初三数学圆知识点总结完整版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆知识点总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
初三数学圆知识点总结一、本章知识框架
二、本章重点
1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合.
2.判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有
d>r点P在⊙O 外;
d=r点P在⊙O 上;
d<r点P在⊙O 内.
3.与圆有关的角
(1)圆心角:顶点在圆心的角叫圆心角.
圆心角的性质:圆心角的度数等于它所对的弧的度数.
(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.
圆周角的性质:
①圆周角等于它所对的弧所对的圆心角的一半.
②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.
③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.
④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
⑤圆内接四边形的对角互补;外角等于它的内对角.
(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.
弦切角的性质:弦切角等于它夹的弧所对的圆周角.
弦切角的度数等于它夹的弧的度数的一半.
4.圆的性质:
(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.
在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.
(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.
垂径定理及推论:
(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(3)弦的垂直平分线过圆心,且平分弦对的两条弧.
(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.
(5)平行弦夹的弧相等.
5.三角形的内心、外心、重心、垂心
(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.
(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.
(4)垂心:是三角形三边高线的交点.
6.切线的判定、性质:
(1)切线的判定:
①经过半径的外端并且垂直于这条半径的直线是圆的切线.
②到圆心的距离d等于圆的半径的直线是圆的切线.
(2)切线的性质:
①圆的切线垂直于过切点的半径.
②经过圆心作圆的切线的垂线经过切点.
③经过切点作切线的垂线经过圆心.
(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.
(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
7.圆内接四边形和外切四边形
(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.
(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:
设⊙O 半径为R,点O到直线l的距离为d.
(1)直线和圆没有公共点直线和圆相离d>R.
(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.
(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.
9.圆和圆的位置关系:
设的半径为R、r(R>r),圆心距.
(1)没有公共点,且每一个圆上的所有点在另一个圆的外部
外离d>R+r.
(2)没有公共点,且的每一个点都在外部内含d<R-r
(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部
外切d=R+r.
(4)有唯一公共点,除这个点外,的每个点都在内部
内切d=R-r.
(5)有两个公共点相交R-r<d<R+r.
10.两圆的性质:
(1)两个圆是一个轴对称图形,对称轴是两圆连心线.
(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.
11.圆中有关计算:
圆的面积公式:,周长C=2πR.
圆心角为n°、半径为R的弧长.
圆心角为n°,半径为R,弧长为l的扇形的面积.
弓形的面积要转化为扇形和三角形的面积和、差来计算.
圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.
圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.
【经典例题精讲】
例1 如图23-2,已知AB为⊙O直径,C为上一点,CD
⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点
位置是否随C点位置改变而改变
分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的
点试一试,观察P点位置的变化,然后从中观察规律.
解:
连结OP,
P点为中点.
小结:此题运用垂径定理进行推断.
例2 下列命题正确的是( )
A.相等的圆周角对的弧相等
B.等弧所对的弦相等
C.三点确定一个圆
D.平分弦的直径垂直于弦.
解:
A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.
B.等弧就是在同圆或等圆中能重合的弧,因此B正确.
C.三个点只有不在同一直线上才能确定一个圆.
D.平分弦(不是直径)的直径垂直于此弦.
故选B.
例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.
分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.
解:
设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.
x+2x+3x+2x=360°,
x=45°.
∴∠D=90°.
小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.
例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻
度尺,用如图23-4所示方法得到相关数据,进而
可以求得铁环半径.若测得PA=5cm,则铁环的半
径是__________cm.
分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.
解:

小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.
例5 已知相交于A、B两点,的半径是10,的半径是
17,公共弦AB=16,求两圆的圆心距.
解:分两种情况讨论:
(1)若位于AB的两侧(如图23-8),设与AB交于C,
连结,则垂直平分AB,∴.
又∵AB=16
∴AC=8.
在中,.
在中,.
故.
(2)若位于AB的同侧(如图23-9),设的延长线
与AB交于C,连结.
∵垂直平分AB,
∴.
又∵AB=16,
∴AC=8.
在中,.
在中,.
故.
注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.
三、相关定理:
1.相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等。

(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)
说明:几何语言:若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定
理)
例1.已知P为⊙O内一点,,⊙O半径为,
过P任作一弦AB,设,,则关于的函数关
系式为。

解:由相交弦定理得,即,其中
2.切割线定理
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB
例2.已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若
OC=BD=4cm,AD=3cm,求PB长。

解:设TD=,BP=,由相交弦定理得:
即,(舍)
由切割线定理,由勾股定
理,
∴∴

四、辅助线总结
1.圆中常见的辅助线
1).作半径,利用同圆或等圆的半径相等.
2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明.
3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.
4).作弦构造同弧或等弧所对的圆周角.
5).作弦、直径等构造直径所对的圆周角——直角.
6).遇到切线,作过切点的弦,构造弦切角.
7).遇到切线,作过切点的半径,构造直角.
8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.
9).遇到三角形的外心常连结外心和三角形的各顶点.
10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点.
11).遇相交两圆,常作:(1)公共弦;(2)连心线.
12).遇两圆相切,常过切点作两圆的公切线.
13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边.
2、圆中较特殊的辅助线
1).过圆外一点或圆上一点作圆的切线.
2).将割线、相交弦补充完整.
3).作辅助圆.
例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,
如果AB=10,CD=8,那么AE的长为( )
A.2 B.3
C.4 D.5
分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=
DE.设AE=x,则在Rt△CEO中,,即
,则,(舍去).
答案:A.
?
例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O
上,如果∠CAB=55°,那么∠AOB等于( )
A.35°B.90°
C.110°D.120°
分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠
AOB=2∠BAC=2×55°=110°.答案:C.
例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于( ) A. B. C. D.
分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以
圆柱的高,即.答案:B.
例4 如图23-12,在半径为4的⊙O中,AB、CD是两条
直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,
连结OE、DE,.
求:EM的长.
简析:(1)由DC是⊙O的直径,知DE⊥EC,于是
.设EM=x,则AM·MB=x(7-x),
即.所以.而EM>MC,即EM=4.
例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程
(其中m为实数)的两根.
(1)求证:BE=BD;
(2)若,求∠A的度数.
简析:(1)由BE、BD是关于x的方程
的两根,得
,则m
=-2.所以,原方程为.得.故BE=BD.
(2)由相交弦定理,得,即.而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△
PBD∽△PAE,△PDC∽△PEB,则,,所以,所以
.在Rt△ACB中,,故∠A=60°.
?。

相关文档
最新文档