清洁型焦炉的简介

清洁型焦炉的简介
清洁型焦炉的简介

关于清洁型热回收捣固机焦炉的简介

现代炼焦技术发展100多年来,取得了很大的成功。但是,发展到今天遇到

了资源、环境、成本等方面的困难。目前,世界各国都在积极开发新的炼焦技术,例如大容积炼焦、捣固炼焦、热回收炼焦、炼焦环保装备等。热回收炼焦发展较晚,在技术进步很快,但在利用弱粘结性焦煤、清洁生产、提高焦炭质量等方面

取得了显著的效果,受到了世界炼焦界广泛的关注。

1.清洁型热回收焦炉的研发与完善

山西森特洁净煤技术研究设计院(有限公司)是一家专业从事焦化设计、咨询、服务等工作。我院在焦化设计领域有多项专利和专有技术,并由国内外知名焦化专家张建平担任院长。

主要焦化技术分两方面,在传统回收化学产品方面有炭化室高5.5米、炭化室

平均宽554毫米宽炭化室捣固焦炉等。在热回收焦炉方面,共开发有CHS-2008、

CHS-2009、CHS-2010、CHS-2011、CHS-2012、CHS-2013等六个系列。其中最早的一

版CHS-2008型共先后设计有7版。热回收焦炉在我国山西、山东、辽宁、新疆、内蒙、浙江、湖南等省份建设有30多家,在国外印度、巴西建设有10余家。其中

高平兴高焦化有限公司和太原港源焦化有限公司获中国农业部、全球环境基金会、联合国开发计划署、联合国工业发展组织授予的“中国乡镇企业节能与温室气体

减排项目示范企业”。

2.清洁型热回收焦炉的主要特点

2.1清洁生产、保护环境

2.1.1炼焦烟尘和废气

CHS-2008清洁型热回收捣固式机焦炉采用负压操作,采用上、下炉门结构,

从根本上制止和消除了炼焦过程中烟尘的外泄。该炼焦炉采用了水平接焦,最大

限度地减少了推焦过程中焦炭跌落过程中产生的粉尘。

焦炉炉体污染物排放情况

焦炉烟囱污染物排放情况

2.1.2废水

CHS-2008清洁型热回收捣固式机焦炉没有回收化学产品和净化焦炉煤气的工艺和设备,在生产过程中不产生含有化学成份的污水。熄焦水封闭循环不外排。

2.1.3噪声

捣固工艺采用液压捣固,捣固过程中产生的噪音很低,一般40分贝。

2.2炭化室大型化

CHS-2008清洁型热回收捣固式机焦炉属于炭化室大容积焦炉,炭化室一次装入干煤量47.51t。大容积炭化室炼焦具有焦炭块度大、焦炭质量均匀、装煤出焦次数少、减少装煤出焦时外泄烟尘、降低焦炉机械电耗、提高焦炉寿命等优点。

2.3液压捣固

捣固机是捣固炼焦的关键设备,捣固机的使用性能直接影响到煤饼的质量和焦炉正常生产。CHS-2008清洁型热回收捣固式机焦炉在国际上首次采用了具有我国自主知识产权国际领先水平的液压捣技术。

2.4水平接焦

CHS-2008清洁型热回收捣固式机焦炉减少了传统机焦炉的拦焦车,接焦采用水平接焦。水平接焦能有效地减少出焦过程中焦炭跌落产生的粉尘,增加焦炭的块度。

2.5炼焦煤可以大量地使用弱粘结煤

CHS-2008清洁型热回收捣固式机焦炉由于采用了大容积炭化室结构和捣固炼焦工艺,捣固煤饼为卧式结构,改变了炼焦过程中化学产品和焦炉煤气在炭化室的流动的途径,炼焦煤可以大量地使用弱粘结煤。炼焦煤中可以配入50%左右的无烟煤,或者更多的贫瘦煤和瘦煤。这对于扩大炼焦煤资源具有重要意义。

2.6焦炭块度大、焦粉少

CHS-2008清洁型热回收捣固式机焦炉生产的焦炭块度大、焦粉少、焦炭质量

均匀。一般情况焦炭的M

25>93%,M

10

<5.5%。

2.7回收利用炼焦废气的余热

炼焦煤炼焦过程中产生的所有物质在焦炉内部燃烧完全产生高温废气。炼焦产生的高温废气通过余热锅炉产生蒸汽发电,或其它用途。每10吨焦炭生产规模发电量为6MW。

2.8生产工艺过程中动力消耗低

炼焦生产吨焦耗水0.70m3,吨焦耗电9~10KW。

2.9生产工艺简单、便于实现自动化控制

CHS-2008清洁型热回收捣固式机焦炉的生产工艺有备煤车间、炼焦车间和筛焦车间,工艺流程简单,操作方便,便于生产全过程实现自动化控制。

2.10建设投产少、建设速度快

CHS-2008清洁型热回收捣固式机焦炉工艺流程简单,配套的辅助生产设施和公用工程少,建设投资低,建设速度快。

2.11生产定员少

CHS-2008清洁型热回收捣固式机焦炉工艺流程简单,设备少,便于实现自动化控制,没有更多的辅助生产人员,生产定员。

2.12操作费用和维修费用低

CHS-2008清洁型热回收捣固式机焦炉工艺流程简单,设备少,设备的应用环境没有腐蚀的介质和防爆的要求,生产过程中动力消耗低,生产全过程操作费用低,维修费用少。

2.13适合生产各种质量的焦炭

CHS-2008清洁型热回收捣固式机焦炉可以通过改变炼焦配煤和加热制度,可以生产各种规格和质量的焦炭。

清洁型热回收焦炉技术特点及发展现状

清洁型热回收焦炉技术特点及发展现状 1.1发展历程 清洁型热回收焦炉是在上世纪末山西省“七五”型无回收焦炉的基础上,作为山西省重点科技攻关项目,由沈为清先生与山西化工设计院共同研发的一种具有知识产权的炼焦新工艺。 该工艺的专利号为ZL 2005 2 0024701.5。热回收焦炉专利技术其第一专利人沈为清先生是山西汾渭能源咨询有限公司与山西森特洁净煤技术设计研究有限公司的首席焦化顾问,原太钢焦化厂和太原煤气化公司总工程师。 该焦炉的成功研发,大大拓宽了炼焦煤的应用范围。在汾渭公司推广与应用该工艺的过程中,开创了配入48%的无烟煤和配入35%的动力煤的的成功案例,并使其产品达到国内一级冶金焦或铸造焦的标准。 同时,也从根本上解决了焦化产业长期存在的环境污染问题。其代表性企业兴高能源股份有限公司成为目前中国唯一一家被世界银行全球环境基金、联合国开发计划署、联合国工业发展组织等机构共同授予“中国节能与温室气体减排项目示范企业”的炼焦企业。 该工艺投资少,流程简单,易操作,生产成本低,自投产以来得到了迅速推广。山西森特设计研究院作为焦炉首席设计建造单位,承担了国外清洁型热回收焦炉80%以上工程项目。到目前为止,我国热回收焦炉已遍布山西、山东、内蒙古、河北、浙江、江苏、辽宁和新疆等地,有炼焦企业50余家,生产能力约3000万吨。其中,山西建成投产36座(含未审批企业)。随着我国新型热回收焦炉技术的进步与发展,在国际上也引起了一些国家的关注,特别是在2009年国家发展与改革委员会将该工艺列为中国合格的炼焦新型工艺后,该焦炉引起了国内外的高度重视,该技术已在印度、巴西、越南等地得到了推广和应用,国外新建和拟建项目约20余座。

焦炉炉体的主要结构介绍

焦炉炉体的主要结构介绍 前言 现代焦炉炉体最上部是炉顶,炉顶之下为相间配置的燃烧室和炭化室,炉体下部有蓄热室和连接蓄热室与燃烧室的斜道区,每个蓄热室下部的小烟道通过交换开闭器与烟道相连。烟道设在焦炉基础内或基础两侧,烟道末端通向烟囱。 燃烧室和炭化室 燃烧室是煤气燃烧的地方,通过与两侧炭化室的隔墙向炭化室的提供热量。装炉煤在炭化室内经高温干馏变成[wiki]焦炭[/wiki]。燃烧室墙面温度高达1300--1400℃,而炭化室墙面温度约1000--1150℃,装煤和出焦时炭化室墙面温度变化剧烈,且装煤中的盐类对炉墙有腐蚀性。现代焦炉均采用硅砖砌筑炭化室墙。硅砖具有荷重软化点高、导热性能好、抗酸性渣侵蚀能力强、高温热稳定性能好和无残余收缩等优良性能。砌筑炭化室的硅砖采用沟舌结构,以减少荒煤气窜漏和增加砌体强度;所用的砖型有:丁字砖、酒瓶砖和宝塔砖。**焦炉的炭化室墙多采用丁字砖,20世纪80年代以后则多采用宝塔砖。炭化室墙厚一般为90—100mm,**多为95—105mm。为防止焦炉炉头砖产生裂缝,有的焦炉的炉头采用高铝砖或粘土砖砌筑,并设置直缝以消除应力,**焦炉多采用这种结构。 燃烧室分成许多立火道,立火道的形式因焦炉炉型不同而异。立火道由立火道本体和立火道顶部两部分组成。煤气在立火道本体内燃烧。立火道顶是立火道盖顶以上部分。从立火道盖顶砖的下表面到炭化室

盖顶砖下表之间的距离,称加热水平高度,它是炉体结构中的一个重要尺寸。如果该尺寸太小,炉顶空间温度就会过高,致使炉顶产生过多的沉积碳;反之,则炉顶空间温度过低,将出现焦饼上部受热不足,因而影响焦炭质量。另外,炉顶空间温度过高或过低,都会对炼焦化学产品质量产生不利影响。炭化室的主要尺寸有长、宽、高、锥度和中心距。焦炉的生产能力随炭化室长度和高度的增加而成比例的增加。捣固焦炉与顶装炉不同,其锥度较小,只有0—200mm。 蓄热室 为了回收利用焦炉燃烧废气的热量预热贫煤气和空气,在焦炉炉体下部设置蓄热室。现代焦炉蓄热室均为横蓄热室(其中心线与燃烧室中心线平行),以便于单独调节。蓄热室有宽蓄热室和窄蓄热室两种。宽蓄热室是每个炭化室下设一个,窄蓄热墙一般用硅砖砌筑,有些国家用粘土砖或半硅砖代替硅砖砌筑温度较低的蓄热室下部。在蓄热室中放置格子砖,以充分回收废气中的热量。格子砖要反复承受急冷急热的温度变化,故采用粘土质或半硅质材料制造。现代焦炉的格子砖一般采用异型薄壁结构,以增加蓄热面积和提高蓄热效率。蓄热室下部有小烟道,其作用是向蓄热室交替导入冷煤气和空气,或排出废气。小烟道中交替变换的上升气流(被预热的煤气或空气)和下降气流(燃烧室排出的高温废气)温度差别大,为了承受温度的急剧变化,并防止气体对小烟道的腐蚀,需在小烟道内衬以粘土砖。 斜道区 位于燃烧室和蓄热室之间的通道。不同类型焦炉的斜道区结构

焦炉构造与机械设备汇总

第二章焦炉构造 第一节现代焦炉的分类 现代焦炉一般按加热火道的组合形式,使用煤气种类及引入方式等特点进行分类。在实践中一般焦炉是综合上述两个特点来区分的。58型焦炉称为双联、下喷、复热式焦炉;66型焦炉称为两分、侧入式焦炉。?我厂主要是58型焦炉,一焦炉是JN60-82型大容积焦炉,炭化室高6米,结构特点与58型焦炉相同;二焦炉是双联火道、煤气侧入、复热式仿58型焦炉,?三、四、五焦炉是标准58-II型焦炉。 一、?按加热火道组合特点分类: (1)?两分式:即燃烧室的火道按机、焦侧分成两部分,一侧是上升气流,?另一侧是下降气流。在火道顶有一水平烟道相连。(2)双联式:燃烧室中每相邻火道联成一对,一个是上升气流,另一个是下降气流。我厂焦炉都是双联式。(3)上跨式:炭化室两边燃烧室,一边燃烧室呈上升气流,另一边是下降气流。两燃烧室是以跨过炭化室顶部的跨越孔相连通的。此各形式焦炉在我国已经很少见了。 二、按加热方法分类: 从炉体结构上只能用一种煤气加热的称为单热式,,可分为焦炉煤气单热式和高炉煤气单热式。可用两种以上煤气加热的称为复热式。我厂一、二、三、四、五焦炉均可采用高炉、焦炉煤气及二者混合煤气加热,均为复热式焦炉。 三、按焦炉煤气供给方法分类: 1、?侧入式:焦炉加热煤气由焦炉两侧水平砖煤气道进入燃烧室立火道。 2、下喷式:焦炉加热煤气由炉下经垂直砖煤气道进入燃烧室立火道。下喷式焦炉都有地下室,安放加热煤气管道。我厂二焦炉是侧入式,一、三、四、五焦炉是下喷式焦炉。 第二节现代焦炉的构成 现代焦炉主要由炭化室、燃烧室、斜道区、蓄热室及炉顶区、焦炉基础、烟道、烟囱等部分组成。 一、炭化室:是装煤炼焦的地方,在炭化室两端用炉门密封。顶部有装煤孔,为了顺利推焦,炭化室水平截面呈梯形,焦侧宽度大于机侧,两侧宽度差称为锥度。焦炉锥度一般为50mm;一焦炉为大容积焦炉锥度为60 mm. 我厂焦炉炭化室尺寸如下: ┌───────┬────┬────┬────┬─────┐ ││1#焦炉│2#焦炉│3#焦炉│4、5#焦炉│ ││(mm)│(mm) │(mm) │(mm) │ ├───────┼────┼────┼────┼─────┤ │炭化室全高│ 6000│ 4000 │ 4300 │ 4300 │ ├───────┼────┼────┼────┼─────┤ │炭化室有效高│ 5650│ 3700 │ 4000 │ 4300 │ ├───────┼────┼────┼────┼─────┤

立式清洁热回收焦炉特点

立式清洁热回收炼焦技术的特点 1、环境保护方面 (1)、由于焦炉采用煤饼捣固、侧面装煤的方式,炭化室负压操作,大大减少了在装煤、推焦过程中烟气的无组织排放,使得装煤、炼焦、出焦等全过程烟尘无外泄,所有产生的荒煤气全部燃烧变为热能。此热能一方面加热煤饼使煤变为焦炭,另一方面废气余热加热配套电厂的锅炉水,使锅炉水变为热蒸汽带动汽轮机组发电。电厂排出的废气经脱硫除尘后烟气中的SO2≤100mg/m3,粉尘≤40mg/m3,实现了清洁生产,达到环保要求。 (2)、由于该焦炉没有外输焦炉煤气、化产回收和煤气净化等工艺过程,不需要建设污水处理车间,所以没有含有害化学成份的污水产生,从根本上解决了焦化厂污水难以治理的问题。 (3)、在炼焦过程中,产生的焦油、苯、萘、3—4苯幷芘等有毒有害气体在高温下全部燃烧掉,大大减少了炼焦过程中有毒有害气体对环境的危害。 2、捣固系统方面 (1)、采用自动连续薄层捣固法代替卧式焦炉的液压分层捣固法,捣固时间由12min缩短为4~6min。 (2)、改进了捣固机的传动机构,捣固锤的个数可以相应增加,目前该系列捣固机的捣固锤个数从6个到18个不等,可以根据焦炉产量的设计情况进行相应的配备。 (3)、采用自动连续薄层捣固技术,使得入炉煤的堆密度由散装煤的0.7~0.75t/m3提高到1.05~1.10t/m3。 3、资源综合利用方面 (1)、余热发电:炼焦废气余热全部用于发电,实现了资源的综合利用。以年产80万吨焦化厂为例,可以配备60MW的热回收发电机组。 (2)、配煤品种:实践表明,在保证焦炭质量的前提下,可配入50%的弱黏结性煤和无烟煤,从而扩大了炼焦煤的配煤范围。 (3)、水消耗:全厂生产只在备煤系统和熄焦系统使用水,备煤用水为煤调湿所用,熄焦系统所用水,除了少量变为蒸汽挥发外,其余大部分经过熄焦沉淀池沉淀后循环使用。生产过程不消耗蒸汽、低温水等资源,每吨焦耗水仅0.45吨。 (4)、电消耗:每吨焦耗电约15度。 3、生产能力与焦炭质量方面 (1)、立式焦炉的炭化室和燃烧室完全分开,可以完全避免焦炭成熟末期易化灰(焦炭烧损)的情况出现。 (2)、宽炭化室炼焦,焦炭的块度大、强度高、热稳定性好。 (3)、炭化室和燃烧室完全分开,相隔100mm,煤在炭化的过程中所产生的煤气,在燃烧室燃烧过程中,相邻的炭化室热能可以相互利用,从而缩短了结焦时间,增加成焦的均匀性,产量可以大大提高。

清洁型焦炉的简介

关于清洁型热回收捣固机焦炉的简介 现代炼焦技术发展100多年来,取得了很大的成功。但是,发展到今天遇到 了资源、环境、成本等方面的困难。目前,世界各国都在积极开发新的炼焦技术,例如大容积炼焦、捣固炼焦、热回收炼焦、炼焦环保装备等。热回收炼焦发展较晚,在技术进步很快,但在利用弱粘结性焦煤、清洁生产、提高焦炭质量等方面 取得了显著的效果,受到了世界炼焦界广泛的关注。 1.清洁型热回收焦炉的研发与完善 山西森特洁净煤技术研究设计院(有限公司)是一家专业从事焦化设计、咨询、服务等工作。我院在焦化设计领域有多项专利和专有技术,并由国内外知名焦化专家张建平担任院长。 主要焦化技术分两方面,在传统回收化学产品方面有炭化室高5.5米、炭化室 平均宽554毫米宽炭化室捣固焦炉等。在热回收焦炉方面,共开发有CHS-2008、 CHS-2009、CHS-2010、CHS-2011、CHS-2012、CHS-2013等六个系列。其中最早的一 版CHS-2008型共先后设计有7版。热回收焦炉在我国山西、山东、辽宁、新疆、内蒙、浙江、湖南等省份建设有30多家,在国外印度、巴西建设有10余家。其中 高平兴高焦化有限公司和太原港源焦化有限公司获中国农业部、全球环境基金会、联合国开发计划署、联合国工业发展组织授予的“中国乡镇企业节能与温室气体 减排项目示范企业”。 2.清洁型热回收焦炉的主要特点 2.1清洁生产、保护环境 2.1.1炼焦烟尘和废气 CHS-2008清洁型热回收捣固式机焦炉采用负压操作,采用上、下炉门结构, 从根本上制止和消除了炼焦过程中烟尘的外泄。该炼焦炉采用了水平接焦,最大 限度地减少了推焦过程中焦炭跌落过程中产生的粉尘。 焦炉炉体污染物排放情况

焦炉的结构和设备知识

《焦炉结构与设备》 亠、教学内容: (一)、焦炉整体结构概述 (二)、护炉铁件 (三)、焦炉加热设备 (四)、荒煤气导出设备 (五)、焦炉机械 (六)、附属设备和修理装置 二、学习目的: 了解焦炉的整体结构,掌握护炉铁件、蓄热室、燃烧室、炭化室及荒煤气导出道的结构。

第一章焦炉整体构造 一、焦炉炉型的分类 二、现代焦炉的结构 1.1 炭化室 1.2 燃烧室 1.3 斜道区 1.4 蓄热室 1.5 小烟道 1.6 炉顶区 1.7 焦炉基础平台、烟道、烟囪 第二章炼焦炉的机械与设备 2.1 护炉铁件 2.1.1 护炉铁件的作用 2.1.2 保护板和炉门框 2.1.3 炉柱、拉条和弹簧 2.1.4 炉门

2.2 焦炉加热设备 2.2.1 加热煤气设备 2.2.2焦炉的煤气管系 交换设备 2.2.3 废气设备 2.2.4 荒煤气导出设备 2.3 高压氨水及水封上升管盖装置2.3.1 上升管与桥管 2.3.2 集气管与吸气管 2.3.3 焦炉机械 2.4 装煤车 2.4.1 2.4.2拦焦车 推焦车 2.4.3 熄焦车和电机车 2.4.4 附属设备和修理装置 2.5 炉门修理站 2.5.1 余煤单斗机和埋刮板提升机2.5.2 悬臂式起重机和电动葫芦 2.5.3 2.5.4推焦杆更换装置

第一章焦炉整体结构 1 一、焦炉炉型的分类: 现代焦炉因火道结构,加热煤气种类及其入炉方式,实现高向加热均匀性的方法不同等分成许多型式。 因火道结构形式的不同,焦炉可分为二分式焦炉,双联火道焦炉及少数的过顶式焦炉。根据加热煤气种类的不同,焦炉可分为单热式焦炉和复热式焦炉。 根据煤气入炉的方式不同,焦炉可分为下喷式焦炉和侧入式焦炉。 二、现代焦炉的结构: (一)、现代焦炉虽有多种炉型,但都有共同的基本要求: 1)焦并长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失 2)劳动生产率和设备利用率高。 3)加热系统阻力小,热工效率高,能耗低。 4)炉体坚固、严密、衰老慢、炉龄长。 5)劳动条件好,调节控制方便,环境污染少。 (二)、JN型焦炉及其基础断面

QRD-2000(VI)清洁型焦炉砌筑规程

QRD-2000(VI)清洁型焦炉砌筑规程 Specification for Masonry Works of QRD-2000(VI) Clean Coke Oven 编制: Prepared by: 校对: Proofread by: 审核: Checked by: 审定: Approved by: December, 2007 一、总则 Ⅰ. General principles 1. 本规程只适用QRD-2000(VI)清洁型焦炉的砌筑。 This specification is only applicable to masonry works of QRD-2000(VI)clean coke oven. 2. 焦炉各区域采用的耐火材料应符合设计标准的要求。Fire resisting materials used in all areas within the coke oven shall conform to requirements of design standard. 3. 焦炉施工过程中发生材料代用、技术质量问题处理、变更设计等事宜时,要预先取得设计部门同意,并签发设计通知单后方可施工。Material substitution, technical and quality problems handling, design variation and other affairs during construction of coke oven shall be authorized by design unit and the construction shall not be performed until design change notice is signed and delivered. 4. 整座焦炉耐火材料应采用同一个耐火材料厂生产,并质量指标相同的耐火材料。Fire resisting materials used for one coke oven shall be from one manufacturer and of same quality indexes. 5. 砌筑硅砖焦炉应在工作棚内进行,工作棚净空尺寸除应满足炉体施工外还应满足作业平台、集气管、除尘风管和护炉[wiki]设备[/wiki]的安装工作。Masonry works of silica brick coke oven shall be within work shed and the clearance of the work shed shall not only meet requirements of construction of oven shell but also installation of work platform, header, dedusting wind pipe and protective devices. 6. 焦炉砌体在烘炉前应防潮防冻,并保持5℃以上[wiki]环境[/wiki]。Masonry works shall be protected from moisture and frost and the ambient temperature shall be above 5℃. 7. 具备下列条件时,允许开始砌筑焦炉:Masonry works shall not be started unless the following conditions are ready: (1) 焦炉基础、抵抗墙等土建构筑物已施工完毕并验收合格。 Construction of coke oven structures such as foundation and resistance wall have been finished, inspected and accepted.

焦炉的结构和设备知识

《焦炉结构与设备》 一、教学内容: (一)、焦炉整体结构概述 (二)、护炉铁件 (三)、焦炉加热设备 (四)、荒煤气导出设备 (五)、焦炉机械 (六)、附属设备和修理装置 二、学习目的: 了解焦炉的整体结构,掌握护炉铁件、蓄热室、燃烧室、炭化室及荒煤气导出道的结构。 目录 第一章焦炉整体构造 一、焦炉炉型的分类 二、现代焦炉的结构 1.1 炭化室 1.2 燃烧室 1.3 斜道区 1.4 蓄热室 1.5 小烟道 1.6 炉顶区 1.7 焦炉基础平台、烟道、烟囱 第二章炼焦炉的机械与设备

2.1 护炉铁件 2.1.1 护炉铁件的作用 2.1.2 保护板和炉门框 2.1.3 炉柱、拉条和弹簧 2.1.4 炉门 2.2 焦炉加热设备 2.2.1 加热煤气设备 2.2.2 焦炉的煤气管系 2.2.3 交换设备 2.2.4 废气设备 2.3 荒煤气导出设备 2.3.1 高压氨水及水封上升管盖装置2.3.2 上升管与桥管 2.3.3 集气管与吸气管 2.4 焦炉机械 2.4.1 装煤车 2.4.2 拦焦车 2.4.3 推焦车 2.4.4 熄焦车和电机车 2.5 附属设备和修理装置 2.5.1 炉门修理站 2.5.2 余煤单斗机和埋刮板提升机2.5.3 悬臂式起重机和电动葫芦

2.5.4 推焦杆更换装置 第一章焦炉整体结构 一、焦炉炉型的分类: 现代焦炉因火道结构,加热煤气种类及其入炉方式,实现高向加热均匀性的方法不同等分成许多型式。 因火道结构形式的不同,焦炉可分为二分式焦炉,双联火道焦炉及少数的过顶式焦炉。 根据加热煤气种类的不同,焦炉可分为单热式焦炉和复热式焦炉。 根据煤气入炉的方式不同,焦炉可分为下喷式焦炉和侧入式焦炉。 二、现代焦炉的结构: (一)、现代焦炉虽有多种炉型,但都有共同的基本要求: 1)焦并长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失。 2)劳动生产率和设备利用率高。 3)加热系统阻力小,热工效率高,能耗低。 4)炉体坚固、严密、衰老慢、炉龄长。 5)劳动条件好,调节控制方便,环境污染少。 (二)、JN型焦炉及其基础断面 图1.1 JN型焦炉及其基础断面 现代焦炉主要由炉顶区、炭化室、燃烧室、斜道区、蓄热室、烟道区(小烟道、分烟道、总烟道)、烟囱、基础平台和抵抗墙等部分组成,蓄热室以下为烟道与基础。炭化室与燃烧室相间布置,蓄热室位于其下方,内放格子砖以回收废热,斜道区位于蓄热室顶和燃烧室底之间,通过斜道使蓄热室与燃烧室相通,炭化室与燃烧室之上为炉顶,整座焦炉砌在坚固平整的钢筋混凝土基础上,烟道一端通过废气开闭器与蓄热室连接,另一端与烟囱连接口根据炉型不同,烟道设在基础内或基础两侧。以下分别加以介绍: 1.1 炭化室 炭化室是煤隔绝空气干馏的地方,是由两侧炉墙、炉顶、炉底和两侧炉门合围起来的。炭化室的有效容积是装煤炼焦的有效空间部分;它等于炭化室有效长度、平均宽度及有效高度的乘积。炭化室的容积、宽度与孔数对焦炉生产能力、单位产品的投资及机械设备的利用率等均有重大影响。炭化室顶部还设有1个或2个上升管口,通过上升管、桥管与集气管相连。 炭化室锥度:为了推焦顺利,焦侧宽度大于机侧宽度,两侧宽度之差叫做炭化室锥度。炭化室锥度随炭化室的长度不同而变化,炭化室越长,锥度越大。在长度不变的情况下,其锥度越大越有利于推焦。生产几十年的炉室,由于其墙面产生不同程度的变形,此时锥度大就比锥度小利于推焦,从而可以延长炉体寿命。 1.2 燃烧室 双联式燃烧室每相邻火道连成一对,一个是上升气流,另一个是下降气流。双联火道结构具有加热均匀、气流阻力小、砌体强度高等优点,但异向气流接触面较多,结构较复杂,砖形多,我国大型焦炉均采用这种结构。每个燃烧室有28个或32个立火道。相邻两个为一对,组成双联火道结构。每对火道隔墙上部有跨越孔,下部除炉头一对火道外都有废气循环孔。砖煤气道顶部灯头砖稍高于废气循环孔的位置,使焦炉煤气火焰拉长,以改善焦炉高向加热均匀性和减少废气氮氧化物含量,还可防止产生短路。 图1.2 JN型焦炉斜道区结构图 1.3 斜道区 燃烧室与蓄热室相连接的通道称为斜道。斜道区位于炭化室及燃烧室下面、蓄热室上面,是焦炉加热系统的一个重要部位,进人燃烧室的焦炉煤气、空气及排出的废气均通过斜道,斜道区是连接蓄热室和燃烧室的通道区。由于通道多、压力差大,因此斜道区是焦炉中结构

焦炉结构以及工艺流程

炼焦炉,一种通常由耐火砖和耐火砌块砌成的炉子,用于使煤炭化以生产焦炭。用煤炼制焦炭的窑炉。是炼焦的主要热工设备。现代焦炉是指以生产冶金焦为主要目的、可以回收炼焦化学产品的水平室式焦炉,由炉体和附属设备构成。焦炉炉体由炉顶、燃烧室和炭化室、斜道区、蓄热室等部分,并通过烟道和烟囱相连。整座焦炉砌筑在混凝土基础上。现代焦炉基本结构大体相同,但由于装煤方式、供热方式和使用的燃料不尽相同,又可以分成许多类型。 目录 1概述 2类型 3烘炉 4调温 5护炉 6简史 7规程 8其他 1概述编辑 炼焦炉 coke oven 炼焦的主要热工装置。 构造现代炼焦炉由炭化室、燃烧室、蓄热室、斜道区、炉顶、 焦炉断面示意图 基础、烟道等组成。炭化室中煤料在隔绝空气条件下受热变成焦炭。一座焦炉有几十个炭化室和燃烧室相间配置,用耐火材料(硅砖)隔开。每个燃烧室有20~30个立火道。来自蓄热室的经过预热的煤气(高热值煤气不预热)和空气在立火道底部相遇燃烧,从侧面向炭化室提供热量。蓄热室位于焦炉的下部,利用高温废气来预热加热用的煤气和空气。斜道区是连接蓄热室和燃烧室的斜通道。炭化室、燃烧室以上的炉体称炉顶,其厚度按炉体强度和降低炉顶表面温度的需要确定。炉顶区有装煤孔和上升管孔通向炭化室,用以装入煤料和导出煤料干馏时产生的荒煤气。还设有看火孔通向每个火道,供测温、检查火焰之用,根据检测结果,调节温度和压力。整座焦炉砌筑在坚固平整的混凝土基础上,每个蓄热室通过废气盘与

烟道连接,烟道设在基础内或基础两侧,一端与烟囱连接。 2类型编辑 一个炭化室又称为一个炉孔,一座炼焦炉由数十个炉孔组成。按加热系统的结构不同,现代炼焦炉有多种类型,大致可分为:①双联火道式,上升气流火道和下降气流火道成对组合,整个燃烧室由若干组双联火道组成;②两分火道式,整个燃烧室的半侧火道均走上升气流,另半侧火道均走下降气流;③上跨焰道式,整个燃烧室的各火道分为若干组,通过上跨焰道与相邻燃烧室的火道组相联。炼焦炉的生产能力决定于炭化室的尺寸和结焦时间。 3烘炉编辑 炼焦炉主要部位由硅砖砌成,为使密封性好,要采用异形 焦炉机械装置 砖砌筑。通常一座大型炼焦炉要使用400种以上的砖,甚至超过1000种。一座36孔容积为35立方米.炭化室高度为4米3的炼焦炉需用耐火材料约8400吨。要按照严格质量标准施工,并应在烘炉时充分考虑硅砖的性质,以保证运行良好并延长寿命。焦炉烘炉后,炭化室区域的膨胀近200毫米。烘炉的日膨胀率一般采取不大于0.035%,烘炉天数为50~60天。因炼焦炉烘炉时有较大的膨胀,某些与炉体相联接的设备和结构,要在烘炉末期炉体膨胀基本结束后,才最终进行联接、固定和密封。 4调温编辑 这是为了最大限度地发挥炼焦炉的生产能力和最好的热工效率。调温分为三个阶段:刚投产时,炉温有较大波动,调温工作的主要内容是监督全炉燃烧室的温室保持均衡,调整某几个温度过高或过低的燃烧室。当结焦时间逐步缩短到16~18小时,就转入正式的调温阶段。这时以焦饼(炭化室中的整个焦体)沿高向和长向均匀成焦和焦饼中心温度达950~1050℃为依据,调节全炉加热系统的温度和压力,制定合理的加热制度并把它稳定下来。此阶段的调温工作约需半年时间。此后过渡到经常性的调温阶段,根据煤料、加热煤气和大气条件等情况的变化,及时调整供热,使各炭化室的焦饼在规定的结焦时间内沿长向和高向均匀炼成焦炭。炼焦炉的耗热量是评定焦炉热工管理的重要指标。一般用焦炉煤气加热时,每公斤干煤的耗热量约为550千卡;用高炉煤气加热时约为630千卡。 5护炉编辑 炼焦炉烘炉阶段由于硅砖的膨胀是非线性的,上下部位膨胀速度不

焦炉结构

浅谈焦炉结构的发展方向 焦炉又称炼焦炉,煤炼焦的设备。是焦化技术中的关键。煤焦化技术的应用已有200多年的历史,其炉子的结构形式经历了许多变化。 一、焦炉发展史 18世纪中期,开始演变成砖砌的半封闭式长窑炉。1763年开始采用全封闭式圆窑即蜂窝炉。成堆干馏和窑炉干馏共同的特点是内部加热,即炭化和燃烧在一起,靠燃烧一部分煤和干馏煤气直接加热其余的煤而干馏成焦。 19世纪中期,焦炉技术发生转折性变革,从窑炉发展到外部加热的炭化室炼焦阶段,出现倒焰炉。这种焦炉是将成焦的炭化室和加热的燃烧室用墙隔开,在隔墙上部设有通道,炭化室内煤的干馏气经此通道直接流入燃烧室,与来自燃烧室顶部风道的空气混合,自上而下地流动燃烧,这种炉子已经具备了现代焦炉最基本的特征。19世纪70年代,建成了回收化学产品的焦炉,使炼焦走向生产多种产品的重要阶段。此后不久,1883年建成了利用烟气废热的蓄热式焦炉。 20世纪30年代以前,焦炉炭化室容积一般不超过20米3。1927年炭化室高6米、有效容积达30米3的大容积炼焦炉首次在德国建成投产。60年代起许多国家相继建造了大容积炉。目前广泛使用的大型炼焦炉尺寸为:炭化室高6~7.5米,长15~17米,平均宽0.4~0.46米,有效容积达50米3左右。 中国的第一批近代炼焦炉于1919年在鞍山建成投产,以后在石家庄、石景山、本溪、大连和吉林等地相继建成。由于长期战争,大都遭到破坏,1949~1959年,恢复了11座、448孔旧炼焦炉;新建、改建24座、1239孔炼焦炉。1957年起自己独立设计炼焦炉,1965年起开始研究设计大容积炼焦炉。1970年第一座36孔高5.5米,有效容积达35.4米3的大容积炼焦炉投产,生产中各项主要指标均达到较好水平。 二、焦炉结构及优缺点简介 焦炉结构的变化与发展主要是为了更好的解决焦饼高向与长向的加热均匀性,节能降耗、降低投资成本,提高经济效益。为了保证焦炭、煤气的质量和产量,不仅需要有合适的配煤比,而且要有良好的外部条件,而合理的焦炉结构就是用来保证外部条件的手段。为此,需从焦炉结构的各个部位加以分析。 现代焦炉炉体最上部是炉顶,炉顶之下为相间配置的燃烧室和炭化室,炉体下部有蓄热室和连接蓄热室和燃烧室的斜道区,每个蓄热室下部的小烟道通过交换开闭器与烟道连接。烟道设在焦炉基础内或基础两侧,烟道末端通向烟囱。因此焦炉由三室两区组成,即炭化室、燃烧室、蓄热室、斜道区、炉顶区和基础部分。一般,炉体炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。燃烧室在炭化室两侧,由许多立火道构成。蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。 现代化焦炉主要部分用硅砖砌筑,火道温度可达到1400℃。成焦时间因炭化室宽度和火道温度不同,一般为 13~18h。焦炉机械有装煤车、推焦车、导焦车和熄焦车等。由装煤车把煤装入炭化室,炼成的焦炭用推焦车推出,赤热的焦炭经导焦车落入熄焦车内,经水熄或回收热能的干法熄焦。熄过的焦炭放到焦台上。焦炭经过筛选后作为产品外送。为了改善炼焦生产条件,现代焦炉操作除了机械化、自动化之外,还建有防治烟尘和处理污水装置。

焦炉炉体的结构简介

焦炉炉体的结构简介 现代焦炉炉体最上部是炉顶,炉顶之下为相间配置的燃烧室和炭化室,炉体下部有蓄热室和连接蓄热室与燃烧室的斜道区,每个蓄热室下部的小烟道通过交换开闭器与烟道相连。烟道设在焦炉基础内或基础两侧, 烟道末端通向烟囱。燃烧室和炭化室 燃烧室是煤气燃烧的地方,通过与两侧炭化室的隔墙向炭化室的提供热量。装炉煤在炭化室内经高温干馏变成焦炭。燃烧室墙面温度高达1300--1400℃,而炭化室墙面温度约1000--1150℃,装煤和出焦时炭化室墙面温度变化剧烈,且装煤中的盐类对炉墙有腐蚀性。现代焦炉均采用硅砖砌筑炭化室墙。硅砖具有荷重软化点高、导热性能好、抗酸性渣侵蚀能力强、高温热稳定性能好和无残余收缩等优良性能。砌筑炭化室的硅砖采用沟舌结构,以减少荒煤气窜漏和增加砌体强度;所用的砖型有:丁字砖、酒瓶砖和宝塔砖。中国焦炉的炭化室墙多采用丁字砖,20世纪80年代以后则多采用宝塔砖。炭化室墙厚一般为90—100mm,中国多为95—105mm。为防止焦炉炉头砖产生裂缝,有的焦炉的炉头采用高铝砖或粘土砖砌筑,并设置直缝以消除应力,中国焦炉多采用这种结构。 燃烧室分成许多立火道,立火道的形式因焦炉炉型不同而异。立火道由立火道本体和立火道顶部两部分组成。煤气在立火道本体内燃烧。立火道顶是立火道盖顶以上部分。从立火道盖顶砖的下表面到炭化室盖顶砖下表之间的距离,称加热水平高度,它是炉体结构中的一个重要尺寸。如果该尺寸太小,炉顶空间温度就会过高,致使炉顶产生过多的沉积碳;反之,则炉顶空间温度过低,将出现焦饼上部受热不足,因而影响焦炭质量。另外,炉顶空间温度过高或过低,都会对炼焦化学产品质量产生不利影响。炭化室的主要尺寸有长、宽、高、锥度和中心距。焦炉的生产能力随炭化室长度和高度的增加而成比例的增加。捣固焦炉 与顶装炉不同,其锥度较小,只有0—200mm。 蓄热室 为了回收利用焦炉燃烧废气的热量预热贫煤气和空气,在焦炉炉体下部设置蓄热室。现代焦炉蓄热室均为横蓄热室(其中心线与燃烧室中心线平行),以便于单独调节。蓄热室有宽蓄热室和窄蓄热室两种。宽蓄热室是每个炭化室下设一个,窄蓄热墙一般用硅砖砌筑,有些国家用粘土砖或半硅砖代替硅砖砌筑温度较低的蓄热室下部。在蓄热室中放置格子砖,以充分回收废气中的热量。格子砖要反复承受急冷急热的温度变化,故采用粘土质或半硅质材料制造。现代焦炉的格子砖一般采用异型薄壁结构,以增加蓄热面积和提高蓄热效率。蓄热室下部有小烟道,其作用是向蓄热室交替导入冷煤气和空气,或排出废气。小烟道中交替变换的上升气流(被预热的煤气或空气)和下降气流(燃烧室排出的高温废气)温度差别大,为了承受温度的急剧变化,并防止气体对小烟道的腐蚀,需在小烟道内衬以粘土砖。 斜道区 位于燃烧室和蓄热室之间的通道。不同类型焦炉的斜道区结构有很大差异。斜道区布置着数量众多的通道(斜道、水平砖煤气道貌岸然和垂直砖煤气道等),它们彼此距离很近,并且上升气流和下降气流之间压差较大,容易漏气,所以斜道区设计要合理,以保证炉体严密。为了吸收炉组长向生产的膨胀,在斜道区各砖层均留膨胀缝。膨胀缝之间设置滑动缝,以利于膨胀之间的砖层受热自由滑动。斜道区承受焦炉上部的巨大重量,同时处于1100-1300℃的高温区,所以也用硅砖砌筑。 炉顶 位于焦炉炉体的最上部。设有看火孔、装煤孔和从炭化室导出荒煤气用的上升管孔等。炉顶最下层为炭化室盖顶层,一般用硅砖砌筑,以保证整个炭化室膨胀一致,也有用粘土砖砌筑的,这种砖不易断裂,但易

相关文档
最新文档