高一数学专题练习:函数的定义域、值域(含答案)

合集下载

高一数学函数专题(含答案)

高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.2.已知定义在上的函数是偶函数,且时,。

(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件【答案】(1)(2)当,取值的集合为,当,取值的集合为;(3)【解析】(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解试题解析:解:(1)函数是偶函数,当时,当时(4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为(6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时,(4)【考点】1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域3.函数的定义域为 .【答案】【解析】有已知,得因为为增函数所以.【考点】1.函数定义域.2.对数不等式.4.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.5.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.6.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.7.函数定义域为,则满足不等式的实数m的集合____________【答案】【解析】因为函数定义域为又因为.所以.所以即为.即.所以.故填.本小题的关键点是字母比较多易混淆.【考点】1.函数的定义域.2.不等式的解法.3.待定的数学思想.8.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.9.函数的值域为 .【答案】【解析】函数,对称轴为,开口向上,则由图像可知函数,即值域为.【考点】二次函数的定义域、对称轴、值域.10.函数的值域是 .【答案】【解析】,令,则,且,当时是增函数,而,所以,即.所以所求函数的值域为.【考点】二次函数的值域.11.如果函数y=b与函数的图象恰好有三个交点,则b= .【答案】【解析】当x≥1时,函数图象的一个端点为,顶点坐标为,当x<1时,函数顶点坐标为,∴当或时,两图象恰有三个交点.【考点】二次函数的性质点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.12.若函数的定义域是[0,4],则函数的定义域是()A.[ 0, 2]B.(0,2)C.(0,2]D.[0,)【答案】C【解析】根据题意,因为函数的定义域是[0,4],可知x [0,4],那么对于g(x)有意义时满足2x [0,4],x ,那么可知得到为(0,2],故选C.【考点】函数的定义域点评:解决的关键是根据函数定义域的理解来得到函数的定义域,属于基础题。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高一函数定义域、值域习题及答案

高一函数定义域、值域习题及答案

复合函数定义域和值域练习题一、 求函数的定义域 1、求下列函数的定义域:⑴y =(2)01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y =三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。

又因为分式中有$x-1$的项,所以还要满足$x\neq1$。

所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。

⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。

所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。

⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。

分式中有$x-1$的项,所以还要满足$x\neq1$。

分母不能为0,所以$x\neq\pm\sqrt{2}$。

所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。

2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。

3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。

4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。

由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。

解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。

⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。

⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。

2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。

若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。

3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。

同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。

要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。

根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的值域是()A.[0,12]B.[-,12]C.[-,12]D.[,12]【答案】B.【解析】因为函数,所以,当时,;当时,;所以函数的值域为.故应选B.【考点】二次函数的性质.3.已知函数的定义域为,则函数的定义域为()A.(-,-1)B.(-1,-)C.(-5,-3)D.(-2,-)【答案】B.【解析】因为函数的定义域为,即,所以,所以函数的定义域为,所以,即,所以函数的定义域为.故选B.【考点】函数的定义域及其求法.4.已知函数在时取得最大值4.(1)求的最小正周期;(2)求的解析式;(3)若,求的值域.【答案】(1);(2);(3).【解析】(1)直接利用正弦函数的周期公式,求f(x)的最小正周期;(2)利用函数的最值求出A,通过函数经过的特殊点,求出φ,然后求f(x)的解析式;(3)通过,求出相位的范围,利用正弦函数的值域直接求f(x)的值域..试题解析:解:(1),(3)时,的值域为【考点】1.由y=Asin(ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法.5.函数的定义域是 ( )A.B.C.D.【答案】D【解析】要使函数式有意义,则.【考点】本题考查函数的定义域即使函数式有意义的自变量的取值范围.6. (1)求不等式的解集:.(2)求函数的定义域:.【答案】(1);(2).【解析】(1)首先将首项系数化为正数,然后分解因式,进而可求得不等式的解集;(2)首先根据根式要有意义建立不等式,然后通过解分式不等式可求得结果.试题解析:(1)∵,∴,∴,∴或,∴原不等式的解集为.(2)要使函数有意义,须,解得或,∴函数的定义域是.【考点】1.一元二次不等式的解法;2.函数定义域.7.函数的定义域是.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于08.计算:(2)已知函数,求它的定义域和值域。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.3.已知,函数.(1)当时,画出函数的大致图像;(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;(3)试讨论关于x的方程解的个数.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)当a=2时,,作出图象;(2)由(1)写出函数y=f(x)的单调递增区间,再根据单调性定义证明即可;(3)由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数.试题解析:(1)如图所示3分(2)单调递减区间: 4分证明:设任意的5分因为,所以于是,即6分所以函数在上是单调递减函数 7分(3) 由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数又,注意到,当且仅当时,上式等号成立,借助图像知 8分所以,当时,函数的图像与直线有1个交点; 9分当,时,函数的图像与直线有2个交点; 10分当,时,函数的图像与直线有3个交点;12分.【考点】1.绝对值的函数;2.函数的值域;3.函数的零点.4.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.5.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.6.函数的定义域为___ _____.【答案】【解析】开偶次方根即,所以.【考点】函数定义域及指数函数.7.函数的定义域为____________;【答案】.【解析】定义域是使函数式有意义的自变量的取值集合..【考点】函数的定义域.8.函数的定义域是______________.【答案】【解析】求定义域就是使式子各部分都有意义;注意定义域写成区间形式.要使有意义则解得且所以定义域为【考点】函数自变量的取值范围.9.已知函数(1)用定义证明在上单调递增;(2)若是上的奇函数,求的值;(3)若的值域为D,且,求的取值范围.【答案】(1)设且则即在上单调递增;(2);(3).【解析】(1)在定义域内任取,证明,即,所以在上单调递增;(2)因为,是上的奇函数,所以,即,代入表达式即可得;(3)可求得的值域,由可得不等式,所以.试题解析:(1)设且 1分则 3分即 5分在上单调递增 6分(2)是上的奇函数8分即11分(用得必须检验,不检验扣2分)(3)由14分的取值范围是 16分【考点】1、函数单调性的证明;2、奇函数的定义;(3)函数的值域.10.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域11.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域12.已知函数是偶函数,那么函数的定义域为()A.B.C.D.【答案】B【解析】由函数是偶函数,可得对称轴,得a= ;即解不等式,解得,故选B.【考点】1、偶函数的性质;2、定义域的求法;3、对数不等式的解法.13.实数是图象连续不断的函数定义域中的三个数,且满足,则在区间的零点个数为()A.2B.奇数C.偶数D.至少是2【答案】D【解析】此题主要考查学生对函数零点存在性定理掌握情况,因为,所以在区间上至少存在一个零点,同理在区间上也至少存在一个零点,又因为、,故正确答案是D.【考点】1.函数定义域;2.函数零点存在性定理.14.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.15.函数的定义域为()A.(0,2]B.(0,2)C.D.【答案】C【解析】由题意知所以,故的定义域为,故选C.【考点】函数的定义域16.函数的定义域是 ( ).A.[-1,+∞)B.(-∞,0)∪(0,+∞)C.[-1,0)∪(0,+∞)D.R【答案】C【解析】函数的定义域就是使函数式有意义的自变量x的取值范围,本题中要求所以正确答案为C.【考点】函数的定义域.17.函数的定义域为【答案】【解析】要使函数有意义需满足【考点】函数定义域点评:函数定义域是使函数有意义的自变量的取值范围或题目中给定的自变量的范围18.已知函数.(1)求它的定义域,值域;(2)判定它的奇偶性和周期性;(3)判定它的单调区间及每一区间上的单调性.【答案】(1)的定义域为,值域为(2)既不是奇函数也不是偶函数(3)单调增区间为[();单调减区间为(().【解析】解:(1)由得又因为0<,所以的定义域为,值域为定义域关于原点不对称,故既不是奇函数也不是偶函数;,其中是周期函数,且最小正周期是.,,,即,,即,,即单调增区间为[();单调减区间为(().【考点】三角函数的性质点评:解决的关键是熟练的运用正弦函数的性质来得到其周期和单调性,属于基础题。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.的定义域为【答案】【解析】要使函数有意义,则需,解得。

【考点】函数定义域的求法,2.函数的定义域为 .【答案】【解析】本题主要考查函数定义域.由,得:,即:;由,得:,所以.【考点】函数定义域,集合的运算.3.函数的定义域是.【答案】【解析】由定义域的求法知,函数的定义域为,解得.【考点】函数定义域的求法.4.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.5.已知函数,则的值域为 .【答案】(-2,1).【解析】当x<1时,0<3x<3,故-2<f(x)=1-3x<1,故f(x)的值域为(-2,1).【考点】函数的值域.6.已知函数,那么的定义域是A.B.C.D.【答案】B【解析】由已知得,所以函数,则有,故函数的定义域为.所以正确答案为B.【考点】1.函数解析式;2.函数的定义域.7.若函数的定义域是,则函数的定义域是()A.B.C.D.【答案】C【解析】利用复合函数的定义域求法,的值域是的定义域,因为函数的定义域是,所以得所以函数的定义域是故选C【考点】函数的定义域及其求法.8.函数的定义域是【答案】【解析】函数有意义,则,所以函数的定义域为.【考点】函数的定义域,对数真数大于0,偶次根式大于等于0.9.函数的定义域为.【答案】【解析】函数的定义域是使函数式有意义的自变量的取值集合,本题中即.【考点】函数的定义域.10.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.11.若,则的定义域为()A.B.C.D.【答案】A【解析】要使函数有意义,则满足解得.【考点】函数的定义域.12.已知函数,且.(1)求的值,并确定函数的定义域;(2)用定义研究函数在范围内的单调性;(3)当时,求出函数的取值范围.【答案】(1),定义域:;(2)上是减函数,上是增函数;(3).【解析】(1)直接代入列出关于的方程即可;(2)要正确理解单调性的定义,明确用定义研究(或证明)函数的单调性的格式过程,设,然后比较和的大小,通常是作差(也可),确定差的正负;(3)由(2)中的单调性,可容易求出函数的取值范围.试题解析:(1),定义域:; 3分(2)令,则,6分故当时,;当时,,∴函数在上单调减,在上单调增; 8分(3)由(2)及函数为奇函数知,函数在为增函数,在为减函数,故当时,, 10分,∴当时,的取值范围是. 12【考点】(1)函数值的意义;(2)函数的单调性的定义;(3)函数的值域.13.函数的定义域是.【答案】【解析】要使函数有意义需满足,解得;所以函数的定义域为【考点】1.函数的定义域;2.指数不等式.14.函数的定义域 .【答案】【解析】由,当时,,得,故定义域为.【考点】函数定义域.15.函数的定义域是_ ____.【答案】【解析】要使函数有意义,需满足,定义域为点评:函数定义域是使函数有意义的自变量的范围或题目中指定的自变量的取值范围16.定义在R上的函数的值域是,又对满足前面要求的任意实数都有不等式恒成立,则实数的最大值为A. 2013B. 1C.D.【答案】A【解析】函数的值域是,,设,是增函数,最小值为恒成立,最大值2013【考点】函数求最值及不等式性质点评:本题主要应用的知识点有:二次函数求最值,均值不等式求最值,利用函数单调性求最值,综合性较强,有一定难度17.函数的值域是__________.【答案】【解析】因为在(0,+)是减函数,所以=-2,故函数的值域是。

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题1.求函数的定义域1) 求下列函数的定义域:a) $y=\frac{x^2-2x-15}{x+3-3}$b) $y=1-\frac{1}{x-1}$c) $y=\frac{1}{1+(x-1)}+\frac{(2x-1)+4-x^2}{2}$2) 设函数$f(x)$的定义域为$[0.1]$,则函数$f(x^2)$的定义域为$[0.1]$;函数$f(x-2)$的定义域为$[-2.1]$;函数$f(x+1)$的定义域为$[-2.3]$,则函数$f(2x-1)$的定义域为$[0.5]$;函数$f(-2)$的定义域为$[0.1]$。

3) 已知函数$f(x)=\sqrt{\frac{x-1}{x+1}}$,则函数$f\left(\frac{1}{x}\right)$的定义域为$x\neq0$。

2.求函数的值域5) 求下列函数的值域:a) $y=x^2+2x-3$,$x\in\mathbb{R}$b) $y=x^2+2x-3$,$x\in[1.2]$c) $y=\frac{3x-1}{x+1}$d) $y=\begin{cases}0.& x<5\\ \frac{1}{x+1}。

& x\geq 5\end{cases}$e) $y=\frac{5x^2+9x+4}{x^2-1}$f) $y=x-3+x+1$g) $y=x^2-x$h) $y=-x^2+4x+5$i) $y=4-\frac{x^2+4x+5}{x^2-1}$6) 已知函数$f(x)=\frac{2x^2+ax+b}{x^2+1}$的值域为$[1.3]$,求$a$和$b$的值。

3.求函数的解析式1) 已知函数$f(x-1)=x^2-4x$,求函数$f(x)$和$f(2x+1)$的解析式。

2) 已知$f(x)$是二次函数,且$f(x+1)+f(x-1)=2x^2-4x$,求$f(x)$的解析式。

高一三角函数定义域、值域习题及答案

高一三角函数定义域、值域习题及答案

高一三角函数定义域、值域习题及答案
三角函数是数学中重要的概念之一,它在解决各种实际问题中发挥着重要的作用。

本文将介绍高一三角函数的定义域、值域,并提供一些题及答案供参考。

一、正弦函数的定义域和值域
正弦函数是三角函数中常见的一种,表示为sin(x)。

它的定义域是所有实数集合R,即无限制。

而它的值域是闭区间[-1, 1],即sin(x)的取值范围在-1到1之间。

例题1:求函数y = sin(x)的定义域和值域。

答案:
定义域:D = R
值域:V = [-1, 1]
二、余弦函数的定义域和值域
余弦函数是另一种常见的三角函数,表示为cos(x)。

它的定义域也是所有实数集合R,无限制。

值域同样是闭区间[-1, 1],即cos(x)的取值范围在-1到1之间。

例题2:求函数y = cos(x)的定义域和值域。

答案:
定义域:D = R
值域:V = [-1, 1]
三、正切函数的定义域和值域
正切函数是三角函数中另一个重要的函数,表示为tan(x)。

它的定义域是除去所有使得tan(x)无定义的点的实数集合。

tan(x)在x = (2n+1)π/2 (n为整数)时无定义,因此其定义域为除去这些点的实数集合。

正切函数的值域是全体实数R。

例题3:求函数y = tan(x)的定义域和值域。

答案:
定义域:D = R - {(2n+1)π/2} (n为整数)
值域:V = R
以上是高一三角函数定义域、值域的基本介绍以及一些习题的答案。

希望对您的学习有所帮助!。

高中数学必修一-专题三-函数的定义域与值域(含详解).docx

高中数学必修一-专题三-函数的定义域与值域(含详解).docx

专题三函数的定义域和值域一.选择题(共12小题)1.函数f(J二応的定义域是( )A. ( - 1, +00)B. ( 一1, 1) U (1, +8) C・[一1, +00) D. [ - 1, 1)U (1, +oo)2.已知函数f (x)二换的定义域为(1, 2),则函数f(X?)的定义域是()A. (1, 2) B・(1, 4) C. R D・(一伍,-1) U (1, ^2)3. 已知函数f (x)二圻孑的定义域是R,则实数a 的取值范围是()ax +ax~3A. a>丄B・ - 12VaW0 C・ - 12<a<0 D・ aW丄3 34. 集合A二{x|0WxW4}, B二{y|0WyW2},下列不能表示从A到B的函数的是5. 下列图形中,不能表示以x为自变量的函数图象的是()A./°►x x^y=2 x C.C6. 下列函数与函数y二x相等的是()._ 2A・尸(换)2 B.尸存C・尸(饭)$ D.宀下列四组函数,表示同一函数的是(f (x)二J X 2-4‘ £(X )二2f(x)二x, g(x)仝—X{1, V3> B ・(-8, 0] C ・[1, +8) D. R10・若函数y=7ax 2+2ax+3的值域为〔0,+°°),则a 的取值范围是( )A. (3, +8) B ・[3, +8) C ・(-8, 0] U [3, +00)D.(・8,0)U[3, + oo )11. 二次函数 f (x) =x 2 - 4x+l (xe [3, 5])的值域为( )A ・[-2, 6]B ・[一3, +8)C ・[-3, 6]D ・[一 3, - 2] 12. 若函数f(x)=1/-2x+4的定义域、值域都是[2, 2b],则()乙A. b=2B. bG [1, 2]C. be (1, 2) D ・ b 二 1 或 b 二2二. 填空题(共4小题)13. 函数f (x)二(3-2X _ * $的定义域为 _______ ,值域为 _______ ・ 14. 函数f(x)二JI3+佑忑-1的定义域是 __________ .15. 函数y=Vkx 2-4kx+k+6的定义域为R ,则k 的取值范围 _________ 16. 函数f(x)二的值域为 ______________ ・三. 解答题(共6小题)A. ①B-A. f(x)二g Cx) =xB. C. D. f (x) = |x+l | , g (x) =4x+l, -X-1, X-l9. 己知函数 f (x) =V2x-l ,xe {1, 2, 3}.则函数f (x)的值域是( )A. ②③④C. ①③④D.17.求下列函数的定义域:(1)尸厶+8&3-x;(2) 18・已知函数f (x)1+x2(1) 求 f (1) +f (2) +f (3) +f (丄)+f (丄)的值;2 3(2) 求f (x)的值域.19. 已知函数y=V x2+6inx+in+8的定义域为R,求实数m的取值范围.220. 当x>0吋,求函数yz:3+x+x的值域.1+x21-已知函数f (x)二"*+3+』2 '(1)求函数的定义域;(2)求f(-3), f(春)的值.322.求函数f(X)=x2+ x - 2 | , xe [0, 4]的值域.专题三(2)函数的概念参考答案与试题解析一.选择题(共12小题)1. 函数f(£二仮石占的定义域是( )A. ( - 1, +8)B.(・ 1, 1) U (1, +8) C・[一1, +8) D. [ - 1, 1) U (1, +8)【分析】由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组求解.【解答】解:由卩+1空0,解得x^_i且X"Ix-lT^O・・・函数f(£二頁石的定义域是[-1,1)U (1, +oo)・故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2. 已知函数f (x)二仄的定义域为(1, 2),则函数f(X?)的定义域是( )A. (1, 2) B・(1, 4) C. R D・(一典,-1) U (1, ^2)【分析】由已知函数的定义域可得1<X2<2,求解不等式组得答案.【解答】解:・・•数f (x)二换的定义域为(1, 2),・・・由1<X2<2,得- V2<x< - 1或1 <x<“^・即函数f 2)的定义域是(-辺,-1) U (1,V2). 故选:D.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.3.已知函数f (x)二圻孑的定义域是R,则实数a的取值范围是( )ax +ax~3A. a>丄B・一12VaW0 C・-12<a<0 D・ aW丄3 3【分析】由函数f (x)二申*一1的定义域是R,表示函数的分母恒不为零,即ax+ax~3方程ax2+ax - 3=0无解,根据-•元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.f曲工o【解答】解:由护0或2,、/-4aX (-3X0可得-12VaW0,故选:B.【点评】求函数的定义域时要注意:(1)当函数是由解析式给岀时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给岀时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集•若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f下的量"x〃"x+a〃"x - 所要满足的范围是一样的;②函数g(X)中的自变量是x,所以求g (x)的定义域应求g (x)中的x的范围.4.集合A二{x|0WxW4}, B二{y|0WyW2},下列不能表示从A到B的函数的是A. f:B・ f: x->y=2 x C・ f:D・巳【分析】根据函数的定义分别进行判断即可.【解答】解:C的对应法则是f: xTy二Zx,可得f (4)二邑B,不满足映射的定 3 3义,故C的对应法则不能构成映射.故C的对应f中不能构成A到B的映射.故选:C.【点评】本题给岀集合A、B,要求我们找出从A到B的映射的个数,着重考查了映射的定义及其判断的知识,属于基础题.5. 下列图形中,不能表示以x为自变量的函数图象的是( )【分析】利用函数定义,根据X取值的任意性,以及y的唯一性分别进行判断. 【解答】解:B中,当x>0吋,y有两个值和x对应,不满足函数y的唯一性,A, C, D满足函数的定义,故选:B.【点评】本题主要考查函数的定义的应用,根据函数的定义和性质是解决本题的关键.6. 下列函数与函数y二x相等的是()._ 2A・尸(依)2 B・尸F C・y=(Vx)3 D・尸*■【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和己知函数一致即可.【解答】解:A.函数的定义域为{x|xNO},两个函数的定义域不同.B. 函数的定义域为R, y=|x|,对应关系不一致.C. 函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D. 函数的定义域为{x|xHO},两个函数的定义域不同.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7. 如图所示,可表示函数图象的是()【分析】利用函数的定义分别对四个图象进行判断.【解答】解:由函数的定义可知,对定义域内的任何一个变化x,在有唯一的一 个变量y 与x 对应.则由定义可知①③④,满足函数定义.但②不满足,因为②图彖中,当x>0时,一个x 对应着两个y,所以不满足函数 取值的唯一性.所以不能表示为函数图象的是②. 故选:C.【点评】木题主要考查了函数的定义以及函数的应用.要求了解,对于一对一, 多对一是函数关系,一对多不是函数关系.&下列四组函数,表示同一函数的是()A ・ f(x)二g (X )二x氏 f(x)二厶2-4‘ £(X )二V7巨依R2C ・ f(x)二x, g(x)^—X「/、 | | /、 fx+1, X 》-1D. f (x) = |x+l |,g (x)=< l^-x-1, x-1【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数. 【解答】解:对于A, f (x)二{尹二|x|,与g (x) =x 的对应关系不同,.••不是 同一函数;对于 B, f (x)二J*2-4(x$2 或 xW - 2),与 g (x)二代巨厶-2=厶2-4(x$2) 的定义域不同, ・•・不是同一函数;2对于C, f (x) =x (xWR),与g (x) =—=x (xHO)的定义域不同,・••不是同一A.①B.②③④C.①③④D.②函数;对于D, f (x) =|x+l|=f X+1, xjl ,与(X)二< x+1, 的定义域相同,l^-X-1 , x\ ~1 [~x~l, x<. -1对应关系也相同,是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.已知函数f (x) =V2x-l,xe {1, 2, 3}.则函数f (x)的值域是( )A. {1,品、B・(一8, o] C・[1, +8) D. R【分析】直接由已知函数解析式求得函数值得答案.【解答】解:f (x) =V2x-l,xe {1, 2, 3},当x=l 时,f (1) =1;当x=2 时,f (2) =V3;当x=3 时,f (3)二祈.・・・函数f (x)的值域是{1,岳V5).故选:A.【点评】木题考查函数值域的求法,是基础的计算题.10・若函数y=7ax2+2ax+3的值域为+°°),则a的取值范围是( ) A. (3, +°°) B. [3, +°°) C・(-g, 0] U [3, +°°) D・(一oo, Q) U [3, + 8 )【分析】由题意:函数y是一个复合函数,值域为[0, +°° ),则函数f(x)=ax2+2ax+3 的值域要包括0.即最小值要小于等于0.【解答】解:由题意:函数y=V ax2+2ax+3是一个复合函数,要使值域为[0, +8),则函数f (x) =ax2+2ax+3的值域要包括0,即最小值要小于等于0・(a>0 = ( a>0则有:(f(-l)<0 ta-2a+3<0解得:a^3 所以a的取值范围是[3, +°°).故选:B.【点评】本题考查了复合函数的值域的求法,通过值域来求参数的问题.属于基础题.二次函数 f (x) =x2 - 4x+l (xe [3, 5])的值域为( )A・[一2, 6] B・[一3, +8) C・[一3, 6] D. [ - 3, - 2]【分析】利用二次函数的单调性即可求解值域.【解答】解:函数f (x) =x2 - 4x+l,其对称轴x=2,开口向上,Vxe [3, 5],・•・函数f (x)在[3, 5]单调递增,当x=3时,f (x)取得最小值为-2.当x=5时,f(X)取得最小值为6・••二次函数 f (x) =x2 - 4x+l (xe [3, 5])的值域为[・2, 6]. 故选:A.【点评】本题考查二次函数的单调性求解最值问题,属于函数函数性质应用题, 较容易.12.若函数f(x)二丄x2-2x+4的定义域、值域都是[2, 2b],则( )乙A. b=2B. be [1, 2] C・ be (1, 2) D・ b二 1 或b二2【分析】根据二次函数的性质建立关系解得b的值.【解答】解:函数仏)二知2-2X+4乙其对称轴x=2,・•・函数f (x)在定义域[2, 2b]是递增函数,且2b>2,即b>l.那么:f (2b) =2b即2b=— x 4b2 " 4b+42解得:b=2故选:A.【点评】本题考查了定义域、值域的关系,利用二次函数的性质,属于基础题.二.填空题(共4小题)13.函数f (x)二寸3-b-/的定义域为[一3, 1],值域为[0, 2]【分析】根据函数的定义域和值域的定义进行求解即可.【解答】解:要使函数有意义,则3-2X-X2^0,即X2+2X - 3W0,解得故函数的定义域为[-3, 1],设t=3 - 2x - x2,贝!J t=3 - 2x - x2= - (x+1) ?+4,则0WtW4,即0W五W2,即函数的值域为[0, 2],故答案为:[-3, 1], [0, 2]【点评】木题主要考查函数定义域和值域的求解,利用换元法结合一元二次函数的性质是解决本题的关键.14. 函数f (x) = Vl_x +Vx+3T的定义域是[- 3, 1] •【分析】根据使函数的解析式有意义的原则,结合偶次根式的被开方数必须不小于0,我们可以构造关于自变量x的不等式组,解不等式组,可得答案.【解答】解:要使函数f(x)二石+后-1的解析式有意义自变量x须满足(id。

高一数学函数的定义域与值域试题

高一数学函数的定义域与值域试题

高一数学函数的定义域与值域试题1.函数的定义域为【答案】【解析】要求定义域,即分母大于0,根号下大于等于0;求函数定义域一般有一下几种形式1、整式函数,定义域是一切实数;2、分式函数,定义域是使得分母不等于0的一切实数;3、偶次根式型的函数,使得被开方数大于等于0的一切实数;4、对数函数,使得真数大于0的一切实数;5、指数函数,定义域是一切实数;【考点】函数的定义域2.函数的定义域是()A.B.C.D.【答案】C【解析】由题可知且,可得.【考点】函数的定义域.3.函数的定义域为()A.B.C.D.【答案】C【解析】由题可知且,得或.【考点】本题主要考函数的定义或,一元二次不等式的解法.4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.6.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.7.函数的定义域为A.B.C.D.【答案】C【解析】由题意得,解得,即.【考点】1.函数的定义域;2.根式、对数式的定义.8.若函数()在上的最大值为23,求a的值.【答案】或【解析】利用整体思想令,则,其图像开口向上且对称轴为,所以二次函数在上单调递减,在上是增函数.下面分两种情况讨论:当时,在R上单调递减,当时是的增区间,所以时y取最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页共3页
5.函数 y x x2 的值域是
;函数 y x x2 (1 x 1) 的值域

;函数 y 1 的值域是

x x2
三.解答题
1.求下列函数的定义域(用区间表示):
(1) y 2x 3 ;
(2) y
1

(1 2x)( x 1)
(3) y (x 1)0 ; x | x |
高一函数同步练习 2(定义域、值域)
一. 选择题
1.函数 y= 2 x x 2 x 2 的定义域是( ) 1 x
(A) x -2 x 1}
(B) x -2 x 1} (C) x x>2}
(D) x R x 1}
2.函数 y
x4
的定义域是
x2 5x 6
(A){x|x>4} (B){x | 2 x 3} (C){x | x<2 或 x>3} (D) {x R | x 2且x 3}
(4) y 1 x . x5
(5) y 4 (x2 5x 2)2
2.求下列函数的值域(用区间表示): (1) y x2 2x 3 ;① x R ,② x (1,4] ,③ x (1,4]
(2) y x2 x 2 ;
(3) y
8

x2 4x 5
第共3页
第3页共3页
二.填空题:
1.函数 y= 1 x 2 x 2 1 的定义域是___________
2.函数 y= 4 x 2 的定义域为 x2 x
3.函数 y= -2x2-8x-9, x[0,3]的值域是_______. 4.设函数 y=f(x) 的定义域是[0,2], 则 f(x-1)的定义域是_______
3.函数 y= x2 2x 1 的值域是( )
(A)[0,+
(B)(0,+ ) (C)(- ,+ )
(D)[1,+ ]
4.下列函数中,值域是(0,+ )的是
(A) y x2 3x 1 (B) y=2x+1(x>0)
(C) y=x2+x+1
(D)
y
1 x2
5. f (2x 1) 的定义域是 0,1 ,则 f (1 3x) 的定义域是
(A) (2,4]
(B)
2,
1 2
(C)
0,
1 6
(D)
0,
2 3
6.若函数 y=f(x)的定义域为(0,2),则函数 y=f(-2x)的定义域是( ) (A)(0,2) (B)(-1,0) (C)(-4,0) (D)(0,4)
7.函数 y= x 3 x 1 的值域是( )
(A)(0,2) (B)[-2,0] (C)[-2,2] (D)(-2,2)
相关文档
最新文档