青岛大学 2013年高数期末高数试卷

合集下载

2013年高考文科数学山东卷试题与答案word解析版

2013年高考文科数学山东卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013山东,文1)复数z =22i i(-)(i 为虚数单位),则|z |=( ).A .25 B.5 D2.(2013山东,文2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且(A ∪B )={4},B ={1,2},则A ∩=( ).A .{3}B .{4}C .{3,4}D .3.(2013山东,文3)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( ). A .2 B .1 C .0 D .-24.(2013山东,文4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如下图所示,则该四棱锥侧面积和体积分别是( ).A.8B.83C.,83D .8,85.(2013山东,文5)函数f (x )的定义域为( ). A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1] 6.(2013山东,文6)执行两次下图所示的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为( ).A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.87.(2013山东,文7)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,bc =( ).A..2 C.18.(2013山东,文8)给定两个命题p ,q .若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.(2013山东,文9)函数y =x cos x +sin x 的图象大致为( ).10.(2013山东,文10)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为( ).A .1169B .367C .36 D.11.(2013山东,文11)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A.16 B.8 C.3 D.312.(2013山东,文12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当zxy取得最小值时,x +2y -z 的最大值为( ).A .0B .98C .2D .94第2卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2013山东,文13)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为__________.14.(2013山东,文14)在平面直角坐标系xOy 中,M 为不等式组2360,20,0x y x y y +-≤⎧⎪+-≥⎨⎪≥⎩所表示的区域上一动点,则|OM |的最小值是__________. 15.(2013山东,文15)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB=(2,2).若∠ABO =90°,则实数t 的值为__________.16.(2013山东,文16)定义“正对数”:ln +x =0,01,ln ,1,x x x <<⎧⎨≥⎩现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ;②若a >0,b >0,则ln +(ab )=ln +a +ln +b ; ③若a >0,b >0,则ln a b ⎛⎫⎪⎝⎭+≥ln +a -ln +b ; ④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2.其中的真命题有__________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.17.(2013山东,文17)(本小题满分12分)某小组共有A ,B ,C ,D ,E 五位同学,他们的身高(单位:米)及体重指标(2(1)从该小组身高低于(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(2013山东,文18)(本小题满分12分)设函数f (x )2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值; (2)求f (x )在区间3ππ,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.19.(2013山东,文19)(本小题满分12分)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点. (1)求证:CE ∥平面PAD ;(2)求证:平面EFG ⊥平面EMN .20.(2013山东,文20)(本小题满分12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式; (2)若数列{b n }满足1212112n n n b b b a a a +++=- ,n ∈N *,求{b n }的前n 项和T n .21.(2013山东,文21)(本小题满分12分)已知函数f (x )=ax 2+bx -ln x (a ,b ∈R ). (1)设a ≥0,求f (x )的单调区间;(2)设a >0,且对任意x >0,f (x )≥f (1).试比较ln a 与-2b 的大小.22.(2013山东,文22)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为2. (1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB E 为线段AB 的中点,射线OE 交椭圆C 于点P .设OP =tOE,求实数t 的值.2013年普通高等学校夏季招生全国统一考试数学文史类(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:C解析:44i 134i43i i iz ---==--,所以|z | 5.故选C. 2. 答案:A解析:∵(A ∪B )={4},∴A ∪B ={1,2,3}. 又∵B ={1,2},∴A 一定含元素3,不含4. 又∵={3,4},∴A ∩={3}.3. 答案:D解析:∵f (x )为奇函数,∴f (-1)=-f (1)=111⎛⎫-+ ⎪⎝⎭=-2.4.答案:B解析:由正(主)视图数据可知正四棱锥的底面是边长为2的正方形,高也是2,如图:由图可知PO =2,OE =1,所以PE所以V =13×4×2=83,S =1422⨯5.答案:A解析:由题可知12030x x ⎧-≥⎨+>⎩⇒213x x ⎧≤⎨>-⎩⇒0,3,x x ≤⎧⎨>-⎩ ∴定义域为(-3,0].6. 答案:C解析:第一次:a =-1.2<0,a =-1.2+1=-0.2,-0.2<0,a =-0.2+1=0.8>0,a =0.8≥1不成立,输出0.8.第二次:a =1.2<0不成立,a =1.2≥1成立,a =1.2-1=0.2≥1不成立,输出0.2. 7. 答案:B解析:由正弦定理sin sin a b A B =得:1sin A =,又∵B =2A ,∴1sin A ==∴cos A A =30°,∴∠B =60°,∠C =90°,∴c 2. 8. 答案:A解析:由题意:q ⇒⌝p ,⌝p q ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A.9.答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 10. 答案:B解析:∵模糊的数为x ,则:90+x +87+94+91+90+90+91=91×7, x =4,所以7个数分别为90,90,91,91,94,94,87,方差为s 2=222229091291912949187917(-)+(-)+(-)+(-)=367.11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p⎛⎫== ⎪⎝⎭,故M 点切线的斜率为0x p =M 1,36p p ⎛⎫⎪ ⎪⎝⎭.由1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得p D. 12.答案:C解析:由x 2-3xy +4y 2-z =0得x 2+4y 2-3xy =z ,22443331z x y xyxy xy xy+=-≥-=-=, 当且仅当x 2=4y 2即x =2y 时,z xy有最小值1,将x =2y 代入原式得z =2y 2,所以x +2y -z =2y +2y -2y 2=-2y 2+4y , 当y =1时有最大值2.故选C.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:解析:如图,当AB 所在直线与AC 垂直时弦BD 最短,AC ==CB =r =2,∴BA =BD =14.解析:由约束条件可画出可行域如图阴影部分所示.由图可知OM 的最小值即为点O 到直线x +y -2=0的距离,即d min=. 15.答案:5解析:∵OA =(-1,t ),OB=(2,2),∴BA =OA-OB =(-3,t -2).又∵∠ABO =90°,∴BA ·OB=0,即(-3,t -2)·(2,2)=0, -6+2t -4=0, ∴t =5. 16.答案:①③④三、解答题:本大题共6小题,共74分. 17.解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A ,B ),(A ,C ),(B ,C ),共3个. 因此选到的2人身高都在1.78以下的概率为P =36=12. (2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C ,D ),(C ,E ),(D ,E ),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P =310. 18.解:(1)f (x )2ωx -sin ωx cos ωx1cos 21sin 222x x ωω--ωx -12sin 2ωx=πsin 23x ω⎛⎫-- ⎪⎝⎭.因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2ππ=424ω⨯.因此ω=1. (2)由(1)知f (x )=πsin 23x ⎛⎫-- ⎪⎝⎭.当π≤x ≤3π2时,5π3≤π8π233x -≤.所以πsin 2123x ⎛⎫-≤-≤ ⎪⎝⎭,因此-1≤f (x .故f (x )在区间3ππ,2⎡⎤⎢⎥⎣⎦,-1.19.(1)证法一:取PA 的中点H ,连接EH ,DH . 因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB . 又AB ∥CD ,CD =12AB , 所以EH ∥CD ,EH =CD .因此四边形DCEH 是平行四边形, 所以CE ∥DH .又DH ⊂平面PAD ,CE 平面PAD , 因此CE ∥平面PAD . 证法二:连接CF .因为F 为AB 的中点, 所以AF =12AB . 又CD =12AB , 所以AF =CD . 又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD .又CF 平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点, 所以EF ∥PA .又EF 平面PAD , 所以EF ∥平面PAD . 因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE ⊂平面CEF , 所以CE ∥平面PAD .(2)证明:因为E ,F 分别为PB ,AB 的中点, 所以EF ∥PA .又AB ⊥PA ,所以AB ⊥EF . 同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥CD .又AB ∥CD ,所以MN ∥AB . 因此MN ⊥平面EFG . 又MN ⊂平面EMN ,所以平面EFG ⊥平面EMN . 20.解:(1)设等差数列{a n }的首项为a 1,公差为d ,由S 4=4S 2,a 2n =2a n +1得:11114684,212211,a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知1212112n n n b b b a a a +++=- ,n ∈N *, 当n =1时,1112b a =;当n ≥2时,111111222n n n n n b a -⎛⎫=---= ⎪⎝⎭.所以12n n n b a =,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =212nn -,n ∈N *. 又T n =23135212222nn -++++ ,231113232122222n n n n n T +--=++++ , 两式相减得2311122221222222n n n n T +-⎛⎫=++++- ⎪⎝⎭ 113121222n n n -+-=--, 所以T n =2332nn +-. 21.解:(1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得f ′(x )=221ax bx x+-.①当a =0时,f ′(x )=1bx x-.若b ≤0,当x >0时,f ′(x )<0恒成立, 所以函数f (x )的单调递减区间是(0,+∞). 若b >0,当0<x <1b时,f ′(x )<0,函数f (x )单调递减. 当x >1b时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的单调递减区间是10,b ⎛⎫ ⎪⎝⎭,单调递增区间是1,b ⎛⎫+∞ ⎪⎝⎭.②当a >0时,令f ′(x )=0,得2ax 2+bx -1=0.由Δ=b 2+8a >0得x 1=4b a -x 2=4b a-.显然,x 1<0,x 2>0.当0<x <x 2时,f ′(x )<0,函数f (x )单调递减; 当x >x 2时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的单调递减区间是⎛ ⎝⎭,单调递增区间是⎫+∞⎪⎪⎝⎭. 综上所述,当a =0,b ≤0时,函数f (x )的单调递减区间是(0,+∞);当a =0,b >0时,函数f (x )的单调递减区间是10,b ⎛⎫ ⎪⎝⎭,单调递增区间是1,b ⎛⎫+∞ ⎪⎝⎭;当a >0时,函数f (x )的单调递减区间是⎛ ⎝⎭,单调递增区间是⎫+∞⎪⎪⎝⎭. (2)由题意,函数f (x )在x =1处取得最小值,由(1)是f (x )的唯一极小值点,故4b a-=1,整理得2a +b =1,即b =1-2a . 令g (x )=2-4x +ln x ,则g ′(x )=14xx-, 令g ′(x )=0,得x =14.当0<x <14时,g ′(x )>0,g (x )单调递增;当x >14时,g ′(x )<0,g (x )单调递减.因此g (x )≤14g ⎛⎫⎪⎝⎭=1+1ln 4=1-ln 4<0,故g (a )<0,即2-4a +ln a =2b +ln a <0,即ln a <-2b . 22解:(1)设椭圆C 的方程为2222=1x y a b+(a >b >0),由题意知222,222,a b c ca b ⎧=+⎪⎪=⎨⎪=⎪⎩解得a b =1.因此椭圆C 的方程为22x +y 2=1.(2)当A ,B 两点关于x 轴对称时, 设直线AB 的方程为x =m ,由题意m <0或0<m将x =m 代入椭圆方程22x +y 2=1,得|y |所以S △AOB =|m =. 解得m 2=32或m 2=12.① 又OP =tOE =()12t OA OB + =12t (2m,0)=(mt,0), 因为P 为椭圆C 上一点,所以22mt ()=1.② 由①②得t 2=4或t 2=43.又因为t >0,所以t =2或t =3. 当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =kx +h . 将其代入椭圆的方程22x +y 2=1, 得(1+2k 2)x 2+4khx +2h 2-2=0,设A (x 1,y 1),B (x 2,y 2),由判别式Δ>0可得1+2k 2>h 2, 此时x 1+x 2=2412kh k -+,x 1x 2=222212h k -+, y 1+y 2=k (x 1+x 2)+2h =2212h k +,所以|AB |=因为点O 到直线AB 的距离d, 所以S △AOB =1|AB |d又S △AOB||h =③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0,解得n =4h 2或n =243h , 即1+2k 2=4h 2或1+2k 2=243h .④ 又OP =tOE =()12t OA OB + =12t (x 1+x 2,y 1+y 2)=222,1212kht ht k k ⎛⎫- ⎪++⎝⎭, 因为P 为椭圆C 上一点, 所以2222212121212kh h t k k ⎡⎤⎛⎫⎛⎫-+=⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎢⎥⎣⎦,即222112h t k =+.⑤将④代入⑤得t 2=4或t 2=43,又知t >0,故t =2或t .经检验,适合题意.综上所得t =2或t =3.。

2013年山东高考文科数学试题及答案word详解版

2013年山东高考文科数学试题及答案word详解版

2013年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上. 3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件B A ,互斥,那么)()()(B P A P B A P +=+第I 卷(共60分)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数)()2(2为虚数单位i ii z -=,则=||z (A)25 (B) 41 (C)6 (D) 5(2)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =,{1,2}B =,则UAB =(A){3} (B){4} (C){3,4} (D)∅(3)已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f(A)2 (B)1 (C)0 (D)-2(4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图 所示,该四棱锥侧面积和体积分别是 (A)45,8 (B) 845,3 (C) 84(51),3+ (D) 8,8 (5)函数()123xf x x =-++的定义域为 (A)(-3,0] (B) (-3,1](C) (,3)(3,0]-∞-- (D) (,3)(3,1]-∞--(6)执行右边的程序框图,若第一次输入的a 的值为-1.2, 第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为(A) 0.2,0.2 (B) 0.2,0.8 (C) 0.8,0.2 (D) 0.8,0.8 (7)ABC ∆的内角A B 、的对边分别是a b c 、、, 若2B A =,1a =,3b =,则c =(A) 23 (B) 2 (C)2 (D)1(8)给定两个命题q p ,,p q ⌝是的的必要而不充分条件,则p q ⌝是的的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件(9)函数x x x y sin cos +=的图象大致为(10)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为(A)1169 (B)367(C)36 (D) 67(11)抛物线)0(21:21>=p x p y C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =(A)163 (B)83 (C)332 (D) 334 (12)设正实数z y x ,,满足04322=-+-z y xy x ,则当z xy取得最大值时,2x y z +-的最大值为(A)0 (B)98 (C)2 (D)94第II 卷(共90分)二.填空题:本大题共4小题,每小题4分,共16分(13)过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________.(14)在平面直角坐标系xOy 中,M 为不等式组2360200x y x y y +-≤⎧⎪+-≥⎨⎪≥⎩所表示的区域上一动点,则OM 的最小值是_______.(15)在平面直角坐标系xOy 中,已知(1,)OA t =-,(2,2)OB =,若90oABO ∠=,则实数t 的值为______.(16)定义“正对数”:0(01)ln ln (1)x x x x +<<⎧=⎨≥⎩,,,现有四个命题:①若0,0>>b a ,则a b a b++=ln )(ln ; ②若0,0>>b a ,则b a ab ++++=ln ln )(ln③若0,0>>b a ,则b a b a +++-=ln ln )(ln④若0,0>>b a ,则2ln ln ln )(ln ++≤++++b a b a其中的真命题有____________(写出所有真命题的编号).8 7 79 4 0 1 0 9 1x三.解答题:本大题共6小题,共74分, (17)(本小题满分12分) 某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) A B C D E身高 1.69 1.73 1.75 1.79 1.82 体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率(18)(本小题满分12分)设函数23()3sin cos (0)2f x x x x ωωωω=-->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π, (Ⅰ)求ω的值 (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值 (19)(本小题满分12分)如图,四棱锥P ABCD -中,,AB AC AB PA ⊥⊥,,2AB CD AB CD =∥,,,,,E F G M N 分别为 ,,,,PB AB BC PD PC 的中点 (Ⅰ)求证:CE PAD ∥平面(Ⅱ)求证:EFG EMN ⊥平面平面(20)(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a(Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T (21)(本小题满分12分)已知函数2()ln (,)f x ax bx x a b R =+-∈ (Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥.试比较ln a 与2b -的大小 (22)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22(I )求椭圆C 的方程(II )A,B 为椭圆C 上满足AOB ∆的面积为64E 为线段AB 的中点,射线OE 交椭圆C 与点P ,设OP tOE =,求实数t 的值.2013年普通高等学校招生全国统一考试(山东卷)文科数学试题参考答案一、 选择题(1)C (2)A (3)D (4)B (5)A (6)C (7)B (8)A (9)D (10)B (11)D (12)C(1) 解析:(法一)由2(2)i z i -=得34(34)34431i i i i z i i i i --⋅+====--⋅-,∴ 22(4)(3)5z =-+-=.答案:C .(法二)由2(2)i z i -=得22222(2)(2)22(1)5i i z i i i--===-=+-=.(2) 解析:∵{}1,2,3,4U =,{}()4U C A B =,∴ {}1,2,3A B =,又∵{}1,2B =,∴ 3A ∈,且{}3,4U C B =,∴{}3U A C B =.答案:A .(3) 解析:∵ 当0x >时,21()f x x x =+,∴ 21(1)121f =+=,又∵()f x 为奇函数,∴ (1)(1)2f f -=-=-.答案:D.(4) 解析:由其正(主)视图可知2AB BC OP ===,在t R POE ∆中,侧面的高为22215PE =+=,∴该四棱的侧面积侧1425452S =⨯⨯⨯=;体积为锥2182233V =⨯⨯=.答案:B . (5) 解析:要使函数1()123x f x x =-++有意义,只须12030x x ⎧-≥⎨+>⎩,解得30x -<≤,.答案:A . (6)解析:∵ 第一次输入的 1.20a =-<, 1.210.20a =-+=-<,0.210.80a =-+=>,∴ 第一次输出的a 值为0.8;∵第二次输入的 1.21a =>, 1.210.21a =-=<,∴ 第二次输出的a 值为0.2.答案:C .(7) 解析:在ABC ∆中,∵ 2B A =,1a =,3b =,由正弦定理sin sin a bA B=得13sin sin 2A A =,∴ 3cos 2A =,∵02A π<<,∴6A π=,263B ππ=⨯=,∴ 2C π=,∴在t R ABC ∆中,22(3)12c =+=.答案:B .(8)解析:∵p ⌝是q 的必要而不充分条件,∴且p q p ⌝⌝⇐q ,等价于且q p q⌝⌝⇐p ,∴p 是q ⌝的充分而不必要条件.答案:A .(9)解析:∵ 函数cos sin y x x x =+为奇函数,∴答案B 不正确;∵ 06x π<<时,0y>,∴答案C 不正确;∵ x π=时,0y <,∴答案A 不正确.答案:D . (10)解析:∵ 7个剩余分数的平均分为91, ∴1(87949090919190)917x +++++++=,解得4x =,∴ 7个剩余分数的方差为221(8791)7s ⎡=-+⎣22(9491)(9091)-+-+ 22(9091)(9191)-+-+22(9191)(9491)⎤-+-⎦367=.答案:B .11. 解:抛物线211:(0)2C y x p p =>的焦点为(0,)2pF ,双曲线222:13x C y -=的右焦点为2(2,0)F ,∴ 直线2FF 的方程为122x yp+=,即420px y p +-=.由22420x py px y p ⎧=⎨+-=⎩消y 得222220x p x p +-=,解得1,2x =,∵ 0x >,∴x =.又∵ 1y x p '=,∴1C 在点M处的切线斜率为1k p ==,∵双曲线222:13x C y -=的渐近线为y x =±,∴3=,解得3p =.答案:D . 12. 解:∵正实数x ,y ,z 满足22340x xy y z -+-=,∴223443z x xy y xy xy xy =-+≥-=,∴1z xy≥.当z xy 取得最小值时,xy z =且2x y =,∴ 22z y =,∵0y >,∴22222x y z y y y +-=+-22(1)22y =--+≤,所以2x y z +-的最大值为2.答案:C .二、 填空题(13)(15)5 (16)①③④(13) 解析:圆22(2)(2)4x y -+-=的圆心(2,2)C ,半径为2r=,当点(),31P 为弦的中点时,其弦最短,∴最短弦的长为=.答案:.(14) 解析:画出不等式组2360200x y x y y +-≤⎧⎪+-≥⎨⎪≥⎩所表示的区域如图,当M 点位于AB 的中点N 时,OM的值最小,最小值是2222⨯=.答案:2.(15) 解析:∵ ,(1)OA t =-,,(22)OB =,∴(2,2)AB OB OA =-= (1,)(3,2)t t --=-,又∵90ABO ∠=,∴AB OB ⊥,∴232(2)0AB OB t ⋅=⨯+⨯-=,解得5t =.答案:5.(16)解析:定义“正对数”:001ln ln 1x x x x +<<⎧=⎨≥⎩,对① 若0a >,0b >,则ln ()ln ba b a ++=;当01a <<,0b >时,01b a <<,左边=ln ()0ba +=,右边=ln 00b a b +=⨯=,命题成立;当1a ≥,0b >时,1b a ≥,左边=ln ()ln()ln bba ab a +==,右边=ln ln b a b a +=,命题成立;所以①正确.对② 若0a >,0b >,则ln ()ln ln ab a b +++=+; 当2a =,13b =时,2013ab <=<,左边=ln ()0ab +=,右边=ln200+>,所以命题②不正确.对③ 若0a >,0b >,则ln ()ln ln a a b b+++≥-;当1a b ≥≥时,1a b ≥,左边=ln ()ln ln ln a aa b b b+==-,右边=ln ln a b -,命题成立; 当1b a ≥≥时,01a b <≤,左边=ln ()0ab +=,右边=ln ln 0a b -≤,命题成立;当10a b >>>时,1a b >,左边=ln ()ln ln ln ln a aa b a b b+==->,右边=ln 0ln a a -=,命题成立;当10b a >>>时,01a b <<,左边=ln ()0ab +=,右边=0ln 0b -<,命题成立; 当01b a <<<时,1a b >,左边=ln ()ln 0a ab b+=>,右边=000-=,命题成立;当01a b <<<时,01a b <<,左边=ln ()0ab+=,右边=000-=,命题成立;所以③正确.对④ 若0a >,0b >,则ln ()ln ln ln 2a b a b ++++≤++. 当1a ≥,1b ≥时,2a b +≥,左边=ln ()ln()a b a b ++=+,右边=ln ln ln 2ln ln ln 2ln(2)ln()ln()a b a b ab ab ab a b ++++=++==+≥+,命题成立;当1a ≥,01b <<时,1a b +>,左边=ln ()ln()a b a b ++=+,右边=ln ln ln 2ln 0ln 2ln(2)ln()a b a a a b ++++=++=>+,命题成立;当1b ≥,01a <<时,1a b +>,左边=ln ()ln()a b a b ++=+,右边=ln ln ln 20ln ln 2ln(2)ln()a b b b a b ++++=++=>+,命题成立;当01a <<,01b <<时,2a b +<,左边=0或左边=ln ()ln()a b a b ++=+ln2<,右边=ln ln ln 200ln 2ln 2a b ++++=++=,命题成立; 所以④正确.故答案:① ③ ④三、 解答题(17) 解:(I )从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(B ,C),(B ,D),(C ,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有(A ,B),(A ,C),(B ,C),共3个.因此选到的2人身高都在1.78以下的概率为31P==62. (II )从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(A ,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个. 由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的. 选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有: (C,D),(C,E),(D,E),共3个. 因此 选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为13P =10. (18)解:(I )2()sin cos 2f x x x x ωωω=--1sin 222x ω=--1cos2sin 222x x ωω=- sin(2)3x πω=--.因为图象的一个对称中心到最近的对称轴距离为4π, 又0ω>,所以2424ππω=⨯, 因此1ω=(II )由(I )知()sin(2)3f x x πω=--.当32x ππ≤≤时,582333x πππ≤-≤所以sin(2)13x πω≤--≤因此1()f x -≤≤.故()f x 在区间3[,]2ππ上的最大值和最小值分别为3,12-. (19)(I )证法一:取PA 的中点H ,连接EH ,DH . 因为 E 为PB 的中点,所以 E H ∥AB ,12EH AB =. 又因为 A B ∥CD,12CD AB =所以 E H ∥CD ,E H =CD ,因此 四边形DCEH 是平行四边形. 所以 C E ∥DH .又 ,DH PAD CE PAD ⊂⊄平面平面, 因此 CE ∥平面PAD . 证法二: 连接CF .因为 F 为AB 的中点,所以 12AF AB =. 又 12CD AB =,所以 AF CD =.又 AF ∥CD ,所以 四边形AFCD 为平行四边形. 因此 CF ∥AD ,又 CF PAD ⊄平面, 所以 CF ∥平面PAD .因为 E ,F 分别为PB ,AB 的中点, 所以 EF ∥PA .又 EF PAD ⊄平面, 所以 EF ∥平面PAD . 因为 CF EF F =, 故 平面CEF ∥平面PAD . 又 CE CEF ⊂平面, 所以 CE ∥平面PAD . (II )证明:因为 E ,F 分别为PB ,AB 的中点, 所以 EF ∥PA . 又 AB ⊥PA , 所以 AB ⊥EF . 同理可证 AB ⊥FG .又 ,,EF FG F EF EFG FG EFG =⊂⊂平面平面, 因此 AB ⊥平面EFG .又 M ,N 分别为PD ,PC 的中点, 所以 MN ∥CD . 又 AB ∥CD , 所以 MN ∥AB .因此 MN ⊥平面EFG .又 MN EMN ⊂平面, 所以 平面EFG ⊥平面EMN . (20) 解:(I )设等差数列{}n a 的首项为1a ,公差为d . 由424S S =,221n n a a =+得 11114684(21)2(21)1a d a da n d a n d +=+⎧⎨+-=+-+⎩.解得 11,2a d ==.因此 *21,n a n n N =-∈.(II )由已知*121211,2n n n b b b n N a a a ++⋅⋅⋅+=-∈, 当1n =时, 1112b a =;当2n ≥时,11111(1)222n n n n n b a -=---=.所以 12n n n b a =,*n N ∈.由(I )知 *21,n a n n N =-∈,所以 *21,2n nn b n N -=∈. 又23135212222n nn T -=+++⋅⋅⋅+, 又231113232122222n n n n n T +--=++⋅⋅⋅++两式相减得2311122221()222222n n n n T +-=+++⋅⋅⋅+- 113121222n n n -+-=--,所以 2332n nn T +=-.(21)解:(I )由2()ln ,(0,)f x ax bx x x =+-∈+∞,得2'21()ax bx f x x+-=.(1)当0a =时, '1()bx f x x -=(i)若0b ≤,当0x >时, '()0f x <恒成立, 所以 函数()f x 的单调递减区间是(0,)+∞.(ii)若0b >,当10x b<<时,'()0f x <,函数()f x 单调递减,当1x b>时,'()0f x >,函数()f x 单调递增. 所以 函数()f x 的单调递减区间是1(0,)b ,单调递增区间是1(,)b+∞.(2)当0a >时,令'()0f x =,得2210ax bx +-=. 由280b a ∆=+>得12x x ==.显然,120,0x x <>.当10x x <<时,'()0f x <,函数()f x 单调递减;当2x x >时,'()0f x >,函数()f x 单调递增.所以函数()f x 单调递减是(0,)4b a -+,单调增区间为)+∞. (Ⅱ)由题意,函数()f x 在1x =处取得最小值,由(Ⅰ)知4b a -+是()f x的唯一极小值点,故14b a-+=, 整理得21a b +=,即12b a =-。

青岛大学高数试题

青岛大学高数试题

2006级高等数学(下)试题(2007.7.17)一、填空题(每题4分)1.设z y x xy z y x z y x f 62332),,(222--++++=,则在点)1,1,1(处=∂∂+∂∂+∂∂zfy f x f ___ 2.),(y x z z =由方程1)sin(3)tan(2=+zx e xy xy所确定,则=y z .3.设1||,2|:|≤≤y x D ,则=+⎰⎰D d yσ211. 4.xx x f ---=2111)(的麦克劳林级数的收敛区间是 . 5.周期为2的函数)(x f ,它在一个周期内的表达式为x x f =)(,11<≤-x ,设它的傅立叶级数的和函数为)(x s ,则)23(s = . 二、选择题(每题4分)1. 设AEB 是由)0,1(-A 沿上半圆21x y -=,经点)1,0(E 到点)0,1(B ,则曲线积分⎰=AEBdy y x I 22=( ).(A )0 (B )⎰AEdy y x 222(C )⎰EB dy y x 222(D )⎰BEdy y x 2222.L 是)0(222>=+a a y x 负向一周, 则曲线积分dy y xy dx y x xL⎰-+-)()(3223=( )(A )24a π-(B )4a π-(C )4a π (D )332a π 3.正项级数∑∞=1n n a 收敛是级数∑∞=12n n a 收敛的( )(A )充分条件,但非必要条件. (B )必要条件,但非充分条件.(C )充分必要条件. (D )既非充分条件,又非必要条件. 4.对正项级数∑∞=1n n a ,则1lim1<=+∞→q a a nn n 是此正项级数收敛的( )(A )充分条件,但非必要条件. (B )必要条件,但非充分条件.(C )充分必要条件. (D )既非充分条件,又非必要条件.5.函数x c y -= (其中c 是任意常数)是微分方程122=-dxdydx y d x的( )(A )通解. (B )特解. (C )是解,但既不是通解,又不是特解. (D )不是解.三、(10分) 过球面9)4()1()3(222=++++-z y x 上一点)2,0,1(-p ,求球面的切平面方程. 四、(10分) 由22y x z +=,)0(>=+a a y x ,0=x ,0=y ,0=z 所围成的质量均匀的物体,其密度为常量μ,求此物体的质量. 五、(10分) 计算⎰⎰∑+-dS z y x )523(,其中∑是球面4222=++z y x 上满足1≥z 的部分. 六、(10分) 用拉格朗日乘数法求函数32z xy u =在a z y x =++32 0(>x ,0>y ,0>z ,)0>a 条件下的极大值或极小值.七、(10分) 求微分方程xey y y 2423-=+'+''的通解.八、(10分) 设)(x f 在],[b a 上连续,证明不等式:2)(⎥⎦⎤⎢⎣⎡⎰b a dx x f ⎰-≤b a dx x f a b )()(2. 2007级高等数学(下)试题(2008.7.10)一、填空题(每题4分)1.若向量c b a ,,两两都成60角,且6||,2||,4||===c b a ,则_____||=++c b a2.曲线⎩⎨⎧=++=12222x y x z 在点)7,2,1(处的切线对y 轴的斜率为_______3.:13,02D x y -≤≤≤≤,则______12=+⎰⎰Dd y x σ 4.设物体由曲面226y x z --=与)(222y x z +=所围成,其上任一点处的密度为)(222z y x f ++,则该物体对z 轴的转动惯量在柱坐标下的累次积分为___________。

青大13秋高数试题(1)

青大13秋高数试题(1)

2013-2014学年 秋季学期期末一、 填空题(每题4分)1. 设⎩⎨⎧≤->=0202)(x x x f ,x e x g =)(,则=)]([x g f ______.2 2. =⎪⎭⎫ ⎝⎛+++∞→11232lim x x x x _______. e3.设11arctan-+=x x y ,则='y ________.211x +- 4. 不定积分=⎰dx xx 3cos sin ___________.C x +tan 21 5. =+⎰dt t dx d x 2021 ____.2412x + 二、选择题(每题4分) 1.⎪⎪⎩⎪⎪⎨⎧+=为偶为奇n nn n n x n 11是则}{n x ( )D A .时的无穷大量当∞→n. B. 时的无穷小量当∞→n . C. 有界变量. D.无界变量. 2.2211x xe e y ---+=曲线( )BA.只有水平渐近线B.既有水平又有铅直渐近线C.只有铅直渐近线D. 既无水平又无铅直渐近线3. 设0)(>''x f 可导,则( ) CA. )0()1()0()1(f f f f '>'>-B. )0()1()0()1(f f f f '>->'C. )0()0()1()1(f f f f '>->'D. )0()1()0()1(f f f f ->'>'4.1)(10=-⎰dx x a x 则=a ( )A A. 38 B. 34 C. 31 D. 32 5.设⎰=20sin )(x tdt x f ,则x x f x 是时,)(0→的( )阶无穷小 B A. 2 B. 3 C. 4 D. 5三、计算题(每题7分)1. 设⎪⎩⎪⎨⎧<≥+=01cos 0)(2x x x x x a x f ,试确定常数a 的值,使)(x f 在),(+∞-∞内连续. 0=a2. 求⎩⎨⎧==-t t ey e x 2在0=t 相应的点处的切线方程和法线方程. )2(21),2(211-=---=-x y x y 四、计算题(每题7分) 1. )].11ln([lim 2x x x x +-+∞→ 212. 确定)1ln(2x x y ++=的单调区间. ),(+∞-∞五、(每题8分)1.求dx x )1ln(2⎰+. C x x x x ++-+arctan 22)1ln(22.求⎰+e xx dx 1ln 1. 222- 六、应用题(8分)求由曲线x y sin =和)0(,cos π≤≤=x x y 与直线π==x x ,0所围图形的面积. 2七、证明题(8分)设)(x f 在区间),0[+∞上有连续导数,且.0)0(,0)(<>≥'f k x f 试证),0()(+∞在x f 内有且仅有一个零点.(拉格朗日中值定理,零点定理,单调性)。

2013级高数下期末试卷

2013级高数下期末试卷

2013-2014学年第二学期《高等数学》期末试卷一、填空题(每小题3分,共24分)1. 设()2,1,13-=a ,()3,1,2-=b ,则()()=-⨯- b a b a 5834 。

2. xOy 平面上曲线9422=-y x 绕y 轴旋转一周所得旋转曲面方程为 。

3. 函数y x z =在点()2,1沿)1,1(=a 方向的方向导数是 。

4. 交换积分次序()=⎰⎰dx y x f dy ee y ,10 。

5. 设C 为222a y x =+在第一象限内的部分,则=⎰+ds e C y x 22 。

6. 设∑为2222a z y x =++,则()=++⎰⎰∑dS z y x 222 。

7. 级数∑∞=+112n nn α收敛的充要条件是α满足不等式 。

8. 若方程0=+'+''qy y p y (q p ,均为实常数)有特解x e y =1,x e y -=2,则p 等于 ,q 等于 。

二、计算题(每小题8分,共32分)1. 求过直线223221-=-+=-z y x ,且垂直于平面052=--+z y x 的平面方程。

2. 设()y x f ,具有连续的一阶偏导数,()11,1=f ,()a f =1,11,()b f =1,12,又()()[]{} x x f x f x f x ,,,=ϕ,求()1ϕ,()1ϕ'。

3. 计算二重积分()dxdy y x D 22⎰⎰+,其中D :x y x 222≥+,x y x 422≤+ 。

4. 试将函数()256512xx x x f ---=展开成x 的幂级数。

三、综合题(每小题11分,共44分)1. 沿厂房的后墙修建一座容积为V 形状为长方体的仓库,已知仓库的屋顶和墙壁每单位面积的造价分别为地面每单位面积造价的2倍和1.5倍,厂房后墙的长和高足够,因而这一面墙壁的造价不计,问如何设计,方能使仓库的造价最低?2. 计算曲面积分()dxdy z ydzdx xdydz I ⎰⎰∑+++=1,其中∑是曲面221y x z --=在0≥z 部分的下侧。

青岛科技大学2012-2013-1高数B1 A卷

青岛科技大学2012-2013-1高数B1 A卷

2012-20131 高等数学B1 (A 卷)数理学院 全校相关专业 (答案写在答题纸上,写在试题纸上无效)一、填空题(每小题3分,共15分) 1.1sin 0lim(12)x x x →+= ;2. 设2()2ln f x x x =+,则(1)f ''= ;3.设函数()y y x =由x y xy e +=确定,则=dy ;4.若已知2()x f x dx e C =+⎰,则(ln )f x dx x=⎰ ; 5.微分方程20y y y '''++=的通解是 .二、选择题(每小题3分,共15分)1.当0x +→时,与x 等价的无穷小量是 ; )A 2sin x )B 3(1)x x + )C )D 2.由原点(0,0)向曲线ln y x =作切线,则切线方程为 ;)A x y e= )B y x = )C 2y x = )D y ex = 3.221+x dx x =⎰ ; )A arcsin x x C -+ )B arctan x x C ++)C arcsin x C + )D arctan x x C -+4.函数20()x f x =⎰在0x =处 ;)A 没有极值 )B 取极大值0 )C 取极小值0 )D 取极小值15.方程2691y y y x '''-+=-的一个特解具有形式 .课程考试试题学期 学年 拟题学院(系): 适 用 专 业:)A )96(2+-x x a )B c bx ax ++2C ))(2c bx ax x ++ )D )(22c bx ax x ++ 三、计算题(每小题7分,共21分)1.求极限20sin cos lim ln(1)x x x x x x →-+; 2.设函数2,1(),1x b x f x ax x +<⎧=⎨≥⎩在1x =处可导,求,a b 的值,并求)(x f ';3. 求由参数方程22ln(1)arctan x t y t t⎧=+⎨=+⎩所确定函数()y y x =的一阶及二阶导函数. 四、计算题(每小题7分,共21分)1.计算不定积分x;2.计算定积分 91⎰ 3. 求方程ln 2ln xy x y x '+=的通解.五、计算题(10分) 列表求函数32693y x x x =-+-的单调区间、极值、凹凸区间及拐点.六、应用题(8分)从点(0,3)向抛物线22y x =-作两条切线,设切线和抛物线22y x =-所围平面图形为D ,试求:1.两条切线的方程;2.平面图形D 的面积;3.平面图形D 绕x 轴旋转一周所形成的旋转体的体积.七、证明题(每小题5分,共10分)1.证明:当1x >时,(1)ln 2(1)x x x +>-;2.设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0f =,(1)1f =,试证明:(1)在(0,1)内至少存在一点ξ,使得()1f ξξ=-;(2)在(,1)ξ内至少存在一点η,使得()1f ξηξ'=-.。

2013-2014第一学年期末考试高数C参考答案

2013-2014第一学年期末考试高数C参考答案

2013—2014学年第一学期高等数学期末考试试题参考答案一、 选择题(每小题4分,共20分)D B D C A二、 填空题(每小题4分,共20分)1.(0,2)2. cos sin x dy xe dx =-3. (1)x e x C --++4.15.0 三、 计算题(每小题5分,共20分) 1. 31lim (2cos )1x x x x →∞++-解:由于2333111lim lim 0111x x x x x x x →∞→∞++==--或者3211lim lim 013x x x x x →∞→∞+==-―――(2分) 2cos x +为x →∞时的有界量,――――――――――――――(4分)所以原式极限为0. ―――――――――――――――――――(5分) 2.设0x >时,可导函数()f x 满足:13()2()f x f x x+=,求'()f x (0)x > 令1t x =,则原式变为:1()2()3f f t t t +=――――――――――――――――――――――(2分) 连立得13()2(),1()2()3f x f x x f f x x x⎧+=⎪⎪⎨⎪+=⎪⎩解得1()2f x x x =-―――――――――(4分) 所以21()2f x x '=+. ――――――――――――――――――――(5分) 3.设2cos xy e x =,求y '' 解:21(cos sin )2x y e x x '=-―――――――――――――――――(3分)23[cos sin ]4x y e x x ''=-+―――――――――――――――――――(5分)4.x 011lim()1x x e →-- 解:原式=x 01lim (1)x x e x x e →---――――――――――――――――――(1分) =01lim (1)1x x x e e x →-+-―――――――――――――――――(3分) =01lim 2x x →+=12――――――――――――――――――(5分) 四.计算题(每小题5分,共20分) 1.2arctan 1x x dx x ++⎰解:原式=22arctan 11x x dx dx x x +++⎰⎰――――――――――――――(1分) =2211(1)arctan arctan 21d x xd x x+++⎰⎰―――――――――――――(3分) =221[ln(1)(arctan )]2x x +++C ―――――――――――――――――(5分) 2.2156dx x x -+⎰ 解:原式=11()32dx x x ---⎰―――――――――――――――――(3分) =3ln2x C x -+-―――――――――――――――――――(5分) 3.3cos()3x dx πππ+⎰解:法一:原式=3cos()()33x d x ππππ++⎰―――――――――――(2分)=3sin()3x πππ+――――――――――――――――――(4分)=(5分)法二:原式=3cos()()33x d x ππππ++⎰――――――――――――――――(2分) 43323cos x tdt πππ+==⎰t=换元―――――――――――――――――――(4分)4323sin tππ=-=――――――――――――――――――(5分) 4.120arcsin xdx ⎰解:原式=1212001arcsin 2x x +⎰―――――――――――――(2分)=12π――――――――――――――――――(4分)=122π+――――――――――――――――――――(5分) 五.求由抛物线21y x =+与直线1y x =+所围成的面积.解:如图所示――――――――――――――――――――――(2分) 联立方程,解出交点:(0,1)(1,2)――――――――(6分) 积分:1122300111()()236x x dx x x -=-=⎰―――――――――――(10分) 六.某服装有限公司确定,为卖出x 套服装,其单价为1500.5p x =-.同时还确定,生产x 套服装的总成本为:2()40000.25C x x =+.(10分)(1)写出边际成本'()C x 的表达式;(2)求总利润()L x 以及边际利润'()L x ;(3)服装产量x 为多少时,利润达到最大,最大利润是多少?解:1.()0.5C x x '=――――――――――――――――――――(2分) 2.2()()()0.751504000L x R x C x x x =-=-+-―――――――(4分) () 1.5150L x x '=-+――――――――――――――――――――(6分)3.令()0L x '=得到唯一驻点100x =,由题设可知此唯一驻点即使总利润最大时的服装产量,则(100)3500L =――――――――――――――――(10分)。

2012-2013学年高数I期末考试题A卷参考答案

2012-2013学年高数I期末考试题A卷参考答案

5. 若 Pn ( x ) = a 0 + a1 x + a 2 x 2 + " + a n x n 为 f ( x ) = (A) 1; (B)
1 的 n 阶泰勒多项式, 则 a n =( 1+ x 1 ; n
(D)
B
) 。
( − 1) n ;
(C)
( − 1) n 。 n
三、按照要求完成下列各问题(本题共 6 小题,每小题 5 分,满分 30 分) 1.求极限 lim
(
dy dx 对 t 求导 1 分, 除以 1 分) dx dt
(整理结果总体给 1 分, 结果错一个或两个均扣 1 分) 3.若 x = y 确定 y 为 x 的函数,求
y x
dy . dx
(取对数 1 分)
解:
两边取对数得:
y ln x = x ln y
两边分别关于 x 求导数得:
dy y x dy ln x + = ln y + y dx dx x
0 0
π
理科 A 卷
第 3 页 (共 6 页)
四、按照要求求解下列微分方程 (本题共 2 小题,每小题 6 分,满分 12 分) 1. 求解初值问题 y ′ + 2 x y = 4 x , 解: P ( x) = 2 x , Q( x) = 4 x
− (2 x )dx − (2 x )dx − x2 − x2 x2 − x2 2 ∫ (2 x )dx y = Ce ∫ +e ∫ ∫ 4 xe dx = Ce + 2e ∫ e dx = Ce + 2
符合上述一般形式, 可以正确表示此特解的均为正确答案)
二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.在每小题所给出的四个选项中,只有 一个选项符合题目要求) 1. x = 0 是函数 f ( x ) = x co s (A) 可去间断点;

2013年山东省高考文科数学真题及答案

2013年山东省高考文科数学真题及答案

2013年山东省高考文科数学真题及答案2013年山东省高考数学试卷(文科)一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|()A.25 B.C.5 D.(A∪B)={4},B={1,2},2.(5分)已知集合A、B全集U={1、2、3、4},且∁U则A∩∁B=()UA.{3} B.{4} C.{3,4} D.∅3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣24.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,85.(5分)函数f(x)=的定义域为()A.(﹣3,0] B.(﹣3,1] C.(﹣∞,﹣3)∪(﹣3,0) D.(﹣∞,﹣3)∪(﹣3,1)6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()认,在图中以x表示:则7个剩余分数的方差为()A.B.C.36 D.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A. B. C.D.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0 B.C.2 D.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f (x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.20.(12分)设等差数列{an }的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn }满足=1﹣,n∈N*,求{bn}的前n项和Tn.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()A.25 B.C.5 D.【分析】化简复数z,然后求出复数的模即可.【解答】解:因为复数z==,所以|z|==.故选C.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A.{3} B.{4} C.{3,4} D.∅【分析】通过已知条件求出A∪B,∁U B,然后求出A∩∁UB即可.【解答】解:因为全集U={1.2.3.4.},且∁U(A∪B)={4},所以A∪B={1,2,3},B={1,2},所以∁UB={3,4},所以A={3}或{1,3}或{3,2}或{1,2,3}.所以A∩∁UB={3}.故选A.3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【分析】由条件利用函数的奇偶性和单调性的性质可得 f(﹣1)=﹣f(1),运算求得结果.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f (﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选D.4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,8【分析】由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求.【解答】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选B.5.(5分)(2013•山东)函数f(x)=的定义域为()A.(﹣3,0] B.(﹣3,1] C.(﹣∞,﹣3)∪(﹣3,0) D.(﹣∞,﹣3)∪(﹣3,1)【分析】由函数解析式可得 1﹣2x≥0 且x+3>0,由此求得函数的定义域.【解答】解:由函数f(x)=可得 1﹣2x≥0 且x+3>0,解得﹣3<x≤0,故函数f(x)=的定义域为 {x|﹣3<x≤0},故选A.6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.8【分析】计算循环中a的值,当a≥1时不满足判断框的条件,退出循环,输出结果即可.【解答】解:若第一次输入的a的值为﹣1.2,满足上面一个判断框条件a<0,第1次循环,a=﹣1.2+1=﹣0.2,第2次判断后循环,a=﹣0.2+1=0.8,第3次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环,不满足下面一个判断框条件a≥1,退出循环,输出a=0.8;第二次输入的a的值为1.2,不满足上面一个判断框条件a<0,退出上面的循环,进入下面的循环,满足下面一个判断框条件a≥1,第1次循环,a=1.2﹣1=0.2,第2次判断后不满足下面一个判断框的条件退出下面的循环,输出a=0.2;故选C.7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.1【分析】利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.【解答】解:∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2.故选B8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选A.9.(5分)(2013•山东)函数y=xcosx+sinx的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A.B.C.36 D.【分析】根据题意,去掉两个数据后,得到要用的7个数据,先根据这组数据的平均数,求出x,再用方差的个数代入数据和平均数,做出这组数据的方差.【解答】解:∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x.∴这组数据的平均数是=91,∴x=4.∴这这组数据的方差是(16+1+1+0+0+9+9)=.故选:B.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A. B. C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.【解答】解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选:D.12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0 B.C.2 D.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选:C.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.【分析】首先根据题意做出可行域,欲求|OM|的最小值,由其几何意义为点O (0,0)到直线x+y﹣2=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于.故答案为:.15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为 5 .【分析】利用已知条件求出,利用∠ABO=90°,数量积为0,求解t的值即可.【解答】解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t)=0.解得t=5.故答案为:5.16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【分析】(Ⅰ)写出从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人身高都在1.78以下的事件,然后直接利用古典概型概率计算公式求解;.(Ⅱ)写出从该小组同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件,利用古典概型概率计算公式求解.【解答】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.【分析】(Ⅰ)通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出ω的值(Ⅱ)通过x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解f(x)在区间[]上的最大值和最小值.【解答】解:(Ⅰ)函数f(x)=﹣sin2ωx﹣sinωxcosωx===.因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故周期为π又ω>0,所以,解得ω=1;(Ⅱ)由(Ⅰ)可知,f(x)=﹣sin(2x﹣),当时,,所以,因此,﹣1≤f(x),所以f(x)在区间[]上的最大值和最小值分别为:.19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.【分析】(Ⅰ)取PA的中点H,则由条件可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.再由直线和平面平行的判定定理证明CE∥平面PAD.(Ⅱ)先证明MN⊥平面PAC,再证明平面EFG∥平面PAC,可得MN⊥平面EFG,而MN在平面EMN内,利用平面和平面垂直的判定定理证明平面EFG⊥平面EMN.【解答】解:(Ⅰ)证明:∵四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点,取PA的中点H,则由HE∥AB,HE=AB,而且CD∥AB,CD=AB,可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.由于DH在平面PAD内,而 CE不在平面PAD内,故有CE∥平面PAD.(Ⅱ)证明:由于AB⊥AC,AB⊥PA,而PA∩AC=A,可得AB⊥平面PAC.再由AB ∥CD可得,CD⊥平面PAC.由于MN是三角形PCD的中位线,故有MN∥CD,故MN⊥平面PAC.由于EF为三角形PAB的中位线,可得EF∥PA,而PA在平面PAC内,而EF不在平面PAC内,故有EF∥平面PAC.同理可得,FG∥平面PAC.而EF 和FG是平面EFG内的两条相交直线,故有平面EFG∥平面PAC.∴MN⊥平面EFG,而MN在平面EMN内,故有平面EFG⊥平面EMN.20.(12分)(2013•山东)设等差数列{an }的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn }满足=1﹣,n∈N*,求{bn}的前n项和Tn.【分析】(Ⅰ)设等差数列{an }的首项为a1,公差为d,由S4=4S2,a2n=2an+1得到关于a1与d的方程组,解之即可求得数列{an}的通项公式;(Ⅱ)由(Ⅰ)知,an =2n﹣1,继而可求得bn=,n∈N*,于是Tn =+++…+,利用错位相减法即可求得Tn.【解答】解:(Ⅰ)设等差数列{an }的首项为a1,公差为d,由S4=4S2,a2n=2an+1得:,解得a1=1,d=2.∴an=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合.∴=,n∈N*=2n﹣1,n∈N*.由(Ⅰ)知,an∴b=,n∈N*.n又T=+++…+,n=++…++,∴Tn=+(++…+)﹣两式相减得:Tn=﹣﹣=3﹣.∴Tn21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.【分析】(Ⅰ)由函数的解析式知,可先求出函数f(x)=ax2+bx﹣lnx的导函数,再根据a≥0,分a=0,a>0两类讨论函数的单调区间即可;(Ⅱ)由题意当a>0时,是函数的唯一极小值点,再结合对于任意x>0,f(x)≥f(1).可得出=1化简出a,b的关系,再要研究的结论比较lna与﹣2b的大小构造函数g(x)=2﹣4x+lnx,利用函数的最值建立不等式即可比较大小【解答】解:(Ⅰ)由f(x)=ax2+bx﹣lnx(a,b∈R)知f′(x)=2ax+b﹣又a≥0,故当a=0时,f′(x)=若b≤0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<,即函数在(0,)上是减函数,在(,+∞)上是增函数、所以函数的单调递减区间是(0,),单调递增区间是(,+∞),当a>0时,令f′(x)=0,得2ax2+bx﹣1=0由于△=b2+8a>0,故有x2=,x1=显然有x1<0,x2>0,故在区间(0,)上,导数小于0,函数是减函数;在区间(,+∞)上,导数大于0,函数是增函数综上,当a=0,b≤0时,函数的单调递减区间是(0,+∞);当a=0,b>0时,函数的单调递减区间是(0,),单调递增区间是(,+∞);当a>0,函数的单调递减区间是(0,),单调递增区间是(,+∞)(Ⅱ)由题意,函数f(x)在x=1处取到最小值,由(1)知,是函数的唯一极小值点故=1整理得2a+b=1,即b=1﹣2a令g(x)=2﹣4x+lnx,则g′(x)=令g′(x)==0得x=当0<x<时,g′(x)>0,函数单调递增;当<x<+∞时,g′(x)<0,函数单调递减因为g(x)≤g()=1﹣ln4<0故g(a)<0,即2﹣4a+lna=2b+lna<0,即lna<﹣2b22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.【分析】(Ⅰ)设椭圆的标准方程为,焦距为2c.由题意可得,解出即可得到椭圆的方程.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,利用判别式、根与系数的关系即可得到弦长|AB|,再利用点到直线的距离公式即可得到原点O到直线AB的距离,进而得到三角形AOB的面积,利用即可得到m,n,t的关系,再利用,及中点坐标公式即可得到点P的坐标代入椭圆的方程可得到m,n,t的关系式与上面得到的关系式联立即可得出t的值.【解答】解:(Ⅰ)由题意设椭圆的标准方程为,焦距为2c.则,解得,∴椭圆的方程为.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,则△=4m2n2﹣4(m2+2)(n2﹣2)=4(2m2+4﹣2n2)>0,(*),,∴|AB|===.原点O到直线AB的距离d=,∵,∴=,化为.(**)另一方面,=,∴xE =myE+n==,即E.∵,∴.代入椭圆方程得,化为n2t2=m2+2,代入(**)得,化为3t4﹣16t2+16=0,解得.∵t>0,∴.经验证满足(*).当AB∥x轴时,设A(u,v),B(﹣u,v),E(0,v),P(0,±1).(u>0).则,,解得,或.又,∴,∴.综上可得:.。

13高数A期末一真题与答案

13高数A期末一真题与答案

第1页 共2页淮 海 工 学 院12 – 13 学年 第 二 学期 高等数学A (2) 期末试卷(A 卷)1.向量(1,1,0)a =,(0,1,1)b =-所成夹角为----------------------------(C ) (A )6π (B )4π (C )3π (D )2π2.2(,)(2)tan(23)f x y x y x y =+-+,则(,2)xx f x =--------------------------------(B ) (A )1 (B )2 (C )x (D )x 2 3. 3sin xu e y z =-+在点(0,0,1)-处沿下列哪个方向的方向导数最大--------(D) (A ))1,1,0(- (B )(0,1,1)- (C )(3,1,1)- (D )(3,1,1)- 4.二次积分1ln 10(,)x edx f x y dy ⎰⎰的另一种积分次序为----------------------(B ) (A ) 011(,)ye dyf x y dx -⎰⎰(B )011(,)y e dy f x y dx -⎰⎰(C )1(,)ye dyf x y dx -⎰⎰(D )011(,)y edy f x y dx -⎰⎰5.设L 为椭圆2251x y +=,其周长为l ,则()(5)Lx y x yd s ++=⎰----------------(B ) (A ) 5l (B ) l (C ) (D ) 5l6.若级数1(65)nn p ∞=-∑收敛,则p 的取值范围是------------------------------------------(B )(A )(,2-∞ (B )(2 (C )(1,32) (D )(32,)+∞ 7.若幂级数21(4)n nn a x ∞+=-∑在7x =处条件收敛,则其收敛半径为-----------------(A )(A )3 (B )9 (C )11 (D )1218.12xy C C e -=+是下列哪个微分方程的通解------------------------------------------(C ) (A )0='-''y y (B )0=-''y y (C )0='+''y y (D )0=+''y y二、计算题(本大题共4小题,每题7分,共28分) 1.设(,)f u v 是二元可微函数,=(,)z f y x x y ,求+x y xz yz .解:21x u v y z f f x y =-+----------------------------------------------------------------------------2 21y u v xz f f x y=-----------------------------------------------------------------------------3故+0x y xz yz =.------------------------------------------------------------------------------22.求22xy De dxdy +⎰⎰D :2214x y ≤+≤.解: :02,12,D r θπ≤≤≤≤--------------------------------------------2 则原式2221r d e rdr πθ=⎰⎰----------------------------------------------22221r e dr π=⎰4()e e π=-.-----------------------------------------------------------33.设空间闭区域Ω{(,,)0x y z z =≤≤,∑是Ω的整个边界曲面的内侧,用高斯公式计算3222()3()(1)xz dydz y z x dzdx z z dxdy ∑++-+-⎰⎰.解: 3222,3(),(1)P x z Q y z x R z z =+=-=---------------------------------------1Ω是半径为1的半球体 --------------------------------------------------------------------2 则 原式()xyz Pdydz Qdzdx Rdxdy P QR dxdydz ∑Ω=++=-++⎰⎰⎰⎰⎰-------------2dv Ω=-⎰⎰⎰23π=-. ---------------------------------------------------------------24.求解微分方程111y y x x'-=++. 解: 公式法, 11111[(1)]dx dx x x y e e dx C x-++⎰⎰=++⎰------------------------------------------3 ln(1)ln(1)1[(1)]x x e e dx C x+-+=++⎰------------------------------------------21(1)()x dx C x=++⎰(1)(ln )x x C =++.---------------------2第2页 共2页三、计算题(本大题8分)设方程0132=--xz y z 确定了),(y x z z =,求(1))1,0,1(-dz;(2)曲面),(y x z z =在点)1,0,1(-处的切平面方程. 解: 令1),,(32--=xz y z z y x F则1)1,0,1(=-x F ,1)1,0,1(=-y F ,3)1,0,1(-=-z F ---------------------------------2(1)=-)1,0,1(dz dx F F z x )1,0,1()1,0,1(---)(31)1,0,1()1,0,1(dy dx dy F F z y +=----------------------2(2)切平面的法向量 )311(-=,,n--------------------------------------------2 切平面方程为 0)1(3)1(=+-+-z y x .----------------------------------------2 四、计算题(本大题8分)和建制造,乐在共享。

2013年高考数学考试试题(山东卷理科考试试题)和答案_53

2013年高考数学考试试题(山东卷理科考试试题)和答案_53

2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 若复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为 (A ) 2+i (B ) 2-i (C ) 5+i (D ) 5-i(2) 已知集合A ={0,1,2},则集合B={x-y|x ∈A, y ∈A}中元素的个数是 (A ) 1 (B ) 3 (C ) 5 (D ) 9(3)已知函数f(x) 为奇函数设且x >0时, f(x)= x 2+x1,则f(-1)= (A ) -2 (B ) 0 (C ) 1 (D ) 2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 (A )125π (B )3π (C )4π (D )6π (5)将函数y=sin(2x+Φ)的图象沿轴向左平移个单位后,得到一个偶函数的图象,则Φ的一个可能取值为 (A )43π (B )4π (C )0 (D )-4π(6)在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为(A )2(B )1(C )31-(D )21- (7)给定两个命题p,q.若﹃p 是q 的必要而不充分条件,则p 是﹃q 的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 (8)函数y=xcosx+sinx 的图象大致为(9过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为A .032=-+y xB . 032=--y xC . 034=--y xD .034=-+y x(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A )243 (B)252 (C)261 (D)279(11)抛物线C1:221x py =(p >0)的焦点与双曲线C2:1322=-y x 的右焦点的连线交C1于第一象限的点M 。

2013年普通高等学校招生统一考试山东省数学(理)卷文档版

2013年普通高等学校招生统一考试山东省数学(理)卷文档版

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ()(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。

山东青岛即墨2013高三上期末考试-数学理(word解析版)(精)

山东青岛即墨2013高三上期末考试-数学理(word解析版)(精)

山东青岛即墨市高 三 教 学 质 量 检 测数学(理倾)试题 2013.01本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,将第Ⅰ卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡上交。

考试时间90分钟,满分100分。

注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷;如需改动,先划掉原来的答案,然后再写上新答案;不准使用涂改液、胶带、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题 共60分)一、选择题:本大题12小题,每小题5分,共60分。

1.已知),(2R b a i b iia ∈+=+,其中i 为虚数单位,则=-a bA.-1B.1C.2D.3 【答案】D 解:由),(2R b a i b iia ∈+=+得22()1a ib i i bi i bi +=+=+=-+,所以1,2a b =-=,所以3b a -=,选D.2.设全集,}6,5,4,3,2,1{=U 集合=⋂==)(}5,4,3{},4,3,2,1{Q C P Q P U ,则, A.{1,2,3,4,6} B.{1,2,3,4,5} C.{1,2,5} D.{1,2} 【答案】D解:{1,2,6}U Q =ð,所以(){1,2}U P C Q ⋂==,所以选D. 3.设()sin()2R f x x πϕϕϕ===+,则“”是为偶函数”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A解:若()sin()f x x ϕ=+为偶函数,则有,2k k Z πϕπ=+∈,所以2πϕ=是()sin()f x x ϕ=+为偶函数的充分而不必要条件,选A.4.为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是乙甲、x x ,则下列说法正确的是A.乙甲x x >,乙比甲成绩稳定,应选乙参加比赛B.乙甲x x >,甲比乙成绩稳定,应选甲参加比赛C.乙甲x x <,甲比乙成绩稳定,应选甲参加比赛D.乙甲x x <,乙比甲成绩稳定,应选乙参加比赛 【答案】D解:由茎叶图可知乙甲x x <,乙的数据集中在88左右,所以乙比甲成绩稳定,应选乙参加比赛,所以选D.5.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤+-≥+-08010502y x y x y x ,则目标函数y x z 34-=的最小值和最大值分别为A.-6,11B.2,11C.-11,6D.-11,2 【答案】A解:由y x z 34-=得433z y x =-。

青岛市即墨市2013届高三期末考各科高三数(文)

青岛市即墨市2013届高三期末考各科高三数(文)

高三数学(文)试题参考答案 2013.01一、选择题13.214.(0,1] 15.116.)21,31()21,1(⋃-- 三、解答题17.证明:(1)B b A a sin sin ,//=∴ …………2分 由正弦定理得b a b a ==即22………4分又3π=c3π=∆∴B ABC 为等边三角形………4分由题意可知0)2()2(,0.=-+-=a b b a p m 即ab b a =+∴………①…………8分由正弦定理和①②得,ab c .sin .213=23sin ,3=∴=C C π4=∴ab ………②…………10分2412163)(2222=∴=-=-+=-+=∴c ab b a ab b a c ……………12分18.解:(1)EF AB EF CD AB DC G //,2==中点,点是若DG EF DG EF =∴且//DEFG DEFG //∴∴为平行四边形四边形…………4分又AED FG 面⊄AED ED 面⊂ AED FG 面//∴(2)(1)BAF AD AB AD ABCD ABFE 平面,平面平面⊥∴⊥⊥, ………8分DAF AD 面又⊂ ………10分 BAF DAF 面面⊥∴………12分19.解:(1)设“甲胜且点数的和为6”为事件A ,甲的点数为x,乙的点数为y,则(x,y )表示一个基本事件.………2分 两人取牌结果包括(1,1),(1,2),…(1,5),(1,6),(2,1),…(6,1),…(6,6)共36个基本事件;……4分 A 包含的基本事件有(1,5),(2,4),(3,3)(4,2),(5,1)共5个,所以365=)(A P 所以,编号之和为6且甲胜的概率为365………6分 (2)这种游戏公平。

设“甲胜”为事件B ,“乙胜”为事件C.甲胜即两个点数的和为偶数.…8分所包含基本事件为以下18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3)(5,5),(6,2),(6,4),(6,6)………10分 所以甲胜的概率为213618;213618)(====)(乙胜的概率为C P B P )()(C P B P =∴.这种游戏规则是公平的∴………12分20.解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a ………2分 所以数列{}12-=n a a n n 的通项公式为……4分 (Ⅱ)由(Ⅰ)可得n n n a b 3231==+ 所以n n n n b a 3..21=+………6分所以+++=323.33.23.11n S (1)3.+n n两式相减得++++-=433333(22n S ……13.)3+++n n n ………10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(…………12分21.解:(1)设右焦点为(c,0),则过右焦点斜率为1的直线方程为:y=x-c ……1分 则原点到直线的距离222==c d 2,1==∴a c ……3分1222=+∴y x 方程为………4分(2)设直线AT 方程为:)坐标为(设点11,)0)(2(y x T k x k y 〉+= 0242421)2(12222222=-+++⎪⎩⎪⎨⎧+==+k k x k x k y y x )得:( 22212124kk x x +-= …………6分 212212122,2122202k k y k k x A +=+-=∴-),点坐标为(又 …………7分 又)(),,点的坐标为(2222122,212402kkk k BT B ++-=∴ …………8分 由圆的性质得:,SM BT ⊥所以,要证明S M O ,,只要证明,即可SO BT ⊥………9分 又2点的横坐标为S ),点的坐标为(k S 222∴ ),(k SO 222--=∴…………10分02188.222=+-=∴k k k BT SO …………11分即SM BT SO BT ⊥⊥ ,又三点共线S M O ,,∴…………12分22.解:(1)函数)1(1)1(2)1(2)(2--+-+=x n a x a x x f1)1(2)1(22)(--+-+='x a a x x f ,……………2分 23=x 是函数的一个极值点 0)23(='∴f解得:23=a …………4分(2)1)(21)1(2)1(22--=--+-+='x a x x x a a x f ),的定义域是(又∞+1)(x f ),)的单调增区间为((时,函数当∞+≤∴11x f a ………6分 为增区间)为减区间,(,时,(当),11+∞〉a a a ………8分(3)当a=2时,由(2)知f(x)在(1,2)减,在(2,+∞)增.3)1(,11)11(,0)2(22-=++=+=e e f e e f f]3,0[]1,11[)(2-++=∴e e ex f y 的值域在……10分为减函数在]1,11[)(2++--=e e b x x g])11(,1[]1,11[)(22b eb e e e x g y -+--+-++=∴)(的值域为在…………11分b>0成立,只要所以e e m g m f b e b e 22)()(0)1(,0)11(22122+〈-〈-+-〈-+-∴ 成立即可e e b e e b e e b e e 22222)1(3))1(3222222+〈+-+=+++-=-+--- (12)分解得:0<b<2…………14分。

2013年普通高等学校招生全国统一考试理科数学(新课标Ⅰ卷)

2013年普通高等学校招生全国统一考试理科数学(新课标Ⅰ卷)

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

国腾教育,中小学各科精品小班,1对1个性化辅导。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3}(D){0,1,2,3}(2)设复数z满足(1-i)z=2i,则z=()(A)-1+i(B)-1-i(C)1+i(D)1-i(3)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l⊥m,l⊥n,lβ,则()(A)α∥β且l∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l(D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4(B)-3(C)-2(D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+++…+(B)1+++…+(C)1+++…+(D)1+++…+(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为搞影面,则得到正视图可以为(A)(B)(C)(D)(8)设ɑ=log36,b=log510,c=log714,则(A)c>b>a(B)b>c>a(C)a>c>b(D)a>b>cx≥1,x+y≤3,y≥a(x-3).{(9)已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a= (A)(B)(C)1(D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A)∑xα∈R f(xα)=0(B)函数y=f(x)的图像是中心对称图形(C)若xα是f(x)的极小值点,则f(x)在区间(-∞,xα)单调递减(D)若xn是f(x)的极值点,则f1(xα)=0(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5若以MF为直径的园过点(0,3),则C的方程为(A)y2=4x或y2=8x(B)y2=2x或y2=8x(C)y2=4x或y2=16x(D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)(C)(1-,1/3)(D)[1/3,1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2012-2013学年第一学期期末考试试卷高三数学理

2012-2013学年第一学期期末考试试卷高三数学理

2012-2013学年第一学期期末考试试卷高三数学理)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上)1.已知全集{1,2,3,4,5}U =,集合{2,5}A =,{4,5}B =,则()U A B ð等于( )A {1,3}B {1,2,3,4}C {2,4,5}D {5}2.已知数列{}n a 为等差数列,且12a =,2313a a +=,那么则456a a a ++等于( )A 40B 42C 43D 453.设向量(1,sin )θ=a ,(3sin ,1)θ=b ,且//a b ,则cos 2θ等于( ) A 31- B 32- C 32 D 31 4.已知a ,b 是两条不重合的直线,α,β是两个不重合的平面,下列命题中正确的是( )A //a b ,//b α,则//a αB a ,b α⊂,//a β,//b β,则//αβC a α⊥,//b α,则a b ⊥D 当a α⊂,且b α⊄时,若b ∥α,则a ∥b5.“1m =”是“直线0x y -=和直线0x my +=互相垂直”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件6.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为( )A 2B 3C 4D 97.设3log 2=a ,3log 4=b ,5.0=c ,则( )A a b c <<B b c a <<C c a b <<D b a c <<8.若过点)0,4(A 的直线l 与曲线1)2(22=+-y x 有公共点,则直线l 的斜率的取值范围为( )A []3,3-B ()3,3-C ⎥⎥⎦⎤⎢⎢⎣⎡-33,33D )33,33(-9.已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于( )10.在平面直角坐标系xOy 中,已知△ABC 顶点 A (-4,0)和C (4,0),顶点B 在椭圆221259x y +=上,则sin sin sin A C B+=( ) A 34 B 23 C 45 D 5411.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A 23 B 169 C 83 D 4312.设f(x)是定义在R 上的奇函数,且f(2)=0,当x>0时,有2()()0xf x f x x'-<恒成立,则不等式2()0x f x >的解集是( ) A (-2,0) ∪(2,+∞) B (-2,0) ∪(0,2)C (-∞,-2)∪(2,+∞)D (-∞,-2)∪(0,2)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题纸 中的横线上)13.已知平面向量a ,b 的夹角为60°,=a ,||1=b ,则|2|+=a b14.设2,[0,1]1(),(1,]x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则0()e f x dx ⎰的值为 15.设双曲线12222=-by a x 的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率等于 16.如图,在正三棱柱111C B A ABC -中,1=AB .若二面角1C AB C --的大小为 60,则点C 到平面1ABC 的距离为______________正视图 俯视图三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设有两个命题,p :关于x 的不等式1>x a (a>0,且a ≠1)的解集是{x|x<0};q :函数)lg(2a x ax y +-=的定义域为R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个号角由一串动圆所组成, 此动圆在两抛物线 y =
订 线
分别相接而运动, 当 0 ≤ x ≤ 4 时, 求此号角的体积.
1 x 之间与两抛物线 2
学院: 年级:

线


得分
线
五、 (本题共 16 分,每小题 8 分) d2y dy − 5 + 6 y = 0 的通解. 2 dx dx 得分 七、证明题(本题共 6 分)


.
Байду номын сангаас
专业 :
3. 设 y = y ( x ) 由 e xy + sin( x 2 y ) = y 2 所确定, 则 y′(0) =

. . .
线
4. 已知 f ( x ) 的一个原函数为 ln 2 x , 则
2 2
∫ f ′( x)dx =

5. I = ∫ ln xdx 和 J = ∫ ln 2 xdx 的大小关系是
y

线
学号:



线


第 3 页,共 4 页
第 4 页,共 4 页

1
f (t )dt , 则 F ′( x ) 等于[
C.
1 f (ln x ) . x
B. f ( ) f ( x ) .
1 x
1 + f (ln x) . x
1 f ( x) . x


年级:
线
得分
三、计算题(本题共 16 分,每小题 8 分)
得分
线
一、填空题(本题共 20 分,每小题 4 分)
得分
四、计算题(本题共 16 分,每小题 8 分) dx = 2 + 1)
学号:
线
A. x 2 .
B.
1 − cos x .
C. x − tan x .
1 − x2 − 1 .
1. ].
3. 设函数 f ( x ) 可导, 且当 x = 1 时有

d d 2 f ( x2 ) = f ( x ) , 则[ dx dx

1. 求微分方程

专业 :

线

设 f ( x ) 在区间 [0,1] 上可微, 且满足条件 f (1) = 2

1 2 0
xf ( x )dx . 试证存在 ξ ∈ (0,1) , 使
f (ξ ) + ξf ' (ξ ) = 0 .
线

姓名:
2. 求方程 y ′ arcsin x +

1 = 1 ,在条件 y ( ) = 0 下的特解. 2 1− x2
B. f (1) = 1或 f ′(1) = 0 .
∫ x( x

A. f (1) = 0或 f ′(1) = 1 .


第 1 页,共 4 页
第 2 页,共 4 页



2. 极限 lim(
n →∞
线
1 1 1 + +"+ )= n+n n +1 n + 2
得分
六、应用题(本题共 6 分)
x和y=
B.
].
A 卷■ B 卷□
十 成 绩 复核
学院:
5 . 6
7 . 6

C.
4 . 3
ln x
D.
3 . 2
]. D.

得分 阅卷
注意事项:答卷前,考生务必把答题纸上密封线内各项内容填写清楚(学号应与教务在线中 学号相同),否则可能得不到成绩,必须填写在密封线与装订线之间。答案必须写在边框内。
5. 设 f ( x ) 为连续函数, 且 F ( x) = A.


线

青岛大学课程考试试卷
2012 ~ 2013 学年 秋季学期期末 考试时间: 2013/01/15
C. f (1) = 0或 f ′(1) = 0 . 4. 由曲线 y = A.
D. f (1) = 1或 f ′(1) = 1 .
线
课程名称
题号 一 二
高等数学 I
三 四 五 六 七 八 九
x2 与直线 x = 1, x = 2, y = 0 所围图形的面积是[ 2
. ,b =
1. lim(
n →∞
n n ) = n +1
⎧ x + b, x ≥ 1 ⎪ 1. 设 f ( x) = ⎨ , 试确定常数 b 的值, 使 f ( x ) 在 x = 1 处连续. π ⎪ x cos x, x < 1 ⎩ 2

x 2 + ax + b = 2 , 则常数 a = 2. 已知 lim 2 x→2 x − x − 2
1 1
2. 设 y = x ln x , 求 y
线
(n)
(1) .
姓名:
得分

n
二、选择题(本题共 20 分,每小题 4 分)
1 n
].

1. 极限 lim ( −1) (1 + ) [
n →∞
A.
线 密
=1.
B.
= −1 .
C. = e .
D.
不存在. ]. D.
2. 当 x → 0 时, 下列哪一个是比其余三个更高阶的无穷小[
相关文档
最新文档