD ⊥平面ABCD ,平面PAD ⊥平面PAB ,取PA 中点E ,连DE ,则DE PA ⊥,又平面PDA 平面PAB PA =,DE ⊂平面PAD ,DE ∴⊥平面PAB ,取PB 中点F ,连EF ,CF ,则//EF DC ,EF DC =,∴四边形DCFE 为平行四边形,//DE CF ∴,CF ∴⊥平面PAB ,又CF ⊂平面PCB ,∴平面PAB ⊥平面PBC ;【小问2详解】由(1)知以D 为原点,DA ,DC 分别为x 轴,y 轴建立如图所示空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,4,0B ,()0,2,0C ,(P -,设平面PAC 的法向量为(),,n x y z =,(1,2,PC = ,()2,2,0CB = ,()2,2,0AC =-,0n AC n PC ⎧⋅=⎪⎨⋅=⎪⎩,即22020x y x y -+=⎧⎪⎨+=⎪⎩,令1x =,则(n = ,设平面PBC 法向量(),,m x y z =,则00m CB m PC ⎧⋅=⎪⎨⋅=⎪⎩,即22020x y x y +=⎧⎪⎨+=⎪⎩,令x =,则()m =,cos ,n m n m n m ⋅∴==⋅r u rr u r r u rsin ,n m =r u r,46tan ,3n m ∴=,由图形可知二面角A PC B --为锐角,故二面角A PC B --的正切值为3.18.某公司进行团建活动,最后一活动由两小组各自推荐出来的员工甲、员工乙参加.该活动分为两阶段,第一阶段是选拔阶段,两人各掷飞镖30次,所得成绩的第60百分位数大的员工参加下一阶段,第二阶段是游戏阶段,游戏规则如下:①有4次游戏机会;②依次参加A ,B ,C 游戏;③前一个游戏胜利后才可以参加下一个游戏,若轮到C 游戏后,无论胜利还是失败,一直都参加C 游戏,直到4次机会全部用完;④参加A 游戏,则每次胜利可以获得奖金20元;参加B 游戏,则每次胜利可以获得奖金50元;参加C 游戏,则每次胜利可以获得奖金100元.已知甲参加每一个游戏获胜的概率都是23,乙参加每一个游戏获胜的概率都是13,甲、乙参加每次游戏相互独立,第一阶段甲、乙掷飞镖所得成绩如下表:甲的成绩环数678910次数339114乙的成绩环数678910次数3510102(1)甲、乙两位员工谁参加第二阶段游戏?并说明理由.(2)在(1)的基础上,解答下列两问:(i)求该员工能参加C游戏的概率.(ii)该员工获得的奖金金额超过70元的概率是多少?【答案】(1)甲参加第二阶段游戏,理由见解析(2)(i)2027,(ii)1627【解析】【分析】(1)根据游戏规则求得两人的第60百分位数即可得出结论;(2)(i)依题意游戏至多共使用3次机会,再由概率的加法公式计算可得结果;(ii)分情况根据共参加游戏次数以及获胜次数计算可得结果.【小问1详解】3060%18⨯=,甲的6,7,8环一共有15次,9环11次,故甲的第60百分位数为9;而乙6,7,8环一共有18次,9环10次,,其故乙的第60百分位数为8.5,所以甲参加第二阶段游戏.【小问2详解】(i)若甲能参加C游戏,则A,B游戏至多共使用3次机会,①A,B游戏共使用2次机会,则概率1224 339P=⨯=;②A,B游戏共使用3次机会,则概率21222128 33333327P=⨯⨯+⨯⨯=,所以甲能参加C游戏的概率为4820 92727 +=.(ii)由甲获得的奖金金额超过70元即奖金金额为170和270,也就是说甲能参加C游戏并且C游戏至少获胜一次。
湖北省部分重点中学2014-2015学年高一上学期期中考试数学试卷(解析版)

湖北省部分重点中学2014-2015学年高一上学期期中考试数学试卷(解析版)一、选择题1.已知全集{}10864210,,,,,,U =,集合{}642,,A =,{}1=B ,则B A U等于( )A 、{}10810,,,B 、{}6421,,, C 、{}1080,, D 、∅ 【答案】A【解析】试题分析:由题意知{}10810,,,A U=,又{}1=B ,∴{}10810,,,B A U= .考点:集合的运算.2.函数()3421-=x log y 的定义域为( )A 、⎪⎭⎫⎝⎛+∞,43 B 、⎪⎭⎫ ⎝⎛∞-43, C 、⎥⎦⎤ ⎝⎛143, D 、⎪⎭⎫ ⎝⎛143,【答案】C【解析】试题分析:由题意知()03421≥-x log ,推出()1342121log x log ≥-,而函数()3421-x log 在定义域内是减函数,所以得134≤-x ,故求得1≤x .再根据对数的定义得到034>-x ,求得43>x ,二者取交集得到函数的定义域为⎥⎦⎤ ⎝⎛143,. 考点:对数函数的定义域和单调性.3.若()32+=x x f ,()()x f x g =+2,则()x g 的表达式为( ) A 、12+x B 、12-x C 、32-x D 、72+x【答案】B 【解析】试题分析:()()122322-+=+=+x x x g ,所以()12-=x x g . 考点:函数解析式的求解.4.已知{}22-==x y y A ;{}22+-==x y y B ,则=B A ( )A 、()(){}0202,,,-B 、[]22,-C 、[]22,-D 、{}22,-【答案】D 【解析】试题分析:由题意知{}[)+∞-=-==,x y y A 222,{}(]222,x y y B ∞-=+-==,所以[]22,B A -=.考点:集合的表示和运算.5.方程033=--x x 的实数解落在的区间是( )A 、[]01,-B 、[]10,C 、[]21,D 、[]32, 【答案】C【解析】试题分析:设函数()33--=x x x f ,而()()()()()0302010001>><<<-f ,f ,f ,f ,f ,根据函数零点的存在性定理可知,()x f 在()21,内有零点,故只有C 符合题意. 考点:函数零点的存在性定理.6.设()x f 是奇函数,且在()+∞,0是增函数,又()03=-f ,则()0<x xf 的解集是( ) A 、{}303><<-x x x 或 B 、{}303<<-<x x x 或 C 、{}33>-<x x 或 D 、{}3003<<<<-x x x 或 【答案】D 【解析】试题分析:由于()x f 是奇函数,所以()()033=--=f f ,因为()x f 在()+∞,0是增函数,所以()x f 在()-∞,0上也是增函数,故当{}303><<-x x x 或时,()0>x f ,当{}303<<-<x x x 或时,()0<x f ,因此,()0<x xf 的解集为{}3003<<<<-x x x 或. 考点:函数的奇偶性和单调性.7.对于10<<a ,给出下列四个不等式 ①()⎪⎭⎫ ⎝⎛+<+a log a log a a 111 ②()⎪⎭⎫ ⎝⎛+>+a log a log a a 111 ③a aaa 111++< ④aaaa111++>其中成立的是( )A 、①与③B 、①与④C 、②与③D 、②与④ 【答案】D 【解析】试题分析:由于10<<a ,所以函数()x log x f a =和()x a x g =在定义域上都是单调递减函数,而且aa 111+<+,所以②与④是正确的. 考点:指数函数和对数函数的单调性.8.已知()43-+=bx ax x f ,其中b ,a 为常数,若()72=-f ,则()2f 的值为( ) A 、15 B 、7- C 、14 D 、15- 【答案】D 【解析】试题分析:设()bx ax x g +=3,()x g 显然为奇函数,而且()()4-=x g x f ,()()7422=--=-g f ,则()112=-g ,因为()()422-=g f ,()()1122-=--=g g ,所以()152-=f . 考点:函数的奇偶性.9.设10<<a ,函数()()222--=x x a a a log x f ,则使()0<x f 得x 的取值范围是( ) A 、()0,∞- B 、()+∞,0 C 、()3a log ,∞- D 、()+∞,log a 3 【答案】C 【解析】试题分析:由于函数()10<<=a x l o g y a 在定义域内是减函数,所以()()122122022>--⇒<--⇔<x x a x x a a a log a a log x f ,解不等式得到3>x a 或1-<x a (舍去),而且 333a a xa xlog x log a log a <⇒<⇒>,所以选C. 考点:对数函数的单调性.10.设()x f 和()x g 是定义在同一个区间[]b ,a 上的两个函数,若函数()()x g x f y -=在[]b ,a x ∈上有两个不同的零点,则称()x f 和()x g 在[]b ,a 上是“关联函数”,区间[]b ,a 称为“关联区间”.若()432+-=x x x f 与()m x x g +=2在[]30,上是“关联函数”,则m 的取值范围是( ) A 、⎥⎦⎤ ⎝⎛--249, B 、[]01,- C 、(]2-∞-, D 、⎪⎭⎫⎝⎛+∞-,49【答案】A 【解析】试题分析由题意知:()()m x x x g x f y -+-=-=452在区间[]30,上有两个不同的零点,所以方程0452=-+-m x x 有两个不同的实根,所以△0<,求得49->m ,而函数图像开口向上,由题意必须保证()00≥f 且()03≥f ,求得2-≤m ,综上249-≤<-m . 考点:二次函数的图像及性质.二、填空题11.已知()[]()22422,x x x x f -∈++=,则()x f 的值域为__________. 【答案】[]123, 【解析】试题分析:函数()x f 的图像对称轴为1-,开口向上,而1-在区间[]22,-上,所以()x f 最小值为()31=-f ,最大值为()122=f ,所以()x f 在[]22,-上值域为[]123,. 考点:二次函数闭区间上求最值.12.已知()1-x f 的定义域为[]33,-,则()x f 的定义域为__________. 【答案】[]24,- 【解析】试题分析:由于()1-x f 的定义域为{}33≤≤-x x ,则214≤-≤-x ,故()x f 的定义域为{}24≤≤-x x . 考点:函数的定义域.13.已知32-=a ;221-⎪⎭⎫⎝⎛=b ;502.log c =.则c ,b ,a 的大小关系是(从大到小排列)__________. 【答案】c a b >> 【解析】试题分析:8123==-a ,422122==⎪⎭⎫⎝⎛=-b ,015022=<=log .log c ,故c a b >>.考点:指数函数和对数函数比较大小(运算).14.函数()32221+-=mx x log y 在()1,∞-上为增函数,则实数m 道的取值范围是__________.【答案】[]21, 【解析】试题分析:设()()222332m m x mx x x f -+-=+-=,则()x f 开口向上,对称轴为m x =,则原题实际等价于()()()()()⎩⎨⎧≤≥⇒⎩⎨⎧≥≥=⇒⎩⎨⎧∞-∈>∞-21011101m m f m x ,x x f ,x f 时恒成立对上为减函数在,即所求的m 取值范围是[]21,.考点:对数函数和二次函数复合的问题应用.15.已知函数()()()()⎩⎨⎧>-≤+-=12153x x log a x x a x f a 是()+∞∞-,上的减函数,则a 的取值范围是__________. 【答案】(]21, 【解析】试题分析:设()()53+-=x a x g ,()x log a x h a -=2,由题意可知:()()x h ,x g 在()+∞∞-,都为减函数,所以03<-a 且1>a ,解得31<<a ,再有()()11h g ≥,解得2≤a ,最后a 的取值范围是(]21,. 考点:分段函数的单调性.三、解答题16.计算:(1)已知全集为R ,集合{}52≤≤-=x x A ,{}61≤≤=x x B ,求A UB U.(2)33240102733e ln .lg log +--【答案】(1){}62>-<x x x 或;(2)0【解析】试题分析:(1)先分别求集合A 和B 的补集,然后再取交集.(2)四项分别计算,然后求和.试题题析:(1){}52>-<=x x x A U或 2分{}61><=x x x BU或 4分∴AU{}62>-<=x x x B U或 6分()0329401027333243=+---=+--e ln .lg log 12分考点:1、集合的补集和交集运算.2、指数和对数的运算.17.已知()x f 是R 上的奇函数,且当0>x 时,()12--=x x x f ; (1)求()x f 的解析式;(2)作出函数()x f 的图象(不用列表),并指出它的增区间.【答案】(1)()()()()⎪⎩⎪⎨⎧<+--=>--=01000122x x x x x x x x f ; (2),函数的增区间为:⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,,,2121【解析】试题分析:(1)根据奇函数的性质求得,当0=x 和0<x 时的解析式,最后得到()x f 分段函数的解析式.(2)根据各段区间的解析式画出()x f 函数的图象,找到增区间. 试题题析:(1)设0<x ,则0>-x()()()1122-+=----=-∴x x x x x f 3分又 函数()x f 是奇函数()()x f x f -=-∴()()12+--=--=∴x x x f x f 6分当0=x 时,由()()00f f -=得()00=f 7分()()()()⎪⎩⎪⎨⎧<+--=>--=∴01000122x x x x x x x x f 8分11分由函数图象易得函数的增区间为:⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,,,2121 12分考点:1、奇函数的定义和性质.2、分段函数图像的画法.3、二次图象的画法.4、从函数图像看单调区间.18.已知函数()()122++=x ax ln x f ;()()54221--=x x log x g(1)若()x f 的定义域为R ,求实数a 的取值范围. (2)若()x f 的值域为R ,则实数a 的取值范围. (3)求函数()x g 的递减区间.【答案】(1)()+∞,1;(2)[]10,;(3)()+∞,5 【解析】试题分析:(1)保证内函数122++=x ax y 的值恒大于0,也就是说判别式小于0.(2)()x f 的值域为R 等价于内函数122++=x ax y 的值域包含()+∞,0,分情况考虑,当0=a ,122++=x ax y 为一次函数,值域包含()+∞,0,0≠a 时,122++=x ax y 为二次函数时,保证判别式大于等于0,最后取并集得结果.先求出()x g 的定义域,再求内函数542--=x x y 的增区间,即为()x g 的递减区间.试题题析:(1)若()x f 的定义域为R ,则122++=x ax y 的图像恒在x 轴的上方,⎩⎨⎧<-=>∴0440a Δa , 1>∴a即a 的取值范围是()+∞,1. 4分若()x f 的值域为R ,则122++=x ax y 的图象一定要与x 轴有交点,0=∴a 或⎩⎨⎧≥-=>0440a Δa10≤≤∴a即a 的取值范围是[]10,8分 求出()x g 的定义域为{}51>-<x x x 或 10分∴()x g 的减区间为()+∞,5 12分考点:带有参数的对数函数关于定义域、值域以及单调区间讨论问题.19.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元.写出函数()x f P =的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)【答案】(1)550;(2)()()()()()N x x x xx x f P ∈⎪⎩⎪⎨⎧≥<<-≤<==550515501005062100060;(3)6000,,11000【解析】试题分析:(1)当实际出厂单价为51元时,相比原定价60元降低了9元,而每多订购一个全部零件的出厂单价就降低0.02元,用9除以0.02得到450,得到多订购的零件数,再加上100等于550就是一共订的零件数.(2)分情况讨论当订单数小于等于100,出厂单价不变,当订单数在100到550时,零件的实际出厂单价和零件数变化而变化.当零件数大于等于550时,出厂单价就为51,保持不变.(3)根据零件数的单价讨论,列出利润的分情况讨论,再分别求出零件数为500和1000时的利润.试题题析:(1)设每个零件实际出厂价格恰好降为51元时,一次订购量为0x 个,则55002051601000=-+=.x ,因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元 2分当1000≤<x 时,60=P当500100<<x 时,()506210002060x x .P -=--= 当500≥x 时,51=P()()()()()N x x x xx x f P ∈⎪⎩⎪⎨⎧≥<<-≤<==550515501005062100060 6分设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则()()⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<=-=550115501005022100020402x xN x x x x x x x P L当500=x 时,6000=L ;当1000=x 时,11000=L因此,当销售商一次订购500个零件时,该厂获得的利润为6000元,如果订购100个利润为11000元. 12分 考点:分段函数的应用.20.已知定义域为R 的函数()abx f x x ++-=+122是奇函数.(1)求b ,a 的值;(2)若对任意的R t ∈,不等式()()0222<--+-k t t f t t f 恒成立,求k 的取值范围. 【答案】(1)2=a ,1=b ;(2)⎪⎭⎫ ⎝⎛-∞-31, 【解析】试题分析:(1)根据奇函数的性质,()00=f 可以求出b 的值;再根据奇函数的定义,带入特值1,得到()()11--=f f ,求得a 的值.(2)先判断函数在定义域上是减函数,再通过已知给的式子建立不等式,得到0232>--k t t ,由于对一切t 恒成立,再根据判别式小于0得到结论.试题题析:(1)因为()x f 是奇函数,所以()00=f ,即1021=⇒=+-b a b ()1221++-=∴x x a x f ,又因为()()11--=f f 知21211421=⇒+--=+-a a a 4分由(1)知()1212122211++-=+-=+xx x x f ,易知()x f 在()+∞∞-,上为减函数.又因为()x f 是奇函数,从而不等式:()()0222<--+-k t t f t t f ,等价于()()()k t t f k t t f t t f ++-=---<-2222,因()x f 是减函数,由上式推得:即对一切R t ∈有:t t k 232-<,又31313132322-≥-⎪⎭⎫ ⎝⎛-=-t t t31-<∴k ,即k 的取值范围是⎪⎭⎫ ⎝⎛-∞-31, 13分考点:函数的奇偶性和单调性.21.函数()x f 对于任意的实数y ,x 都有()()()y f x f y x f +=+成立,且当0>x 时()0<x f 恒成立.(1)证明函数()x f 的奇偶性;(2)若()21-=f ,求函数()x f 在[]22,-上的最大值; (3)解关于x 的不等式()()()()24212212-->--f x f x f x f 【答案】(1)见解析;(2)4;(3){}12->-<x x x 或 【解析】试题分析:(1)先求出()00=f ,再取x y -=,证明出()()x f x f -=-,得出()x f 为奇函数.(2)先用定义法证明()x f 是在()+∞∞-,上是减函数,即得出在[]22,-上()2-f 最大.(3)通过已知给出的式子()()()y f x f y x f +=+讲不等式合并成一项,再通过当0>x 时()0<x f 恒成立,即可解出不等式.试题解析:(1)令0==y x 得()00=f ,再令x y -=,即得()()x f x f -=-,所以()x f 是奇函数 2分设任意的R x ,x ∈21,且21x x <,则021>-x x ,由已知得()012<-x x f (1) 又()()()()()121212x f x f x f x f x x f -=-+=-(2) 由(1)(2)可知()()21x f x f >,由函数的单调性定义知()x f 在()+∞∞-,上是减函数 6分[]22,x -∈∴时,()()()()()4121122=-=+-=-=-=f f f f x f m ax ,()x f ∴当[]22,x -∈时的最大值为4. 8分由已知得:()()()()24212212-->--f x f x f x f ,所以()()()()024212212<--++--f x f x f x f , 所以()()()()0222242<--+--f x f x f x f ,所以()04622<++x x f ,当0>x 时()0<x f 恒成立,所以4622++=x x y 恒大于0,解得12->-<x x 或,即原不等式的解集是{}12->-<x x x 或. 14分考点:函数的奇偶性和单调性的综合应用.。
湖北省襄阳市2024-2025学年高三上学期10月月考数学试题含答案

襄阳2025届高三上学期10月月考数学试卷(答案在最后)命题人:一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =()A.{}2,0,1,2,4- B.{}2,0,2,4- C.{}0,2,4 D.{}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2.设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >求出相应的a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >,即>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >”的充分不必要条件.故选:A3.已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为()A.1B.12C.1或12-D.1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4.已知3322x y x y ---<-,则下列结论中正确的是()A.()ln 10y x -+>B.ln0yx> C.ln 0y x +> D.ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=,故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5.从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为()A.126个B.112个C.98个D.84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6.若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是()A.78a =B.135********a a a a a +++⋅⋅⋅+=C.754S =D.24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为()A.13B.23C.33D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF ,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B ,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a +=,即2a =,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B ,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知: 䁕2a =,2bcm+=;即2c c-=+3c=,所以椭圆C的离心率3cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8.圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A.[)1,+∞ B.[)2,+∞C.)∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率.()P A ,()()0,1P B ∈,则下列说法正确的是()A.若A ,B 互斥,则()()()P A B P A P B ⋃=+B.若()()()P AB P A P B =,则A ,B 相互独立C .若A ,B 互斥,则A ,B 相互独立D.若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,对于选项B ,由相互独立事件的概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10.已知函数()sin sin cos 2f x x x x =-,则()A.()f x 的图象关于点(π,0)对称B.()f x 的值域为[1,2]-C.若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D.若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61ii ax=∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得3sin 2x =-,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11.在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是()A .对任意三点,,A B C ,都有()()(),,,d C A d C B d A B +≥;B.已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C.到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D.定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M a b{}max ,x a y b =--,若y b x a -≥-,y b =-,两边平方整理得x a =;此时所求轨迹为x a =(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b =(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12.若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】 【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13.已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14.数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC的面积为4,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为233y x =±,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设 , ,则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-,则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mmm-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17.如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量,则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z=1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n∴︒==11132=,解得1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x yz =,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨=+=⎪⎩ ,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18.已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点 h 处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn +++-+++->∈N .【答案】(1)0y =(2)[)1,+∞(3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln xx xλ≥+,求出函数()212ln x g x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,h t ,则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点 h 处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数 在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以 在 ∞上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19.已知整数4n ,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n 的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.(2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列䁕 的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列 的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。
高中高一数学上学期11月月考试卷(含解析)-人教版高一全册数学试题

某某省某某市西湖高中2014-2015学年高一上学期11月月考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(3分)如图所示,集合M,P,S是全集V的三个子集,则图中阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩S)∩(∁V P)D.(M∩P)∪(∁V S)3.(3分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c4.(3分)函数的定义域为()A.{x|1≤x<3} B.{x|1<x<2}C.{x|1≤x<2或2<x<3} D.{x|1≤x<2}5.(3分)函数y=e﹣|x|(e是自然底数)的大致图象是()A.B.C.D.6.(3分)若函数是一个单调递增函数,则实数a 的取值X围()A.(1,2]∪C.(0,2]∪=的实数a的个数为()A.2 B.4 C.6 D.89.(3分)函数f(x)=x(|x|﹣1)在上的最小值为,最大值为2,则n﹣m的最大值为()A.B.C.D.210.(3分)设函数(a∈R).若方程f(f(x))=x有解,则a的取值X围为()A.B.C.D.(a<b)的实数对(a,b)有对.14.(4分)在同一坐标系中,y=2x与y=log2x的图象与一次函数y=﹣x+b的图象的两个交点的横坐标之和为6,则b=.15.(4分)已知函数f(x)满足f(1﹣x)=f(1+x),且f(x)在(x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共4小题.共42分.解答应写出文字说明、证明过程或演算步骤. 18.(8分)设集合A={y|y=2x,1≤x≤2},B={x|0<lnx<1},C={x|t+1<x<2t,t∈R}.(1)求A∩B;(2)若A∩C=C,求t的取值X围.19.(10分)已知是奇函数.(1)求a的值;(2)判断并证明f(x)在(0,+∞)上的单调性;(3)若关于x的方程k•f(x)=2x在(0,1]上有解,求k的取值X围.20.(12分)已知函数f(x)=x2﹣ax+2a﹣1(a为实常数).(1)若a=0,求函数y=|f(x)|的单调递增区间;(2)设f(x)在区间的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间上是增函数,某某数a的取值X围.21.(12分)设f(x)是R上的奇函数,且当x>0时,f(x)=lg(x2﹣ax+10),a∈R.(1)若f(1)=lg5,求f(x)的解析式;(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,某某数k的取值X围;(3)若f(x)的值域为R,求a的取值X围.某某省某某市西湖高中2014-2015学年高一上学期11月月考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}考点:交、并、补集的混合运算.专题:计算题.分析:根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.解答:解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选D点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(3分)如图所示,集合M,P,S是全集V的三个子集,则图中阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩S)∩(∁V P)D.(M∩P)∪(∁V S)考点:Venn图表达集合的关系及运算.专题:计算题.分析:分析阴影部分的元素的性质,根据交集,补集的定义求解.解答:解:由图中阴影部分的元素属于集合M,属于集合S,但不属于集合P,∴阴影部分所表示的集合(M∩S)∩(C U P),故选C.点评:本题考查了Venn图表示集合的关系,也可表示为M∩(C S P).3.(3分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c考点:奇偶性与单调性的综合;对数值大小的比较.专题:综合题;函数的性质及应用.分析:由f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,可得出自变量的绝对值越小,函数值越大,由此问题转化为比较自变量的大小,问题即可解决.解答:解:f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,要得函数在(0,+∞)上是减函数,图象越靠近y轴,图象越靠上,即自变量的绝对值越小,函数值越大,由于0<0.20.6<1<log47<log49=log23,可得b<a<c,故选C.点评:本题解答的关键是根据函数的性质得出自变量的绝对值越小,函数值越大这一特征,由此转化为比较自变量的大小,使得问题容易解决.这也是本题解答的亮点.4.(3分)函数的定义域为()A.{x|1≤x<3} B.{x|1<x<2}C.{x|1≤x<2或2<x<3} D.{x|1≤x<2}考点:对数函数的定义域;函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,结合对数函数,根式函数和分式函数的性质,求函数的定义域即可.解答:解:要使函数有意义,则,即,∴解得1≤x<3且x≠2,即1≤x<2或2<x<3.∴函数的定义域为{x|1≤x<2或2<x<3}.故选:C.点评:本题主要考查函数定义域的求法,要求熟练常见函数成立的条件.5.(3分)函数y=e﹣|x|(e是自然底数)的大致图象是()A.B.C.D.考点:指数函数的图像与性质.专题:函数的性质及应用.分析:由于y=e﹣|x|=.利用指数函数的图象与性质即可得出.解答:解:∵y=e﹣|x|=.根据指数函数的图象与性质可知:应选C.故选C.点评:本题考查了指数函数的图象与性质、分类讨论,属于基础题.6.(3分)若函数是一个单调递增函数,则实数a的取值X围()A.(1,2]∪C.(0,2]∪∪∪,故选:C.点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.8.(3分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f=的实数a的个数为()A.2 B.4 C.6 D.8考点:函数奇偶性的性质.专题:计算题.分析:令f(a)=x,则f=转化为f(x)=.先解f(x)=在x≥0时的解,再利用偶函数的性质,求出f(x)=在x<0时的解,最后解方程f(a)=x即可.解答:解:令f(a)=x,则f=变形为f(x)=;当x≥0时,f(x)=﹣(x﹣1)2+1=,解得x1=1+,x2=1﹣;∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(a)=1+,1﹣,﹣1﹣,﹣1+;当a≥0时,f(a)=﹣(a﹣1)2+1=1+,方程无解;f(a)=﹣(a﹣1)2+1=1﹣,方程有2解;f(a)=﹣(a﹣1)2+1=﹣1﹣,方程有1解;f(a)=﹣(a﹣1)2+1=﹣1+,方程有1解;故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,综上所述,满足f=的实数a的个数为8,故选D.点评:本题综合考查了函数的奇偶性和方程的解的个数问题,同时运用了函数与方程思想、转化思想和分类讨论等数学思想方法,对学生综合运用知识解决问题的能力要求较高,是2015届高考的热点问题.9.(3分)函数f(x)=x(|x|﹣1)在上的最小值为,最大值为2,则n﹣m的最大值为()A.B.C.D.2考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:根据二次函数的图象和性质,求出最大值和最小值对应的x的取值,然后利用数形结合即可得到结论.解答:解:当x≥0时,f(x)=x(|x|﹣1)=x2﹣x=(x﹣)﹣,当x<0时,f(x)=x(|x|﹣1)=﹣x2﹣x=(x+)+,作出函数f(x)的图象如图:当x≥0时,由f(x)=x2﹣x=2,解得x=2.当x=时,f()=.当x<0时,由f(x)=)=﹣x2﹣x=.即4x2+4x﹣1=0,解得x==,∴此时x=,∵上的最小值为,最大值为2,∴n=2,,∴n﹣m的最大值为2﹣=,故选:B.点评:本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.10.(3分)设函数(a∈R).若方程f(f(x))=x有解,则a的取值X围为()A.B.C.D.∴t=x,即f(x)=x,∴在x≥0时有解,即x﹣a=x2,∴a=﹣x2+x在x≥0时成立,设g(x)=,∵x≥0∴当x=时,g(x)取得最大值,∴g(x)≤,即a≤,故选:A.点评:本题主要考查方程有解的判断,利用换元法将方程进行转化,利用二次函数的图象和性质是解决本题的关键,综合性较强,难度较大.二、填空题:本大题共7小题,每小题4分共28分.11.(4分)已知集合A={x|1≤2x<16},B={x|0≤x<3,x∈N},则A∩B={0,1,2}.考点:交集及其运算.专题:计算题.分析:求出A中不等式的解集确定出A,列举出集合B,找出两集合的交集即可.解答:解:由A中的不等式变形得:20≤2x<24,即A={x|0≤x≤4},∵B={x|0≤x<3,x∈N}={0,1,2},∴A∩B={0,1,2}.故答案为:{0,1,2}点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.(4分)计算,结果是.考点:有理数指数幂的化简求值.专题:计算题.分析:利用指数幂的运算法则和分母有理化即可得出.解答:解:原式=+1﹣5.5+==2.5+2﹣4.5+2=.故答案为:.点评:本题考查了指数幂的运算法则和有理化因式,属于基础题.13.(4分)使得函数f(x)=x2﹣x﹣(a≤x≤b)的值域为(a<b)的实数对(a,b)有2对.考点:函数的值域;函数的定义域及其求法.专题:计算题;函数的性质及应用.分析:令f(x)﹣x=x2﹣x﹣﹣x=0得方程,从而观察方程根的情况,再由对称轴可得实数对的个数.解答:解:令f(x)﹣x=x2﹣x﹣﹣x=0,即x2﹣9x﹣7=0,方程有两个不同的解,且在对称轴的两侧,又∵f(x)=x2﹣x﹣=(x﹣2)2﹣,﹣在方程x2﹣9x﹣7=0的两根之间,故有2对,故答案为:2.点评:本题考查了对新定义的应用,属于基础题.14.(4分)在同一坐标系中,y=2x与y=log2x的图象与一次函数y=﹣x+b的图象的两个交点的横坐标之和为6,则b=6.考点:反函数;指数函数与对数函数的关系.专题:计算题;函数的性质及应用.分析:通过两个函数是反函数,利用已知条件求出交点的坐标,然后求出b的值.解答:解:因为y=2x与y=log2x互为反函数,所以它们的图象关于y=x对称,又y=2x与y=log2x的图象与一次函数y=﹣x+b的图象的两个交点的横坐标之和为6,y=﹣x+b与y=x垂直,∴交点的坐标为(3,3),∴3=﹣3+b,解得b=6.故答案为:6.点评:本题考查指数函数与对数函数的图象的关系,反函数的应用,考查分析问题解决问题的能力.15.(4分)已知函数f(x)满足f(1﹣x)=f(1+x),且f(x)在是减函数,通过对m≥1与m≤1的讨论,利用函数单调性即可求得实数m的取值X围.解答:解:∵f(1﹣x)=f(1+x),∴函数y=f(x)的图象关于直线x=1对称,又f(x)在是减函数,∴f(1﹣m)<f(m)⇔f(1+m)<f(m),∵m≤1+m恒成立,∴当m≥1时,f(x)在是减函数,要使f(1﹣m)<f(m)成立,必须,解得m<.故答案为:(﹣∞,).点评:本题考查抽象函数及其应用,着重考查函数的对称性与单调性的综合应用.考查分类讨论思想与运算能力,属于中档题.16.(4分)已知函数,若|f(x)|≥ax恒成立,则a的取值X 围是.考点:函数恒成立问题.专题:计算题;函数的性质及应用.分析:分x>0,x≤0两种情况进行讨论,x>0时可知要使不等式恒成立,须有a≤0;x≤0时,再分x=0,x<0两种情况讨论,分离参数a后化为函数最值可求,注意最后对aX围取交集.解答:解:(1)当x>0时,ln(x+1)>0,要使|f(x)|=ln(x+1)≥ax恒成立,则此时a≤0.(2)当x≤0时,﹣x2+2x≤0,则|f(x)|=x2﹣x≥ax,若x=0,则左边=右边,a取任意实数;若x<0,|f(x)|=x2﹣x≥ax可化为a则有a≥x﹣1,此时须满足a≥﹣1.综上可得,a的取值为,故答案为:.点评:本题考查函数恒成立问题,考查转化思想、分类讨论思想,考查学生分析解决问题的能力,恒成立问题常常转化为函数最值解决.17.(4分)设a∈R,若x>0时均有(x2﹣ax﹣1)≥0,则a=.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.解答:解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有(x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.点评:本题考查不等式恒成立问题,解题的关键是构造函数,利用函数的性质求解.三、解答题:本大题共4小题.共42分.解答应写出文字说明、证明过程或演算步骤. 18.(8分)设集合A={y|y=2x,1≤x≤2},B={x|0<lnx<1},C={x|t+1<x<2t,t∈R}.(1)求A∩B;(2)若A∩C=C,求t的取值X围.考点:集合的包含关系判断及应用;交集及其运算.专题:规律型.分析:(1)求出集合A,B,利用集合的基本运算求A∩B;(2)根据A∩C=C,转化为C⊆A,然后求t的取值X围.解答:解:(1)∵A={y|y=2x,1≤x≤2}={y|2≤y≤4},B={x|0<lnx<1}={x|1<x<e},∴A∩B={x|2≤x<e},(2)∵A∩C=C,∴C⊆A,若C是空集,则2t≤t+1,得到t≤1;若C非空,则,得1<t≤2;综上所述,t≤2.点评:本题主要考查集合的基本运算以及集合关系的应用,注意对集合C要注意讨论.19.(10分)已知是奇函数.(1)求a的值;(2)判断并证明f(x)在(0,+∞)上的单调性;(3)若关于x的方程k•f(x)=2x在(0,1]上有解,求k的取值X围.考点:奇偶性与单调性的综合;根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析:(1)由奇函数的定义可得f(x)=﹣f(﹣x),即f(x)+f(﹣x)=0,合理变形可求a;(2)设任意的0<x1<x2,通过作差可判断f(x1)与f(x2)的大小关系,根据单调性的定义可作出判断;(3)方程k•f(x)=2x可化为:2(2x)2﹣(k+2)•2x﹣k=0,令2x=t∈(1,2],则可分离出参数k,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域;解答:解:(1)∵是奇函数,∴对定义域内的x,都有f(x)=﹣f(﹣x),即f(x)+f(﹣x)=0,则,∴a=2.(2)f(x)在(0,+∞)上的单调递减.对任意的0<x1<x2、,故f(x1)>f(x2),即f(x)在(0,+∞)上的单调递减;(3)方程k•f(x)=2x可化为:2(2x)2﹣(k+2)•2x﹣k=0,令2x=t∈(1,2],于是2t2﹣(k+2)t﹣k=0,则,又在(1,2]上单调递增,∴的值域为,故.点评:本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力.20.(12分)已知函数f(x)=x2﹣ax+2a﹣1(a为实常数).(1)若a=0,求函数y=|f(x)|的单调递增区间;(2)设f(x)在区间的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间上是增函数,某某数a的取值X围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)当a=0时,f(x)=x2﹣1,结合函数y=|f(x)|的图象可得它的增区间.(2)函数f(x)=x2﹣ax+2a﹣1的对称轴为 x=,分当时、当时、和当时三种情况,分别求得g(a),综合可得结论.(3)根据,再分当2a﹣1≤0和当2a﹣1>0时两种情况,根据h(x)在区间上是增函数,分别求得a的X围,再取并集.解答:解:(1)当a=0时,f(x)=x2﹣1,则结合y=|f(x)|的图象可得,此函数在(﹣1,0),(1,+∞)上单调递增.(2)函数f(x)=x2﹣ax+2a﹣1的对称轴为 x=,当时,即a≤2,g(a)=f(1)=a;当时,即2<a<4,;当时,即a≥4,g(a)=f(2)=3;综上:g(a)=.(3)∵,当2a﹣1≤0,即,h(x)是单调递增的,符合题意.当2a﹣1>0,即时,h(x)在单调递减,在单调递增.令,求得.综上所述:a≤1.点评:本题主要考查二次函数的性质,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.21.(12分)设f(x)是R上的奇函数,且当x>0时,f(x)=lg(x2﹣ax+10),a∈R.(1)若f(1)=lg5,求f(x)的解析式;(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,某某数k的取值X围;(3)若f(x)的值域为R,求a的取值X围.考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:(1)由f(1)=lg5,求得a=6.求得当x<0时f(x)的解析式,再由f(0)=0,可得f(x)在R上的解析式.(2)若a=0,则由f(x)为奇函数可得它在R上单调递增,不等式等价于k•2x+4x+k+1>0.令t=2x(t>0),可得t2+kt+k+1>0在(0,+∞)恒成立,分离参数k,利用基本不等式求得k 的X围.(3)首先需满足x2﹣ax+10>0在(0,+∞)上恒成立,于是根据求得a的X围.其次,需要x2﹣ax+10=0在(0,+∞)上有解,再根据,利用基本不等式求得a的X围.再把以上两个a的X围取交集,即得所求.解答:解:(1)∵f(1)=lg5,∴f(1)=lg(11﹣a)=lg5,所以a=6.此时,当x<0时,﹣x>0,f(x)=﹣f(﹣x)=﹣lg(x2+6x+10),又f(0)=0,故.(2)若a=0,则由f(x)为奇函数可得它在R上单调递增,故f(k•2x)+f(4x+k+1)>0,等价于k•2x+4x+k+1>0.令t=2x(t>0),于是,t2+kt+k+1>0在(0,+∞)恒成立,即因为的最大值为,所以.(3)要使f(x)有意义,首先需满足x2﹣ax+10>0在(0,+∞)上恒成立,即.再利用基本不等式求得 x+≥2,当且仅当x=时,取等号,∴.其次,要使f(x)的值域为R,需要x2﹣ax+10=1能取遍所有的正数,故x2﹣ax+10=1在(0,+∞)上有解,可是,当且仅当x=3时,等号成立.综上可得,.点评:本题主要考查对数函数的图象和性质综合应用,二次函数的性质,体现了转化的数学思想,属于中档题.。
高一上学期第二次月考数学试卷及答案

高一年级上学期第二次月考数学试题卷时间:120分 总分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,52. 函数()ln(1)f x x =+的定义域为( )A .(-1,2)B .[1,0)(0,2)- C.(1,0)(0,2]- D .(1,2]-3. 函数3()2f x ax bx a b =++-是奇函数,且其定义域为[34,]a a -,则()f a =( )A .4B .3C .2D .14.已知直线20x -=,则该直线的倾斜角为( )A .30°B .60°C .120°D .150° 5. 已知两直线 1:80l mx y n ++=和 2:210l x my +-=,若12l l ⊥且1l 在y 轴上的截距 为-1,则,m n 的值分别为( )A .2,7B .0,8C .-1,2D .0,-86.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为 ( ) A .322π B .324πC . π24D .π)(424+ 7. 设αβ,为平面,,a b 为两条不同的直线,则下列叙述正确的是( )A .//,//,//a b a b αα若则B .//,,a a b b αα⊥⊥若则C .//,,,//a b a b αβαβ⊂⊂若则D .,//,a a b b αα⊥⊥若则 8.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90° 9.若函数()()()2221f x m x mx m =-+++的两个零点分别在区间()1,0-和()1,2上,则m 的取值范围是( )A.11,24⎛⎫- ⎪⎝⎭B. 11,42⎛⎫- ⎪⎝⎭C. 11,42⎛⎫ ⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦ 10. 一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为2的正方形,俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .34π+B .38π+C.π384+ D .π388+11. 如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知△A ′ED 是△AED 绕DE旋转过程中的一个图形,下列命题中错误的是( )A .恒有DE ⊥A ′FB .异面直线A ′E 与BD 不可能垂直C .恒有平面A ′GF ⊥平面BCEDD .动点A ′在平面ABC 上的射影在线段AF 上 12. 设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[],a b D ⊆,使得()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称()f x 为“倍缩函数”.若函数()()2log 2xf x t =+为“倍缩函数”,则t 的取值范围是( ) A. 10,4⎛⎫ ⎪⎝⎭ B. 1,4⎛⎫+∞ ⎪⎝⎭ C. ()0,1 D.10,2⎛⎤⎥⎝⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13. 设⎩⎨⎧≥-<=-2),1(log ,2,2)(231x x x e x f x ,则))2((f f 的值为 . 14. 用一个平行于正棱锥底面的平面截这个正棱锥,截得的正棱台上、下底面面积之比为1:9,截去的棱锥的高是2cm,则正棱台的高是 cm.15.如图,正方体1111D C B A ABCD -中,AC 交BD 于O ,E 为线段11D B 上的一个动点,则下列结论中正确的有_______. ①AC ⊥平面OBE ②三棱锥E -ABC 的体积为定值③B 1E ∥平面ABD④B 1E ⊥BC 116. 已知函数32log ,03,()1108,3,33x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩若存在实数,,,a b c d ,满足()()()()f a f b f c f d ===,其中0d c b a >>>>,则abcd 的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分) 已知全集U R = ,1242x A x⎧⎫=<<⎨⎬⎩⎭,{}3log 2B x x =≤. (1)求AB ;(2)求()U C AB .O18. (本小题满分12分)(1)已知直线l 过点(1,2)A ,且与两坐标轴的正半轴围成的三角形的面积是4,求直线l 的方程.(2)求经过直线1:2350l x y +-=与2:71510l x y ++=的交点.且平行于直线230x y +-=的直线方程.19.(本小题满分12分)已知直线1:310l ax y ++=,2:(2)0l x a y a +-+=. (1)当l 1//l 2,求实数a 的值;(2)直线l 2恒过定点M ,若M 到直线1l 的距离为2,求实数a 的值.20. (本小题满分12分) 如图,△ABC 中,2AC BC AB ==,四边形ABED 是边长为a 的正方形,平面ABED ⊥平面ABC ,若G F 、分别是EC BD 、的中点.(1)求证://GF ABC 平面;(2) BD EBC 求与平面所成角的大小21. (本小题满分12分) 如图,在四棱锥ABCD P -中,⊥PD 平面ABCD ,底面ABCD 是平行四边形,BD AD PD AB BAD ====∠,,,3260,O 为AC 与BD 的交点,E为棱PB 上一点.(1)证明:平面⊥EAC 平面PBD ;(2)若EB PE 2=,求二面角B AC E --的大小.22. (本小题满分12分) 对于函数()f x 与()g x ,记集合{}()()f g D x f x g x >=>. (1)设()2,()3f x x g x x ==+,求集合f g D >;(2)设121()1,()()31,()03xx f x x f x a h x =-=+⋅+=,若12f h f h D D R >>⋃=,求实数a 的取值范围.答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)C C B A B CD C C A B A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13. 2 14. 4 15. ①②③ 16.(21,24)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)解:{}12A x x =-<< , B {}09B x x =<≤ ·······················4分 (1){}02A B x x =<< ····································································6分 (2){}19AB x x =-<≤ ,(){1UC A B x x =≤-或9}x > .·····10分18. (本小题满分12分)(1)解析:解法一 设l :y -2=k (x -1)(k <0), 令x =0,y =2-k .令y =0,x =1-2k ,S =12(2-k )⎝ ⎛⎭⎪⎫1-2k =4, 即k 2+4k +4=0. ∴k =-2,∴l :y -2=-2(x -1),即l :2x +y -4=0.···················6分解法二 设l :x a +yb =1(a >0,b >0),则⎩⎪⎨⎪⎧12ab =4,1a +2b =1.a 2-4a +4=0?a =2,∴b =4.直线l :x 2+y4=1. ∴l :2x +y -4=0.(2)联立,解得.设平行于直线 x +2y ﹣3=0的直线方程为 x +2y +n=0.把代入上述方程可得:n=﹣.∴要求的直线方程为:9x +18y ﹣4=0.···········12分 19.(本小题满分12分)(1)a=3,或a=-1(舍)··························4分 (2)M(-2,-1)···································8分2=得a=4··················12分20. (本小题满分12分)(1)证明: 连接EA 交BD 于F , ∵F 是正方形ABED 对角线BD 的中点, ∴F 是EA 的中点, ∴FG ∥AC .又FG ?平面ABC ,AC ?平面ABC ,∴FG ∥平面ABC .··················6分 (2)∵平面ABED ⊥平面ABC ,BE ⊥AB ,∴BE ⊥平面ABC .∴BE ⊥AC .又∵AC =BC =22AB , ∴BC ⊥AC , 又∵BE ∩BC =B , ∴AC ⊥平面EBC . 由(1)知,FG ∥AC , ∴FG ⊥平面EBC ,∴∠FBG 就是线BD 与平面EBC 所成的角.又BF =12BD =2a 2,FG =12AC =2a 4,sin ∠FBG =FG BF =12.∴∠FBG =30°. ························12分 21. (本小题满分12分)解:(1)∵⊥PD 平面ABCD ,⊂AC 平面ABCD ,∴PD AC ⊥. ∵60,=∠=BAD BD AD ,∴ABD ∆为正三角形,四边形ABCD 是菱形, ∴BD AC ⊥,又D BD PD = ,∴⊥AC 平面PBD ,而⊂AC 平面EAC ,∴平面⊥EAC 平面PBD .·········································6分 (2)如图,连接OE ,又(1)可知AC EO ⊥,又BD ⊥AC ,∴EOB ∠即为二面角B AC E --的平面角, 过E 作PD EH ∥,交BD 于点H ,则BD EH ⊥, 又31,33,3,2,2=====OH EH PD AB EB PE ,在EHO RT ∆中,3tan ==∠OHEHEOH ,∴ 60=∠EOH , 即二面角B AC E --的大小为60.·································································12分 22. (本小题满分12分)解:(1) 当0≥x 得3,32>∴+>x x x ; ······················2分当1320-<∴+>-<x x x x ,时,得 ················4分()()∞+⋃-∞-=∴>,31,g f D ··············5分(2) ()⎭⎬⎫⎩⎨⎧>+⋅+=∞+=>>013)31(,121xxh f h f a x D D , ·······7分 R D D h f h f =⋃>>21 , ∴ (]1,2∞-⊇>h f D即不等式01331>+⋅+xx a )(在1≤x 恒成立 (9)分∴ 1≤x 时,⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛->x x a )31(91恒成立, ⎥⎦⎤⎢⎣⎡+-=x x y )31()91( 在1≤x 时最大值为94-, ··················11分故 94->a ·············12分。
数学文卷·2014届湖北省襄阳市高三统一调研测试(2013.12)word版

2.设 a、b 为实数,若复数 1+ i =1+i 则 a + bi
A.a= 3 ,b= 1 B.a=3,b=1 C.a= 1 ,b= 3 D.a=1,b=3
22
22
3.已知幂函数 y=f(x)的图象过点( 1 , 2 ),则 log4f(2)的值为 22
A. 1 4
B.- 1 4
C.2 D.-2
4.已知向量 a=(cosα ,sinα ),向量 b=( 3 ,-1),则|2a-b|的最大值,最小值分别是
得到 y = 2 sin[2(x + π ) − π } + 1 ,即 y = 2 sin 2x + 1的图象 63
所以 g(x) = 2 sin 2x + 1
8分
令 g (x) = 0 得: x = kπ + 7π 或 x = kπ + 11π ,k∈Z
12
12
∴y = g (x)的零点为 x = kπ + 7π 或 x = kπ + 11π ,k∈Z
4分
又
Sn 的最小值是
S5,∴ 4
+
1 2
≤
1 2
−
a1
≤5
+
1 2
故-5≤a1≤-4
∴a1 的取值范围是[-5,-4].
6分
(3)解:a1 =1 时,an = 1 + (n﹣1) = n
当 n = 1 时,b1 = T1 = 2b1﹣2,解得 b1 = 2
当 n≥2 时,bn = Tn﹣Tn﹣1 = 2bn﹣2﹣(2bn﹣1﹣2) = 2bn﹣2bn﹣1,化为 bn = 2bn﹣1.
已知等差数列{an}的公差为 d,前 n 项和为 Sn,等比数列{bn}的前 n 项和为 Tn,且{an}、 {bn}满足条件:S4=4a3-2,Tn=2 bn-2. (1)求公差 d 的值; (2)若对任意的 n∈N,都有 Sn≥S5 成立,求 a1 的取值范围; (3)若 a1=1,令 Cn=anbn,求数列{cn}的前 n 项和. 21.(本大题满分 14 分)