整式的乘除测试题(3套)与答案

合集下载

整式乘除单元测试题及答案

整式乘除单元测试题及答案

整式乘除单元测试题及答案一、选择题:1. 已知 \( a^2 - 4 \) 可以分解为 \( (a+2)(a-2) \),那么下列哪个表达式不能被 \( a^2 - 4 \) 整除?A. \( a^3 - 4a \)B. \( a^3 - 8 \)C. \( a^3 - 4a + 4 \)D. 提供的选项都是错误的2. 如果 \( x - 1 \) 是多项式 \( x^3 - 2x^2 + x - 2 \) 的一个因子,那么 \( x \) 的值是多少?A. 1B. 2C. 0D. 3二、填空题:1. 计算 \( (3x^2 - 2x + 1) \div (x - 1) \) 的结果为__________。

2. 将多项式 \( 2x^3 - 5x^2 + 3x - 6 \) 除以 \( x - 2 \) 的商是 __________。

三、简答题:1. 证明 \( (x - 1)^3 = x^3 - 3x^2 + 3x - 1 \)。

2. 给定多项式 \( P(x) = x^4 - 2x^3 + x^2 - 2x + 1 \),求\( P(1) \) 的值。

四、解答题:1. 已知 \( (x + y)^2 = 9 \) 和 \( (x - y)^2 = 1 \),求 \( x^2 + y^2 \) 的值。

2. 计算 \( \frac{2x^3 - 8x^2 + 6x}{2x - 4} \) 的简化形式。

五、应用题:1. 一个长方形的长是宽的两倍,如果长和宽的乘积是 24,求长方形的长和宽。

2. 某工厂生产一种零件,每个零件的成本是 \( c \) 元,售价是\( 2c \) 元。

如果工厂卖出了 \( n \) 个零件,求工厂的总利润。

答案:一、选择题:1. 答案:D. 提供的选项都是错误的。

2. 答案:A. 1二、填空题:1. 答案:\( 3x - 1 \)2. 答案:\( 2x^2 - 7x + 3 \)三、简答题:1. 证明:\( (x - 1)^3 = x^3 - 3x^2 + 3x - 1 \) 可以通过展开\( (x - 1) \) 的三次幂来验证。

整式的乘除法专题训练(含答案)

整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。

14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。

18.若3x 5y 3 0, 求8x?32y的值。

19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。

5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。

整式的乘除复习试题(3套)

整式的乘除复习试题(3套)

整式的乘除过关测试A一、(时间: 40分钟, 总分: 80分) 选择题(共12小题, 每小题3分, 共36分) )可写成(13.1+m a()()a a D aa C aa a B aa A m m m m ⋅++⋅+3333....()6223124355126663)5(;1243)4(;)3(;)2(;2)1(.2y x xy b b b c c c a a a a a a n n n ==⋅=⋅=+=⋅下列计算:中正确的个数为( )A.0B.1C.2D.3 )(324,0352.3=⋅=-+y x y x 则若A.32B.16C.8D.4())的结果为(计算200920088125.0.4⨯-A.8B.-8C.-1D.无法计算)的是(下列等式中运算不正确.5()()2223243322232442.51025.842.63)2(3.y xy x y x D xy x y x x C b a ab b a B y x y x xy x xy A ++=--=-=⋅-=-()()()()的值为、,则若a a M 10M 102105108.626⨯=⨯⨯⨯ 105M 108M 92M 88M ========a D a C a B a A ,、,、,、,、()()()等于则若m n n x x mx x -++=-+,315.72 251.251.25.25.--D C B A()()()的关系是与的一次项,则展开后不含要使多项式q p x q x px x -++2.822.1.0..===+=pq D pq C q p B q p A()的值是,那么已知ab b a b a 2,3.922=-=+A.-0.5B.0.5C.-2D.2 10.计算: 得( )A.0B.1C.8.8804D.3.960111.现有纸片: 4张边长为a 的正方形, 3张边长为b 的正方形, 8张宽为a 、长为b 的长方形, 用这15张纸片重新拼出一个长方形, 那么该长方形的长为( )A.2a+3bB.2a+bC.a+3bD.无法确定()的最小值是则如果多项式p b a b a p ,2008422.1222++++= A.2005 B.2006 C.2007 D.2008 填空题(共6小题, 每小题3分, 共18分)()()=-⋅-322323.13a a 计算 。

初二整式的乘除必考练习题及答案

初二整式的乘除必考练习题及答案

初二整式的乘除必考练习题及答案乘法练习题:1. 计算下列算式的乘积:a) 5 × 7 =b) 6 × 3 =c) 8 × 4 =d) 9 × 2 =e) 12 × 10 =2. 用竖式计算下列乘法问题:a) 24 × 3 =b) 15 × 6 =c) 27 × 4 =d) 18 × 5 =e) 32 × 12 =3. 用分配律计算下列乘法问题:a) 3 × (5 + 2) =b) 4 × (6 + 1) =c) 2 × (8 + 3) =d) 6 × (9 + 2) =e) 7 × (10 + 6) =除法练习题:1. 计算下列算式的商和余数:a) 14 ÷ 3 = 商____ 余____b) 21 ÷ 4 = 商____ 余____c) 36 ÷ 5 = 商____ 余____d) 47 ÷ 6 = 商____ 余____e) 52 ÷ 7 = 商____ 余____2. 用列竖式计算下列除法问题:a) 56 ÷ 8 = 商____ 余____b) 81 ÷ 9 = 商____ 余____c) 72 ÷ 6 = 商____ 余____d) 96 ÷ 12 = 商____ 余____e) 108 ÷ 9 = 商____ 余____3. 解决下列问题并用整式表达答案:a) Sara家有24个饼干,她打算将它们平均分给3个朋友。

每个朋友能得到多少个饼干?b) 在一个农场里,有36头牛,农民打算将它们平均分配在6个牲口场。

每个牲口场将有多少头牛?以上是初二整式乘除必考练习题及答案。

希望通过这些题目的练习能够提升你的整式的乘除能力。

加油!。

(完整word版)整式的乘除测试题(3套)及答案

(完整word版)整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

七年级下册数学整式的乘除测试卷(ABC)及参考答案(优选.)

七年级下册数学整式的乘除测试卷(ABC)及参考答案(优选.)

整式的乘除测试卷(A)一.选择题1.化简(-x)³(-x)²¸结果正确的是-----------------------------------------------------( )A.-x6B. x6 C . -x5 D. x52.计算a²(a+1)-a(a²-2a-1)的结果是-------------------------------------------()A. -a²-aB. 2a²+a+1 C . 3a²+a D. 3a²-a3.在下列各式中,计算结果等于x²-5x-6的是--------------------------------- ( )A. (x-6)( x+1)B. (x-2)( x+3) C . (x+6)( x-1) D. (x-2)( x-3)4.下列计算正确的是----------------------------------------------------------------- ()A. a²·a³=a6B.(a+b)(a-b)=a²-b2C . (a+b)2=a²+b2 D. (a+b)(a-2b)=a²-2b25. 下列计算正确的是-----------------------------------------------------------------()A.(-4x)(2x2+3x-1)=- x3-12x2-4xB.(x+y) (x2+y2) =x3+y3C . (-4a-1) (4a-1)=1-16a2 D. (x-2y)2=x2-2xy+4y26. 下列计算正确的是-----------------------------------------------------------------()A. .(a+b)2=a²+b2B.(a-b)2=a²-b2C . (a+m)(b+n)=ab+ mn D. (m+ n)(-m +n)= -m2+n27.计算(-x-2y)²的结果是------------------------------------------------------------()A.x²-4xy+4y²B.- x²-4xy-4y² C . x²+4xy+4y²D. -x²+4xy-4y²8.计算代数式2xy-x²-y²正确的是-------------------------------------------()A. (x- y)2B. (-x- y)2 C . -(x+y)2 D. -(x- y)29.已知.(a+b)2=9,ab= -1½,则a²+b2的值等于--------------------------()A. 84B. 78 C .12 D.610.若36x²-mxy+49y²是完全平方式,则m的值为-----------------------()A. 1764B. 42 C .84 D. ±8411.计算(-3a³)²÷a²的结果是-----------------------------------------------------()A. -9 a4B. 6a4 C .9a3 D. 9a412.计算x6÷x3的结果是---------------------------------------------------------()A. x9B. x3 C .x2 D. 213.下列运算中,正确的是------------------------------------------------------()A. x10÷(x4÷x2)=x8B. (xy)5÷(xy)3=xy2C .2x2+n÷x n+1 =2x² D. (6x³-3x²+3x)÷3x=2x²-x14.在下列各式中,运算结果是-36y2+49 x²的是-------------------------------()A .(-6y+7x)(-6y-7x) B. (-6y+7x)(6y-7x)C .(7x-4y)(7x+9y) D. (-6y-7x)(6y-7x)15.下列四个代数式:(1) (x+y) (-x-y) (2) (x-y) (y-x) (3) (2a+3b)(3b-2a)(4) (2x-3y) (2y+3x).其中能用平方差公式计算的有-------------------------()A. 1个B.2个 C .3个 D. 4个二.填空题:1、3-2=__;2、有一单项式的系数是2,次数为3,这个单项式可能是___3、____÷a=a3;4、一种电子计算机每秒可做108次计算,用科学记数法表示它8分钟可做_______次运算;5.一个十位数字是a,个位数学是b的两位数表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,它是__,这两个数的差是__6、有一道计算题:(-a4)2,李老师发现全班有以下四种解法,①(-a4)2=(-a4)(-a4)=a4·a4=a8;②(-a4)2=-a4×2=-a8;③(-a4)2=(-a)4×2=(-a)8=a8;④(-a4)2=(-1×a4)2=(-1)2·(a4)2=a8;你认为其中完全正确的是(填序号)_______;7、我国北宋时期数学家贾宪在他的著作《开方作法本源》中的“开方作法本源图”如下图⑴所示,通过观察你认为图中a=_______;8、有二张长方形的纸片(如图⑵),把它们叠合成图⑶的形状,这时图形的面积是_______;9.小华把一张边长是a厘米的正方形纸片的边长减少1厘米后,重新得到一个正方形纸片,这时纸片的面积是_____厘米;10.如果x+y=6, xy=7, 那么x2+y2=,(x-y)2=。

整式的乘除基础 练习题(带答案

整式的乘除基础 练习题(带答案

. .


【标注】【知识点】单项式乘单项式 【知识点】单项式乘多项式
24. 计算:

【答案】

【解析】

【标注】【知识点】积的乘方
9
【知识点】单项式乘多项式 【能力】运算能力
25. 计算. (1) (2) (3)
. .

【答案】( 1 ) (2) (3)
【解析】( 1 ) 原式

( 2 ) 原式


【解析】( 1 ) 原式 故答案为:
( 2 ) 原式
故答案为:
. .
. .
【标注】【知识点】单项式乘单项式 【知识点】单项式乘多项式 【能力】运算能力
20. 化简下列整式:
(1)

(2)

【答案】( 1 )

(2)

【解析】( 1 ) 原式

( 2 ) 原式

【标注】【知识点】整式乘除的综合
21. 计算:
C. 个
【答案】 A
【解析】 ①不是同类项,不能合并,故①错误;
②不是同类项,不能合并,故②错误;

,故③错误;

,正确;

,故⑤错误;

,故⑥错误.
【标注】【知识点】单项式除以单项式
4. 已知

,则 的值为( ).
A.
B.
C.
【答案】 B
【解析】

【标注】【能力】运算能力 【知识点】同底数幂的乘法 【知识点】幂的乘方
5. 已知 ,
,则

D. 个 D.
2
【答案】
【解析】

整式的乘除(人教版)(含答案)

整式的乘除(人教版)(含答案)

整式的乘除(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.,故选A.试题难度:三颗星知识点:单项式乘单项式2.下列运算正确的是( )A. B.C. D.答案:C解题思路:A选项应为,故A选项错误;B选项应为,故B选项错误;C选项,故C选项正确;D选项应为,故D选项错误.故选C.试题难度:三颗星知识点:幂的乘方3.下列运算错误的是( )A. B.C. D.答案:B解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.B选项应为,故选B.试题难度:三颗星知识点:单项式乘单项式4.计算的结果是( )A. B.C. D.答案:D解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.,故选D.试题难度:三颗星知识点:单项式乘多项式5.若,则的值是( )A.-15B.15C.-3D.3答案:C解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.故选C.试题难度:三颗星知识点:解一元一次方程6.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×多项式:根据乘法分配律,转化为单×单.然后按照单项式×单项式的运算法则进行计算.故选A.试题难度:三颗星知识点:合并同类项7.计算的结果是( )A. B.C.1D.答案:B解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选B.试题难度:三颗星知识点:整式的除法8.计算的结果是( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选C.试题难度:三颗星知识点:整式的除法9.,括号里所填的代数式为( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.设括号里的代数式为M,∴即括号里面的代数式为.故选C.试题难度:三颗星知识点:整式的除法10.计算的结果是( )A. B.C. D.答案:D解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.故选D.试题难度:三颗星知识点:多项式乘多项式11.下列各式计算结果为的是( )A. B.C. D.答案:C解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.A选项,故A选项错误;B选项,故B选项错误;C选项,故C选项正确;D选项,故D选项错误.故选C.试题难度:三颗星知识点:多项式乘多项式12.若的结果中不含的一次项,则的值是( )A.-2B.2C.-1D.任意数答案:A解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.∵的结果中不含x的一次项∴∴故选A.试题难度:三颗星知识点:多项式乘多项式13.下列式子:①;②;③;④.其中计算不正确的有( )A.3个B.2个C.1个D.0个答案:A解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.①,①不正确;②,②不正确;③,③不正确;④,④正确.故不正确的有①②③,共3个.试题难度:三颗星知识点:积的乘方14.计算的结果是( )A. B.C. D.答案:B解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选B.试题难度:三颗星知识点:整式的除法15.计算的结果是( )A. B.C. D.答案:D解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选D.试题难度:三颗星知识点:整式的除法。

整式的乘除测试题(3套)及答案

整式的乘除测试题(3套)及答案

第一章整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)43 31•多项式xy 2x y 9xy 8的次数是A. 3B. 4C. 5D. 62•下列计算正确的是 ()A. 2x 26x 412x 84 mB . y3mmyy C .x y 2 x 22 , 2y D. 4a 2a33.计算a ba b 的结果是()A. b 2 a 2B.2 ,2a bC. a 22ab b 2D.a 2 2ab b 224. 3a 5a1与 2a 2 3a 4的和为()A. 5a 22a 3 2小B. a 8a3 C.2a3a 52小D. a 8a55.下列结果正确的是()21 A.-1 B. 9 50C.53.7 01D. 2 31398m^n26.右 a b8 6a b,那么m 22n 的值是()A. 10B. 52C. 20D. 327•要使式子9x 225y 2成为一个完全平方式,则需加上( )二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)班级 ____ 姓名 ______ 学号 ________ 得分 ________A. 15xyB. 15xyC. 30xyD. 30xy1•在代数式3xy 2 ,个,多项式有一2m ,6a个。

2a 3 , 12 , 4x yz1 2xy 2 , 中,单项式有 5 3ab2•单项式 5x 2y 4z 的系数是,次数是 。

,413•多项式3ab ab 有项,它们分别是。

54•⑴ x 2 x 5。

34⑵y 3。

23⑶2a b。

⑷x 5y24。

93⑸a a。

⑹ 10 5 2 40z 1 2 635.⑴ mnmn。

⑵x 5 x 5。

3 5⑶(2a b )25 。

⑷ 12x 3小 2y3xy 。

/、m32m6•⑴ aa a。

⑵ 22a 8a242…。

20062 220051 ⑶ x y x y x y。

⑷3。

3三、精心做一做(每题5分,共15分)1. 4x 2 y 5xy 7x5x 2 y 4xy x2 2 32. 2a 23a 2 2a 1 4a 32 ^343.2x y 6x y 8xy 2xy1. X 1 2x 1 x 22. 2x 3y 5 2x 3y 5四、计算题(每题6分,共12分)1五、化简再求值:XX 2y x 12 2x,其中X -,y 25。

(完整版)数学七年级下《整式的乘除》测验题(含答案)

(完整版)数学七年级下《整式的乘除》测验题(含答案)

一、选择(每题 2 分,共 24 分)1.以下计算正确的选项是( ).A . 2x 2· 3x 3 =6x 3B . 2x 2+3x 3=5x 5C .(- 3x 2)·(- 3x 2) =9x5D . 5x n ·2x m =1 x mn4 522.一个多项式加上3y 2- 2y - 5 获得多项式 5y 3- 4y -6,则本来的多项式为().A . 5y 3+3y 2+2y - 1B . 5y 3- 3y 2- 2y -6C . 5y 3+3y 2-2y - 1D . 5y 3- 3y 2- 2y -13.以下运算正确的选项是( ).A . a 2· a 3=a 5B .( a 2) 3=a 5C . a 6÷ a 2=a 3D . a 6- a 2=a 44.以下运算中正确的选项是( ).1 1 1 B . 3a 2+2a 3=5a 5 C . 3x 2y+4yx2 =7D .- mn+mn=0A .a+ a= a2355.以下说法中正确的选项是().A .-1 B . xy 2没有系数xy 2是单项式3C . x - 1 是单项式D . 0 不是单项式二、填空(每题 2 分,共 28 分)6.- xy 2 的系数是 ______,次数是 _______.7. ?一件夹克标价为 a?元, ?现按标价的 7?折销售,则实质售价用代数式表示为______. 8. x_______=x n+1;( m+n )( ______) =n 2 -m 2;( a 2) 3·( a 3)2=______ . 9.月球距离地球约为× 105 千米,一架飞机速度为8× 102 千米 /时, ?若坐飞机翱翔这么远的距离需 _________.10. a 2+b 2+________= ( a+b )2 a 2+b 2+_______= ( a - b ) 2( a - b ) 2+______=( a+b )211.若 x 2- 3x+a 是完整平方式,则a=_______.12. 12.多项式 5x 2- 7x - 3 是 ____次 _______项式.三、计算(每题 3 分,共 24 分)13.( 2x2y-3xy2)-( 6x 2y- 3xy 2)14.(-3ax4 y3)÷(-6ax2y2)· 8a2y 253-12122y- 6xy)·(115.( 45a6a b+3a)÷(-a)16.(x xy )33217.( x- 2)( x+2)-( x+1 )(x- 3)18.( 1- 3y)(1+3y )( 1+9y2)19.( ab+1)2-( ab- 1)2四、运用乘法公式简易计算(每题 2 分,共 4 分)20.( 998)221. 197× 203五、先化简,再求值(每题4分,共 8分)22.( x+4)( x- 2)(x- 4),此中 x= - 1.23. [( xy+2 )( xy - 2)- 2x2y2+4] ,此中 x=10 , y=-1.25六、解答题(每题 4 分,共 12 分)24.已知 2x+5y=3 ,求 4x· 32y的值.25.已知 a2+2a+b2-4b+5=0 ,求 a, b 的值.答案 :一、 1.C 2.D 3.A 4. D 5.A二、 6.- 1 3 7.0.7a 元 8. x n n- m a129.× 102小时912.二三10. 2ab -?2ab 4ab 11.41三、 13.- 4x 2y14. 10a2x2y215.- 135a2+ab- 91216.x2y2-3x2 y17. 2x-118.1- 81x 4 ?19.4ab 3四、 20. 99600421. 39991五、 22. x2-2x2-16x+32 452 23.- xy5六、24.8 25. a=- 1, b=2。

(完整版)整式的乘除测试题(3套)及答案

(完整版)整式的乘除测试题(3套)及答案

21、(本题8分)若=2005, =2006,=2007,求的值。

a b c ac bc ab c b a ---++2
2222
、(本题8分).说明代数式的值,与的值无关。

[]
y y y x y x y x +-÷-+--)2())(()(2y 23、(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形 地块, 规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面
积是多少平方米? 并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算. 现有一居民本月用水x 吨,则应交水费多少元?
a
e m
i
t
ma
mx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;
,24时如果元应交水费时解如果 63
,2,3===原式时当b a
i n t h e i r b
e i n
g a
r e
g o
六、解答题(每题4分,共12分)
38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.
39.已知2x+5y=3,求4x ·32y 的值.
40.已知a 2+2a+b 2-4b+5=0,求a ,b 的值.。

整式的乘除测试题练习四套(含答案)

整式的乘除测试题练习四套(含答案)

整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。

]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。

整式乘除试题及答案

整式乘除试题及答案

整式乘除试题及答案一、选择题1. 下列哪个选项是整式乘法的运算法则?A. 同底数幂相乘,指数相加B. 同底数幂相除,指数相减C. 幂的乘方,指数相乘D. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘答案:A2. 计算 (2x^2)(3x^3) 的结果是:A. 6x^5B. 6x^6C. 6x^8D. 18x^5答案:A3. 已知 a^2 = 4,那么 a^3 的值是:A. 8B. 16C. 12D. 4答案:A二、填空题4. 计算 (3x^2 - 2x + 1)(2x^2 + 3x - 4) 的结果中,x^4 的系数是_______。

答案:65. 如果 (x+1)(x-1) = x^2 - _______,那么横线上的数字是_______。

答案:1三、解答题6. 计算 (2x^2 - 3x + 1)(3x^2 + 2x - 5) 的乘积,并展开。

答案:6x^4 + x^3 - 13x^3 - 9x^2 + 15x + 2x^2 - 3x - 5 = 6x^4- 11x^3 - 5x^2 + 12x - 57. 已知 (x^2 + 2x)^2 = x^4 + 4x^3 + 4x^2,求 (x^2 + 2x)^3 的值。

答案:(x^2 + 2x)^3 = (x^2 + 2x)(x^4 + 4x^3 + 4x^2) = x^6 +6x^4 + 12x^3 + 8x^2四、应用题8. 一个长方形的长是宽的两倍,如果宽是 x 米,那么面积是 (2x)(x) 平方米。

求当 x = 3 时,长方形的面积。

答案:当 x = 3 时,面积 = 2 * 3 * 3 = 18 平方米9. 一个数的平方是 25,求这个数的立方。

答案:这个数是 5 或 -5,所以立方分别是 125 或 -125。

1.七年级数学:《整式的乘除法》,共29道题,有答案,可以直接打印

1.七年级数学:《整式的乘除法》,共29道题,有答案,可以直接打印

1.七年级数学:《整式的乘除法》,共29道题,有答案,可以
直接打印
各位亲爱的同学,暑假快乐。

这份七年级数学,《整式的乘除法》,喜不喜欢?方老师,又给各位孩子放毒了。

这套题目不难,都是基础常见考试题型。

我们练习的时候,不要一味的钻偏题,难题,怪题。

我们要根据自己的实际情况做题,把基础的练好。

把常考题型,做到透彻熟练,看到题目,就知道该怎么解。

只有把基础做扎实,再做拓展培优。

循序渐进,后面的学习,才不会太难。

这才是备战中考。

图片可以直接打印,后面有参考答案。

图片直接保存到本地,可以打印。

感谢大家对方老师的支持。

有大家的支持,方老师一直在和大家一起奔跑。

做好当下,畅想未来。

三伏天,别人在玩的时候,我们在搞双抢,抢复习,抢预习。

我们要流得一身汗,才会收获满满的几十担谷子。

整式的乘除单元检测试卷含答案解析

整式的乘除单元检测试卷含答案解析

第一章整式的乘除单元检测一、选择题1.PM2.5是指大气中直径小于或等于0.000 002 5 m的颗粒物,将0.000 002 5用科学记数法表示为().A.0.25×10-5B.0.25×10-6 C.2.5×10-5D.2.5×10-6 2.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为().A.6a+b B.2a2-ab-b2 C.3a D.10a-b3.计算:3-2的结果是().A.-9 B.-6 C.-19 D.194.计算(-a-b)2等于().A.a2+b2B.a2-b2 C.a2+2ab+b2D.a2-2ab+b25.下列多项式的乘法中可用平方差公式计算的是().A.(1+x)(x+1) B.(2-1a+b)(b-2-1a)C.(-a+b)(a-b) D.(x2-y)(y2+x)6.一个长方体的长、宽、高分别为3a-4,2a,a,则它的体积等于().A.3a3-4a2B.a2 C.6a3-8a2D.6a3-8a7.计算x2-(x-5)(x+1)的结果,正确的是().A.4x+5 B.x2-4x-5 C.-4x-5 D.x2-4x+58.已知x+y=7,xy=-8,下列各式计算结果正确的是().A.(x-y)2=91 B.x2+y2=65 C.x2+y2=511 D.(x-y)2=567 9.下列各式的计算中不正确的个数是().①100÷10-1=10②10-4×(2×7)0=1 000③(-0.1)0÷(-2-1)-3=8④(-10)-4÷(-10-1)-4=-1A.4 B.3 C.2 D.1二、填空题10.用小数表示1.21×10-4是________.11.自编一个两个单项式相除的题目,使所得的结果为-6a3,你所编写的题目为______________________________________________________________________ __.12.已知(9n)2=38,则n=__________.13.长为3m+2n,宽为5m-n的长方形的面积为__________.14.用小数表示3.14×10-4=__________.15.要使(ax2-3x)(x2-2x-1)的展开式中不含x3项,则a=__________.16.100m·1 000n的计算结果是__________.三、解答题17.计算:1122-113×111.18.先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=12,b=-1.19.先化简,再求值:(3x-y)2-(2x+y)2-5x(x-y),其中x=0.2,y=0.01.20.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆:(1)求剩下钢板的面积;(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)21.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?22.八年级学生小明是一个喜欢思考问题而又乐于助人的好学生,一天邻居家读小学的小李,请他帮忙检查作业:7×9=63;8×8=64;11×13=143;12×12=144;24×26=624;25×25=625.小明仔细检查后,夸小李聪明,作业全对了!小明还从这几题中发现了一个规律,你知道小明发现了什么规律吗?请用字母表示这一规律,并说明它的正确性.参考答案1.D 点拨:0.000 002 5=2.5×10-6,故选D.2.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )·(a -b ),然后计算整理化为最简形式即可.3.D 点拨:3-2=132=19.4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x 2-(x -5)(x +1)=x 2-(x 2-4x -5)=4x +5.8.B 点拨:(x -y )2=(x +y )2-4xy =72-4×(-8)=81;x 2+y 2=(x +y )2-2xy =72-2×(-8)=65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把10的负指数幂转化为小数即可.1.21×10-4=1.21×0.000 1=0.000 121.11.答案不唯一,如-12a 5÷2a 212.2 点拨:先把9n 化为32n ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n =8,从而求得n 的值.13.15m 2+7mn -2n 2 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出代数式是解答本题的关键.14.0.000 31415.-32 点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,同时要注意各项符号的处理.16.102m +3n 点拨:100m ·1 000n =(102)m ·(103)n =102m ·103n =102m +3n .17.解:原式=1122-(112+1)(112-1)=1122-(1122-1)=1122-1122+1=1.18.解:(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab .当a =12,b =-1时,原式=-2×12×(-1)=1.点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x 2-6xy +y 2-(4x 2+4xy +y 2)-5x 2+5xy =-5xy . 当x =0.2,y =0.01时,原式=-5×0.2×0.01=-0.01.20.解:(1)S 剩=12·π·⎣⎢⎡⎦⎥⎤(x +y )24-x 2+y 24=14πxy . 答:剩下钢板的面积为π4xy .(2)当x =4,y =2时,S 剩=14×3.14×4×2=6.28.点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为x ,据题意得,[(x +2)2-4]÷x=(x 2+4x +4-4)÷x=x +4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少. 点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n (n +2)=(n +1)2-1.点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.。

整式的乘除计算练习题及答案

整式的乘除计算练习题及答案

整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学下册第一章整式的乘除单元测试卷(一)班级姓名学号得分一、精心选一选(每小题 3 分,共21 分)4 x y xy3 31.多项式xy 2 9 8的次数是( )A. 3B. 4C. 5D. 62.下列计算正确的是( )A. 2x x xB.2 6 4 12 82 6 4 12 8y m m4 3 C. 2 2m 2 x y2 a2y y x y D. 4a 33.计算a b a b 的结果是( )A. 2 a 2b B.2 b2a C.2 2ab b2a D.2 2ab b2a2 a 2 a4. 3a 5 1与2a 3 4 的和为( )2 a 2 a 2 a 2 aA. 5a 2 3B. a 8 3C. a 3 5D. a 8 55.下列结果正确的是( )A. 132190 C. 53 7 0 1B. 9 5 0 . D.2 3186. 若m na b 2 8 6 2a b ,那么m 2n 的值是( )A. 10B. 52C. 20D. 327.要使式子 2 25 29x y 成为一个完全平方式,则需加上( )A. 15 x yB. 15 xyC. 30 xyD. 30 x y二、耐心填一填(第1~4题每空1 分,第5、6 题每空2 分,共28 分)8.在代数式 22 a3xy ,m ,6a 3 ,12 ,12 24x yz xy ,523ab中,单项式有个,多项式有个。

2 49.单项式5x y z 的系数是,次数是。

10.多项式14 ab3ab 有项,它们分别是。

511. ⑴ 2 x5x 。

⑵43y 。

⑶322a b 。

⑷4x 。

5 y25 y2⑸9 a3a 。

⑹2 4010 5 。

12.⑴1362 3mn 。

⑵x 5 x 5 。

mn5⑶ 2(2a b)。

⑷ 5 3 3212x y xy 。

13. ⑴a 3m a a2 m 。

⑵2a a 22 8 4 2 。

⑶ 2 y2x y x y x 。

⑷2006120053 。

3三、精心做一做(每题5 分,共15 分)2 21. 4x y 5xy 7x 5x y 4xy x2. 2a a a a2 3 2 2 1 4 32 3 2 2 1 432 3 414. 2x y 6x y 8xy 2xy四、计算题。

(每题6分,共12分)2 x x3. x 1 1 24. 2x 3y 5 2x 3y 52五、化简再求值:x x 2y x 1 2x ,其中1x ,y 25 。

(7 分)25六、若 4m nx ,x 8,求x 3m n 的值。

(6 分)七、(应用题)在长为3a 2 ,宽为2b 1 的长方形铁片上,挖去长为2a 4 ,宽为 b 的小长方形铁片,求剩余部分面积。

(6 分)八、在如图边长为7. 6 的正方形的角上挖掉一个边长为 2. 6 的小正方形,剩余的图形能否拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少.(5 分)7.6单元测试卷(一)参考答案一、(每小题 3 分,共21 分)1. D;2. B;3. A;4. B;5.C;6. A;7. D二、(第1~4 题每空 1 分,第5、6 题每空 2 分,共28 分)5. 3,2;2.-5,7;3. 3, 4 13ab , ab, ;4. ⑴57x ⑵12y ⑶6 38a b ⑷20 8x y ⑸6a ⑹255.⑴252 5m n ⑵ 225x ⑶2 24a 4ab b ⑷44x y6. ⑴2m 2a ⑵5a+4⑶ 42 2 2 4x x y y ⑷13三、精心做一做(每题 5 分,共15 分)1. 2 8x y xy x ;2.4 26a 2a ;3.2 3x 3x y 4四、计算题。

(每题 6 分,共12 分)1. x 3;2. 2 24x 12xy 9y25五、-2六、8七、4ab 3a 2八、能,图略,7.6 2.6 5 51北师大版七年级数学下册第一章整式的乘除单元测试卷(二)班级姓名学号得分一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!15.下列运算正确的是()A. 4 a a5 9a B.a3 a3 a3 3a3C. 4 3 5 6 92a a a D.43 a7 a2012 20125 316. 2 ()13 5A. 1B. 1C. 0D. 19972 53 217.设5a 3b a b A ,则A= ()A. 30 abB. 60 abC. 15 abD. 12ab18.已知x y 5, xy 3, 则2 y2x ()A. 25. B 25 C 19 D、19a xb 19.已知x 3, 5,则3a 2 ()bxA 、2725B、910C、35D、5220. .如图,甲、乙、丙、丁四位同学给出了四a b a种表示该长方形面积的多项式:m①(2a+ b)( m+n); ②2a(m+n)+b(m+n);n③m(2a+ b)+ n(2a+ b); ④2am+2 an+bm +b n,你认为其中正确的有A 、①②B、③④C、①②③D、①②③④()7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为()A 、–3 B、3 C、0 D、112 28.已知.(a+b) =9,ab= - 12 ,则a2+b的值等于()A 、84 B、78 C、12 D、69.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是()8 4 4A .a +2a b +b 8 8 4 4 8-2aB.a b +b8 8C.a +b8 8-bD.a7 2 821.已知P m 1,Q m m15 15(m 为任意实数),则P、Q 的大小关系为()A 、P Q B、P Q C、P Q D、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!2 mx22.设4x 121是一个完全平方式,则m =_______。

123.已知x 5 ,那么x2 1x =_______。

2x24.方程x 3 2x 5 2x 1 x 8 41的解是_______。

25.已知m n 2 ,mn 2 ,则(1 m)(1 n) _______。

26.已知 2a=5,2b=10,2c=50,那么a、b、c 之间满足的等量关系是___________.2 n227.若m 6 ,且m n 3,则m n .三、解答题(共8题,共66分)温馨提示:解答题必须将解答过程清楚地表述出来!17 计算:(本题9 分)(1)122012 3.1412(2)(2)23322232x y xy x y x2(3)262332226m n m n m m18、(本题9分)(1)先化简,再求值:211122a b a b a b a,其中1 a,2b2。

2x(2)已知x13,求代数式(x1)4(1)4的值.(3)先化简,再求值: 2(a 3)( a 3) a(a 6) 6,其中a 2 1.19、(本题8 分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b,且BC,现打算在阴影部分种植一片草坪,求这片草坪的面积。

13E 为AB 边的中点,CF=F CBEDA20、(本题8 分)若(x2+mx-8) (x 2-3x+n) 的展开式中不含x2和x3 项,求m 和n 的值2 2 的值。

221、(本题8 分)若a=2005,b =2006,c=2007,求a b c ab bc acy 的值无关。

22、(本题8 分).说明代数式(x y) 2 的值,与(x y)( x y) ( 2 y) y23、(本题8 分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,?规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米??并求出当a=3,b=2 时的绿化面积.24、(本题8 分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过 a 吨,每吨m 元;若超过 a 吨,则超过的部分以每吨2m 元计算.?现有一居民本月用水x 吨,则应交水费多少元?单元测试卷(二)参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 C B B C A D A C B C 二、填空题28. 44 12. 23 13.11x 14. -3 15. a+b=c 16. 214三、解答题17 计算:(本题9 分)(1)解原式 1 4 1 46 2 2 5 3 (2)解原式4x y ( 2xy) 2x 4x y(3)解原式2n 22n 16.(1)解原式24a 4ab2b (a21)2b (a 1)224a 4ab2 2b当a 12,b 2 ,原式 1 4时813(2)由x 1 3 得x 3 1化简原式=x2 2x 1 4x 4 42 x=x 2 12=( 3 1)2( 3 1) 1=3 2 3 1 2 3 2 1=32(3)原式= a 6a ,当a 2 1时,原式=4 23.F CB1 119解S阴影6ab 6ab a 2b 2ab2 2EDA20解原式x4 3 23x nx3mx23mx m nx 8x2 24x 8nx 4 (m 3) 3 x (n 3m 8) x 2 ( mn 24) x 8n不含 2x3和x项,mn33m8 0mn31712 2解原式 a b b c a c a b c 21 ( ) ( ) ( ) ,当2005, 2006,2 2007时原式121 1 4 322解原式( 2 2 2 2x 2xy y x y ) ( 2y) y x y y x代数式的值与y无关29.解S绿化(2a b)( 3a b) (a 2b)25a 3ab当a 3,b 2时, 63原式24 x a , mx元;解如果时应交水费如果x a时, am 2m( x a) am 2mx 2ma 2mx ma北师大版七年级数学下册第一章整式的乘除单元测试卷(三)班级姓名学号得分一、选择(每题2分,共24分)1.下列计算正确的是().2 3 3·3x A.2x =6x2B.2x +3x3=5x52)·(-3x2)=9x5 D.5 C.(-3x4n· 2x5x m=1m= 12x mn2-2y-5 得到多项式5y3-4y-6,则原来的多项式为().2.一个多项式加上3yA.5y3+3y2+2y-1 B.5y3-3y2-2y-63 2 3 2-2y-1 D.5y -3y -2y-1C.5y +3y3.下列运算正确的是().2·a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.a6-a2=a4 A. a4.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5 C.3x2y+4yx 2=7D.-mn+mn=02+2a3=5a5 C.3x2y+4yx 2=7 D.-mn+mn=05.下列说法中正确的是().A.-13xy 2是单项式B.xy2 没有系数C.x-1 是单项式D.0 不是单项式6.若(x-2y)2=(x+2y)2+m,则m 等于().A.4xy B.-4xy C.8xy D.-8xy 7.(a-b+c)(-a+b-c)等于().A.-(a-b+c)2B.c2-(a-b) 2C.(a-b)2-c2 D.c2-a+b28.计算(3x2y)·(-2y)·(-43x4y)的结果是().4y)的结果是().A. x6y2 B.-4x6y C.-4x6y2 D.x8y9.等式(x+4)0=1 成立的条件是().A.x 为有理数B.x≠0 C.x≠4 D.x≠-410.下列多项式乘法算式中,可以用平方差公式计算的是().A.(m-n)(n-m)B.(a+b)(-a-b)C.(-a-b)(a-b)D.(a+b)(a+b)11.下列等式恒成立的是().A.(m+n)2=m2+n2 B.(2a-b)2=4a2-2ab+b2C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2- 912.若A=(2+1)(22+1)(24+1)(28+1),则A-2003 的末位数字是().A.0 B.2 C.4 D.6二、填空(每题2分,共28分)2的系数是______,次数是_______.13.-xy14.?一件夹克标价为a?元,?现按标价的7?折出售,则实际售价用代数式表示为______.15.x_______=x n+1 ;(m+n)(______)=n 2 2 2-m ;(a)3 3 2·(a)=______.5 千米,一架飞机速度为8×102 千米/时,?若坐飞机飞行16.月球距离地球约为 3.84×10这么远的距离需_________.17.a2+b2+________= (a+b)2 a2+b2+_______= (a-b) 2(a-b)2+______=(a+b)22-3x+a 是完全平方式,则a=_______.18.若x2-7x-3 是____次_______项式.19.多项式5x20.用科学记数法表示-0.000000059=________.21.若-3xm y5 与0.4x3y2n+1 是同类项,则m+n=______ .22.如果(2a+2b+1)(2a+2b-1)=63,那么a+b 的值是________.23.若 x 2+kx+2+kx+ 1 4 =(x - 1 2 ) 2,则 k=_______;若 x 2-kx+1 是完全平方式,则 k=______ .2,则 k=_______;若 x 2-kx+1 是完全平方式,则 k=______ . 24.(- 16 15-2 ) =______;(x -) 2=_______.2005 668× ( 0.125)25.2=________.26.有三个连续的自然数,中间一个是 x ,则它们的积是 _______.三、计算(每题 3 分,共 24 分)227.(2x y -3xy2 2 2 )-( 6x )28.(- y -3xy3 24 3 ax y )÷ (- 65 2 2 2 )· 8aax y y3-1 29.(45a6 a 2b+3a )÷(- 2b+3a )÷ (-1 3a )30.( 2 3 x 2y -6xy )·( 2y -6xy )·(1 2 xy )31.(x -2)(x+2)-( x+1)(x -3) 32.(1-3y )(1+3y )(1+9y2)33.(ab+1)2-(ab -1) 2四、运用乘法公式简便计算(每题2分,共4分)34.(998)235.197×203五、先化简,再求值(每题4分,共8分)36.(x+4)(x-2)(x-4),其中x=-1.2 237.[(xy+2)(xy-2)-2x y +4],其中x=10,y= -1 25.六、解答题(每题4分,共12分)38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.x·32y的值.39.已知2x+5y=3,求440.已知a2+2a+b2-4b+5=0,求a,b的值.附加题(10分)1.下列每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案中的棋子总数为S,按下列的排列规律判断,?S与n之间的关系式并求当n=6,10时,S的值.2-b)=2,求2.设a(a-1)-(a22a b2-ab的值.单元测试卷(三)参考答案一、1.C 2.D 3.A 4.D 5.A 6.D7.A 8.C 9.D 10.C 11.C 12.Bn n-m a12 16.4.8×102 小时二、13.-1 3 14.0.7a 元15.x17.2ab -?2ab 4ab 18.94-8 19.二三20.-5.9×1021.5 22.± 4 23.-1 ± 2 24.2252562-x+x143-x?25.2 26. x2y 28.10a2x2y2 29.-135a2+ 三、27.-4x 12ab-930.13x2y2-3x2y 31.2x-1 32.1-81x4 ?33.4ab2y2-3x2y 31.2x-1 32.1-81x4 ?33.4ab四、34.996004 35.399912-2x2-16x+32 45 37.-xy 2五、36. x5六、38.略39.8 40.a=-1,b=2附加题:1.S=4n-4,当n=6 时,S=20;当n=10 时,S=36 2.见疑难解析2 2 2-b)=2,进行整理 a -a-a30.∵a(a-1)-(a +b=2,得b-a=2,再把2 2a b2-ab 变形成2(a b) 2ab 2ab2=2.。

相关文档
最新文档