高考物理(知识点总结+例题精析)电磁感应专题2 电磁感

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二:电磁感应中的力学问题

电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起,这类问题需要综合运用电磁感应规律和力学的相关规律解决。

一、处理电磁感应中的力学问题的思路 ——先电后力。

1、先作“源”的分析 ——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;

2、再进行“路”的分析 ——画出必要的电路图(等效电路图),分析电路结构,弄清串并联关系,

求出相关部分的电流大小,以便安培力的求解。

3、然后是“力”的分析 ——画出必要的受力分析图,分析力学所研究对象(常见的是金属杆、

导体线圈等)的受力情况,尤其注意其所受的安培力。

4、接着进行“运动”状态分析 ——根据力和运动的关系,判断出正确的运动模型。

5、最后运用物理规律列方程并求解 ——注意加速度a =0时,速度v 达到最大值的特点。导体受

力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a =0,速度v 达最大值这一特点。

二、分析和运算过程中常用的几个公式:

1、关键是明确两大类对象(电学对象,力学对象)及其互相制约的关系.

电学对象:内电路 (电源 E = n ΔΦΔt 或E = nB ΔS Δt ,E =S t

B

n ⋅∆∆) E = Blυ 、 E = 12Bl 2ω .

全电路 E =I (R +r )

力学对象:受力分析:是否要考虑BIL F =安 .

运动分析:研究对象做什么运动 .

2、可推出电量计算式 R

n t R E t I q ∆Φ=∆=

∆= . 【例1】磁悬浮列车是利用超导体的抗磁化作用使列车车体向上浮起,同时通过周期性地变换磁极

方向而获得推进动力的新型交通工具。如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B 1和B 2 ,导轨上有一个与磁场间距等宽的金属框abcd 。当匀强磁场B 1和B 2同时以某一速度沿直轨道向右运动时,金属框也会沿直轨道运动。设直轨道间距为L ,匀强磁场的磁感应强度为B 1=B 2=B ,磁场运动的速度为v ,金属框的电阻为R 。运动中所受阻力恒为f ,则金属框的最大速度可表示为( )

A 、2222()m

B L v f R v B L -⋅= B 、2222

(2)

2m B L v f R v B L

-⋅= C 、2222

(4)4m B L v f R v B L -⋅= D 、2222

(2)

2m B L v f R v B L +⋅= 【解析】:由于ad 和bc 两条边同时切割磁感线,故金属框中产生的电动势为E =2BLv ′ ,其中v ′是金属框相对于磁场的速度(注意不是金属框相对于地面的速度,此相对速度的方向向

左),由闭合电路欧姆定律可知流过金属框的电流为R

E

I =

。整个金属框受到的安培力为

21

R

v L B BIL F '

==224。当

F =f 时,a =0 ,金属框速度最大,即

f R v v L B R v L B m m =-=')(442222,v m 是金属棒相对于地面的最大速度,则易知2

22244L

B Rf v L B v m -=,选

C .

【例2】如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三金属光滑圆环,两圆环面平行且竖直。在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计。整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中。当用水平向右的恒力F =3m g 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:

(1)杆a 做匀速运动时,回路中的感应电流; (2)杆a 做匀速运动时的速度;

(3)杆b 静止的位置距圆环最低点的高度。 【解析】:(1)匀速时,拉力与安培力平衡,知F =BIL ,得

I BL

=

………… ① (2)金属棒a 切割磁感线,产生的电动势E =BLv .

回路电流 2E

I R

=

………… ②

联立得:v =

.

(3)平衡时,对b 棒受力分析如图所示,

设置棒和圆心的连线与竖直方向的夹角为θ ,有 3tan ==

mg

F

θ,得θ=60° 杆b 静止的位置距圆环最低点的高度为(1cos )2

r h r θ=-=

【例3】如图所示,两根完全相同的“V”字形导轨OPQ 与KMN 倒放在绝缘水平面上,两导轨都在竖直平面内且正对、平行放置,其间距为L ,电阻不计。两条导轨足够长,所形成的两个斜面与水平面的夹角都是α 。两个金属棒ab 和a ′b ′ 的质量都是m ,电阻都是R ,与导轨垂直放置且接触良好。空间有竖直向下的匀强磁场,磁感应强度为B .

(1)如果两条导轨皆光滑,让a ′b ′ 固定不动,将ab 释放,则ab 达到的最大速度是多少? (2)如果将ab 与a ′b ′ 同时释放,它们所能达到的最大速度分别是多少?

【解析】:(1)ab 运动后切割磁感线,产生感应电流,而后受到安培力,当受力平衡时,加速度为0 ,

速度达到最大,受力情况如图所示。有

mgsinα=F cos α F =BIL R

E

I 2=

E =BLv m cos α

联立上式解得 α

α

2

22m cos sin 2L B mgR v = (2)若将ab 、a ′b ′ 同时释放,因两边情况相同,所以达到的最大速度大小相等,这时

ab 、a ′b ′都产生感应电动势,很明显这两个感应电动势是串联的。有

mg sin α=F ′cos α

F ′=B I 'L

R

v BL I m

2cos 2α'=

'

联立以上三式,解得

α

α2

2

2cos sin L B mgR v m ='

【例4】如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T 。一质量为m =0.1k g 的金属直杆垂直放置在导轨上,并以v 0=2m /s 的初速度进人磁场,在安培力和一垂直于杆的

水平外力F 的共同作用下作匀变速直线运动,加速度大小为a =2m /s 2

,方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好,求: (1)电流为零时金属杆所处的位置;

(2)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系。 【解析】:(1)感应电动势E =Blv ,则感应电流 R

E

I =

. I =0时,v =0 ,此时,==a

v S 220

1(m ) 则电流为零时金属杆距离x 轴原点1m

(2)初始时刻,金属直杆切割磁感线速度最大,

产生的感应电动势和感应电流最大。

R

Blv I m

=

相关文档
最新文档