初一数学坐标点找规律问题总结

合集下载

七年级平面直角坐标系动点规律问题(经典难题)

七年级平面直角坐标系动点规律问题(经典难题)

平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。

图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1PAOyxP1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△?若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.图②5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD . (1)直接写出图中相等的线段、平行的线段; (2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.图②10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.图①A B'-1-2-3-412340图②(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB//y 轴时、求点B 的坐标2、如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?4.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形D C 3-1BA O x y PDCBAOx y (2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。

初一找规律经典题型(含部分问题详解)

初一找规律经典题型(含部分问题详解)

实用文档初一数学规律题应用知识汇总“有比较才有鉴别” 。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为: a1+(n-1)b ,其中 a 为数列的第一位数, b 为增幅, (n-1)b为第一位数到第 n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例: 4、 10、16、22、 28⋯⋯,求第 n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6=6n- 2例 1、已知一个面积为S的等边三角形,现将其各边n(n为大于 2 的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).( 1)当n= 5 时,共向外作出了个小等边三角形( 2)当n= k时,共向外作出了个小等边三角形(用含 k 的式子表示).⋯⋯n=3n=4n=5例 2、如图,在图1中,互不重叠的三角形共有 4 个,在图 2 中,互不重叠的三角形共有7 个,在图3中,互不重叠的三角形共有10 个,⋯⋯,则在第n 个图形中,互不重叠的三角形共有个(用含 n 的代数式表示)。

图1图2图3(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为 3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第n 位数。

平面直角坐标系规律题技巧

平面直角坐标系规律题技巧

平面直角坐标系规律题技巧什么是平面直角坐标系规律题平面直角坐标系规律题是指通过分析平面直角坐标系中的数学问题,探究其中的规律和特点,解决相关的问题。

在这样的题目中,我们需要借助坐标系中的点、线、曲线等图形,运用数学知识和规律进行推导和演算。

为什么要学习平面直角坐标系规律题技巧学习平面直角坐标系规律题技巧有以下几个重要的原因: 1. 平面直角坐标系在解决实际问题中具有广泛的应用,如物理、经济等领域。

学习规律题技巧有助于我们在实际问题中准确地利用坐标系进行分析和计算。

2. 解决平面直角坐标系规律题需要通过观察、分析、推导等思维方式,培养了我们的逻辑思维和问题解决能力。

3. 掌握平面直角坐标系规律题技巧可以帮助我们更好地理解数学知识,提高数学学习的效果。

平面直角坐标系的基本概念和性质在学习平面直角坐标系规律题技巧之前,我们先来回顾一下平面直角坐标系的基本概念和性质。

1. 基本概念平面直角坐标系由两条相互垂直的数轴组成,通常称为x轴和y轴,它们的交点被称为原点O。

我们可以用一个有序数对(x, y)来表示平面上的一个点,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

2. 坐标在平面直角坐标系中,每个点都有唯一的坐标(x, y)来表示。

x坐标表示点在x轴上的位置,y坐标表示点在y轴上的位置。

我们可以通过坐标的正负来确定点在相应轴的方向。

3. 距离公式在平面直角坐标系中,我们可以通过距离公式计算两点之间的距离。

对于坐标为(x₁, y₁)和(x₂, y₂)的两个点,它们之间的距离D可以通过以下公式求得: D =√((x₂ - x₁)² + (y₂ - y₁)²)4. 正方向和负方向在平面直角坐标系中,x轴的正方向是从左到右,y轴的正方向是从下到上。

坐标系中的点按照左右和上下的方向来确定正负。

在平面直角坐标系中寻找规律的一般步骤为了解决平面直角坐标系规律题,我们可以遵循以下一般步骤:1. 绘制图像首先,我们需要将给定的问题转化为图形,在平面直角坐标系中绘制出来。

人教版七年级下册-第七章-平面直角坐标系专题--规律题探究-课件(共17张PPT)

人教版七年级下册-第七章-平面直角坐标系专题--规律题探究-课件(共17张PPT)

类型三:图形规律
例3
练习3.如图,所有正方形的中心均在坐 标原点,且各边与x轴或y轴平行,从内 到外,它们的边长依次为2,4,6,8,…, 顶点依次为A1,A2,A3,A4,…表示,则 顶点A2018的坐标是 ( C ) A.(-540,504) B.(504,-504) C.(-505,505) D.(505,-505)
2
故点A4的坐标为(16,3).
1
又∵B1(4,0),B2(8,0),B3(16,0),
O 1 B2 3 B41 5 6 7 B82 9 10 11 12 13 1∴故4 1B点5B4的1B364横的17坐坐标标x为为2(53=23,02),纵. 坐标为0.
16
(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形
人教版七年级下册-第七章-平面 直角坐标系专题--规律题探究课件(共17张PPT)
类型一:动态规律
例1
C
解析:由题意得,每3步为一个循环组,且 一个循环组内向右3个单位,向上1个单位, ∵100÷3=33…1 ∴走完第100步,为第34个循环的第1步,∴ 所处位置的横坐标是33×3+1=100,
纵坐标是33×1=33, ∴棋子所处位置的坐标是(100,,33)
方法指导:(1)循环规律:从特殊的点入手,依次求出点的坐标,直到 发现循环规律为止.然后根据每一个循环周期中对应位置的点的坐标 相同来确定任意点的坐标
AB=1-(-1)=2,BC =1-(-2)=3, CD=2,AD=3, 绕四边形ABCD一周的细线长度 为2+3+2+3=10 2017÷10=201...7 ∴细线另一端绕在第202圈的 第7个 单位长度的位置. AB+BC+CD=7,正好在点D上 坐标为(1,-2)

初一数学坐标点找规律问题总结

初一数学坐标点找规律问题总结

在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动每次移动1个单位其行走路线如下图所示(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向如图2,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007的坐标为________.解析:依题意,得第一象限里的点分别是A 2、A 6、A 10、…,第二象限里的点分别是A 3、A 7、A 11、…,第三象限里的点分别是A 4、A 8、A 12、…,第四象限里的点分别是A 5、A 9、A 13、…,由此可见点A 2007是在第二象限内,而第二象限内点的横坐标是负数,纵坐标是正数,且绝对值相等,并且由观察、推理、归纳得到A 3(-1,1)、A 7(-2,2)、A 11(-3,3)、…,因为2007=501…3,所以点A 2007的坐标应该是(-502,502).提示:求解本题时要于归纳、猜想、验证,从中找到点坐标的规律,从而使问题获解.例10、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm ,整点P 从原点O 出发,速度为1cm/s ,且整点P 作向上或向右运动(如图1所示.根据上表中的规律,回答下列问题:(1)当整点P 从点O 出发4s 时,可以得到的整点的个数为________个.(2)当整点P 从点O 出发8s 时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.(3)当整点P 从点O 出发____s 时,可以得到整点(16,4)的位置.O1 A 1A 2A 3 A 4 A 5A 6A 7 A 8 A 9A 10A 11 A 12 A 12xy图1 图2解析:本题为阅读型规律探索题,解决问题时需要认真阅读题意,即可根据题意写出整点的可能位置和坐标确定整点的个数,也可以通过表格发现出发时间与整点坐标以及整点P 的个数之间的规律,通过规律解决问题. 解:(1)根据表格中的规律可知,当点P 从点O 出发4s 时,可的到整点P 的坐标为(0,4)(1,3),(2,2)(3,1)(4,0),共5个. (2)如图2所示.(3).从表格规律可得当整点P 从原点0出发的时间为n(s)时,可得整点P 的坐标为(x,y),则x +y =n,因为16+4=20,所以当整点P 从点O 出发20s 时,可到达整点(16,4)的位置.如图6,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为 .图7如图7,我们给中国象棋棋盘建立一个平面直角坐标系(每小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P .写出下一步“马”可能到达的点的坐标 ; 6、(14,8);7、(0,0),(0,2),(1,3),(3,3),(4,2),(4,0)任填一个;如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .x 图6(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 行.从内到外,它们的边长依次为2,4,6,8,…12A 3,A 4,…表示,则顶点A 55的坐标是( ) 一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是( )。

专题 和坐标有关的规律性问题

专题 和坐标有关的规律性问题

(专题)和坐标有关的规律性问题【方法梳理】“2+4”(1):“2”--两种规律①“周期性规律”--计算直到找到周期数为止,再找变化规律;②“渐变性规律”--般计算前三个,从中找到变化规律;(2)“4”--四个解题注意①求什么找什么的规律;②变化规律最好用算式而不是得数表示;③找算式中数字与序号间的变化规律;④找坐标的变化规律,分两步进行:先找位置规律再找数字规律(点的坐标题型首先用这一条);类型1周期性规律例题1.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,……,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2020的坐标为()A.(-3,1)B.(0,-2)C.(3,1)D.(0,4)变式12.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A−2,0,B1,2,C1,−2.已知N−1,0,作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为()A.−1,8B.−3,−8C.−3,0D.(5,4)变式23.如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,⋯,依此规律继续作等边△O n−1BA n,则A2021的横坐标________.变式34.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,点P2020的坐标是__.类型2渐变性规律例题5.如图,已知A1(0,1),A2−1),A3(−12),A4(0,2),A5(3,−1),A6(−3,−1),A72(0,3),A8−3),A9(−−32),…,则点A2010的坐标是______.2例题26.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1)…,则A2021的坐标是________.变式17.在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O个单位长度/出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为π3秒,则2021秒时,点P的坐标是()A.(2021,3)B.(20212C.(2021,−D.(2021,0)2变式28.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A2020的坐标是________.变式39.如图,已知正方形ABCD的对角线AC,BD相交于点M,顶点A,B,C的坐标分别为1,3,1,1,3,1,规定“把正方形ABCD先沿x轴翻折,再向右平移1个单位”为一次变换,如此这样,连续经过2020次变换后,点M的坐标变为_________.变式410.如图,在平面直角坐标系xOy中,正方形OABC的顶点A、C分别在x,y轴上,且AO=1.将正方形OABC绕原点O顺时针旋转90°,且A1O=2AO,得到正方形OA1B1C1,再将正方OA1B1C1绕原点O顺时针旋转90∘,且A2O=2A1O,得到正方形OA2B2C2,以此规律,得到正方形OA2019B2019C2019,则点B2019的坐标为__________.变式511.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,......,A n,则点A n的坐标为________.变式612.如图,在平面直角坐标系中,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=1x+b和x轴上.直线3y=1x+b与x轴交于点M,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果点A11,1,那么3点A2019的纵坐标是________.变式713.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,点A11,3.作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是________.变式814.如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形变换成三角形OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.(1)观察每次变换前后的三角形,找出规律,按这些变换规律将三角形OA3B3变换成三角形OA4B4,求A4和B4的坐标;(2)若按第(1)题的规律将三角形OAB进行了n次变换,得到三角形OA n B n,请推测A n和B n的坐标.谢谢观看。

七年级找规律知识点

七年级找规律知识点

七年级找规律知识点在数学学习中,找规律是一个重要的知识点。

它是指通过发现数列中的规律,推算出下一个或多个数的值。

找规律的能力对于解决数学问题、理解抽象概念、甚至是发现新知识都具有重要的作用。

在七年级的数学学习中,找规律是一个重要的内容,下面本文将从定义、基本方法及练习中全面介绍七年级找规律知识点。

1. 找规律的定义找规律是指在一组数列中,根据已有的数值综合分析,找到它们之间的相应关系,依此推算出后续的数值。

这种方法可以应用于数学中的很多领域,从简单的数列题目到高级的几何分析中都有所用。

2. 找规律的基本方法找规律的基本方法有以下几种:(1)观察法。

仔细观察数列中的每一个数值,特别注意第一项和公差(等差数列)、公比(等比数列)等重要指标。

(2)列式法。

将数列中的每一项都用一个字母表示,如a1、a2、a3等,通过列式列举可以发现其中的规律。

(3)归纳法。

根据已知的一些数据,通过总结、归纳和猜测,找到数列中的规律。

(4)递推法。

根据已知的数列中的数据,推算出下一个数的值,以此类推,得出整个数列。

3. 找规律的练习以下是一些找规律的练习题,供七年级同学参考:(1)已知数列2 4 8 16 32 …… 的通项公式是多少?(2)一个数列的第一个数是2,从第二个数开始,每个数都比它前面的数多2,那么这个数列前6项分别是什么?(3)一个数列的第一个数是5,从第二个数开始,每个数都比它前面的数少3,那么这个数列前5项分别是什么?(4)一个数列的第一个数是3,从第二个数开始,每个数都是前一个数的一半,那么这个数列前5项分别是什么?4. 总结找规律是数学中的一项基本技能,我们通过观察法、列式法、归纳法和递推法等方法进行练习,可以在实践中逐渐掌握这种技能。

但是要注意,找规律并不是一件容易的事情,需要有耐心、细心,同时还需要严谨的逻辑思维和抽象思维能力。

希望本文对初中生的找规律知识点有所帮助,为他们打好数学基础。

初一数学平面直角坐标系知识点大全

初一数学平面直角坐标系知识点大全

初一数学平面直角坐标系知识点初一数学平面直角坐标系知识点大全在平时的学习中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

还在为没有系统的知识点而发愁吗?以下是小编收集整理的初一数学平面直角坐标系知识点,仅供参考,希望能够帮助到大家。

初一数学平面直角坐标系知识点篇11、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。

(填“>”、“<”或“=”)8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。

平面直角坐标系找规律技巧(一)

平面直角坐标系找规律技巧(一)

平面直角坐标系找规律技巧(一)平面直角坐标系找规律技巧介绍平面直角坐标系是数学中常用的工具,可以帮助我们描述平面上的各种图形和现象。

在解决问题时,我们经常需要找出规律来简化计算或推导过程。

本文将介绍一些在平面直角坐标系中找规律的常用技巧。

技巧一:观察坐标轴上的点•观察点在坐标轴上的位置,可以帮助我们找出两个量之间的关系。

例如,如果一个点的横坐标和纵坐标相等,则它在坐标系中呈现出对称的特点。

•另外,当点的横坐标或纵坐标为0时,它们通常代表特殊的情况。

我们可以通过观察这些点来找到一些特殊的规律。

技巧二:观察图形的对称性•当图形呈现出对称的形态时,我们可以利用对称性来简化问题。

例如,如果一个图形在横轴或纵轴上对称,则它的性质可能也在对称轴上相同。

•另外,如果一个图形在原点对称,则它的性质通常也在原点附近具有一些特殊的规律。

技巧三:利用直角三角形的性质•平面直角坐标系中的直角三角形具有一些特殊的性质,我们可以利用这些性质来找规律。

例如,两条边分别与横轴和纵轴平行的直角三角形可能呈现出相似的形状。

•此外,直角三角形中的角度关系也可以帮助我们找到一些规律。

例如,当两条线段之间的夹角为90度时,它们可能具有一些特殊的性质。

技巧四:利用平移和旋转的性质•在平面直角坐标系中,我们可以通过平移和旋转来改变图形的位置和方向。

利用平移和旋转的性质,我们可以找到一些规律。

例如,当一个图形经过平移后仍具有相似的性质时,我们可以猜测这个性质与平移无关。

•此外,有时候我们可以通过适当的旋转来简化问题。

例如,当一个图形经过旋转后具有一些特殊的性质时,我们可以利用这个性质找规律。

技巧五:利用数学工具辅助分析•平面直角坐标系中的问题通常涉及到数学知识,例如代数和几何。

我们可以利用这些数学工具来辅助分析,找到问题的规律。

例如,利用代数中的方程和函数可以帮助我们推导出一些特殊的关系式。

•此外,几何中的一些定理和性质也可以用来分析图形和推导规律。

人教七(下)坐标系-找规律

人教七(下)坐标系-找规律

梁老师举一:如图将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?万能技巧:反三:反1、在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有_____个整点;(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有___个;(3)探究点(-4,3)在第____个正方形的边上;(-2n,2n)在第______个正方形边上(n为正整数)。

反2、如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a=b -3+3-b -1,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD 。

(1)点C ,D 的坐标分别为:C________,D________;ABDC S 四边形 =_____________(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由。

反3、如图所示,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向作匀速运动。

同时点P 从A 点出发以每秒1个单位长度沿A -B -C -D 的路线作匀速运动。

当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动。

(1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (秒). ①当t =5时,求出点P 的坐标;②若△OAP 的面积为s ,当3<t <8时,试求出s 与t 之间关系式。

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。

2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数.常考题:一.选择题(共15小题)1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4) C.(﹣3,4)D.(3,﹣4)2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6) D.(3,﹣4)3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马"的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1) C.(2,2)D.(﹣2,2)4.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2)D.(﹣9,﹣4)6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.57.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0)C.(4,0) D.(0,﹣4)9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5)C.(3,4) D.(4,3)10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣112.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.(100,33)D.(99,34)14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方15.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺二.填空题(共10小题)16.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.18.如图,把“QQ"笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.19.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.20.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是.21.如图,将平面直角坐标系中“鱼”的每个“顶点"的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.22.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B处的坐标是.23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.25.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→"方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.三.解答题(共15小题)26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.27.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?28.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.29.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.30.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.32.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.35.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.36.有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马"的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日"字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→→(六,4)(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是:.你还能再写出一种走法吗.37.如图,在直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (﹣2,﹣3)、B (5,﹣2)、C (2,4)、D (﹣2,2),求这个四边形的面积.38.如图,在平面直角坐标系中,点A,B 的坐标分别为(﹣1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.39.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即:沿着长方形移动一周).(1)写出点B 的坐标( ).(2)当点P 移动了4秒时,描出此时P 点的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴距离为5个单位长度时,求点P 移动的时间.40.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共15小题)1.(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3) B.(﹣3,﹣4)C.(﹣3,4) D.(3,﹣4)【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.2.(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6) D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2007•盐城)如图,已知棋子“车"的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2)D.(﹣2,2)【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(2002•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2017春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.6.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0)D.(0,﹣4)【分析】因为点P(m+3,m+1)在直角坐标系的x轴上,那么其纵坐标是0,即m+1=0,m=﹣1,进而可求得点P的横纵坐标.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.【点评】本题主要考查了点在x轴上时纵坐标为0的特点,比较简单.9.(2017春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4) D.(4,3)【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.10.(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1) D.(2,﹣1)【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(2008•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1【分析】根据点P(m﹣3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于m的不等式组,解之即可得m的取值范围.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号以及不等式组的解法,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.13.(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.(100,33)D.(99,34)【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.14.(2009秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.15.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【分析】根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,根据题意画出图形是解题的关键.二.填空题(共10小题)16.(2014•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.17.(2013•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.19.(2015•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).【分析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.(2005•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应该是(﹣3,﹣7).故答案为:(﹣3,﹣7).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.21.(2015•青岛)如图,将平面直角坐标系中“鱼"的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).【分析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),故答案为(2,3).【点评】此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.22.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是(10,8).【分析】根据A点坐标,可建立平面直角坐标系,根据直角三角形的性质,可得AC的长,根据勾股定理,BC的长.【解答】解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).【点评】本题考查了坐标确定位置,利用A点坐标建立平面直角坐标系是解题关键,利用了直角三角形的性质:30°的角所对的直角边是斜边的一半.23.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n表示).的坐标,然后根据变化规律写【分析】根据图形分别求出n=1、2、3时对应的点A4n+1出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),。

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。

初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。

初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)&divide;2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号: 1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例: 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、 3-1=81 5-3=82 7-5=83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3-1=81 5-3=82 7-5=83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1 4583)18894)(N+2)-N=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。

坐标变换与找规律

坐标变换与找规律
纵坐标都减少了4
笔记:图形平移时,对应点平移的距离相等。
观察 轴: ,直线 可表示为
观察 轴: ,直线 可表示为
笔记:①平行于x轴的直线上所有的点纵坐标相同,可表示为
②平行于y轴的直线上所有的点横坐标相同,可表示为
练习:(1)平面直角坐标系中,△ABC三点坐A(-1,0),B(-2, - 3)
C(0,-2).将△ABC向上平移3个单位, 再向右平移3个单位,
练习:(1)如图,在平面直角坐标系中,点P(-2,3)关于直线 =2
的对称点坐标为(,)
(2)点P(3,5)和P(3,1)点关于( )对称.
A. =3 B. =-3C. =-3 D. =3
例3.(1)点A(2,3)关于x轴的对称点 的坐标为;点A关于y轴的对称点 的坐标为;点A关于原点的对称点 的坐标为;点 与点 关于对称.
(2)点M(a,b)与点N(-a,b)关于对称( )
A. 轴 B.原点 C. 轴 D. =
思考:当坐标系中一点P(1,3)关于 =2 对称,对称点坐标 (,).
当P(1, 3)关于 = 2对称,对称点的坐标点 (,)
笔记:点P( , )关于 =a对称: (2a- , ).
点P( , )关于 =b对称: ( ,2b- ).
(必会例题)(2)已知△ABC的面积为5,A(-1,1),点B(-1,-1),点C的纵坐标为3求点C的坐标.
【平面直角坐标素】【坐标与距 离】
练2-1.(1)已知直线 平行于 轴,点A、点B在直线 上,线段AB的长为3,且点B(-2,-2)则点A的坐标为,点C(-5,2)到直线的距离是.
(2)已知△ABC的面积为8,点A(-1,3),B(3,3),点C的横坐标为2,则点C的坐标.

平面直角坐标系找规律100题

平面直角坐标系找规律100题

平面直角坐标系找规律100题【实用版】目录一、平面直角坐标系的基本概念1.有序数对和点2.平行于坐标轴的直线上的点的坐标特点3.各象限的角平分线上的点的坐标特点二、平面直角坐标系中的找规律问题1.6 个 1 循环2.点 P4n 在直线 yx 上(第三象限)3.初一数学题中的平面直角坐标系和找规律4.平面直角坐标系专题三、平面直角坐标系中的公式及做题技巧1.相邻 4 项之和都是 02.关于 x 轴、y 轴、原点的对称性四、平面直角坐标系中的例题解析1.点 A(-2, 1) 所在象限2.点 P 关于 x 轴、y 轴的对称点3.三角形 ABC 的面积和平移问题正文一、平面直角坐标系的基本概念平面直角坐标系是由两条互相垂直的直线组成的,通常称为 x 轴和y 轴。

它们将平面分成四个部分,称为第一、二、三、四象限。

在平面直角坐标系中,每个点都可以用一个有序数对 (a, b) 表示,其中 a 表示点在 x 轴上的位置,b 表示点在 y 轴上的位置。

1.有序数对和点有序数对是指有顺序的两个数 a 与 b 组成的数对,记作 (a, b)。

在平面直角坐标系中,一个点的位置可以表示为一个有序数对 (a, b),其中 a 表示点在 x 轴上的坐标,b 表示点在 y 轴上的坐标。

2.平行于坐标轴的直线上的点的坐标特点平行于 x 轴 (或横轴) 的直线上的点的纵坐标相同;平行于 y 轴(或纵轴) 的直线上的点的横坐标相同。

3.各象限的角平分线上的点的坐标特点第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

二、平面直角坐标系中的找规律问题1.6 个 1 循环在平面直角坐标系中,有一组数据为 1, 1, 2, 1, 3, 1, 4, 1,...,可以发现每 6 个数循环一次,即 1, 1, 2, 1, 3, 1。

2.点 P4n 在直线 yx 上(第三象限)已知点 P 的坐标为 (x, y),其中 x = 4n,n 为整数。

平面直角坐标系中的规律问题

平面直角坐标系中的规律问题

平面直角坐标系中的规律问题例1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是.变式训练:1.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为2.一个动点A在平面直角坐标系中作折线运动,第一次从点(﹣1,1)到A1(0,1),第二次运动到A2(3,﹣1),第三次运动到A3(8,1),第四次运动到A4(15,﹣1)…,按这样的运动规律,经过第13次运动后,动点A10的坐标是.3.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.3题4题4.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…第n次碰到正方形的边时的点为P n,则P2015的坐标是_____拓展:在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A 的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)例2.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为变式训练:1.如图,在平面直角坐标系中,有若干个整数点,按顺序(0,0),(1,0),(1,1),(2,1),(2,0),(2,﹣1)…这样排列.根据这个规律探索可知,第10个点的坐标为.第100个点的坐标为.2.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2013个点的坐标为.3.将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x,y),且x、y均为整数.如数5对应的坐标为(﹣1,1),则2014对应的坐标是.4.在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0),(1,0),(1,1),(0,1),(0,2),(1,2),(2,2),(2,1),(2,0)(3,0)…按此规律,第95个点的坐标是拓展:如图,在平面直角坐标系中,有若干个横坐标和纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(1,2),(1,3),(2,2)…,根据这个规律,第57个点的坐标为例3例3.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部整点个数为______变式训练:1、在平面直角坐标系中,每个格子的边长为1,请你观察图中的正方形A1B1C1D1,A2B2C2D2,按此规律推算当第100个正方形出现时,所有正方形的周长之和为___2、在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(﹣4,3)在第几个正方形的边上(﹣2n,2n)在第几个正方形边上(n为正整数).拓展题拓展:如图所示,某蜗牛从坐标原点O出发,沿实线部分行走:(1)当它行走了6个单位时,蜗牛所处点的坐标为.(2)C点距原点路程为,若第n个顶点P在第二象限且P点到O的路程是930,则P 点坐标是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学坐标点找规律问题总结
在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动每次移动1个单位其行走路线如下图所示
(1)填写下列各点的坐标:A( , ),A( , ),A( , ); 4812
(2)写出点A的坐标(n是正整数); 4n
(3)指出蚂蚁从点A到点A的移动方向 100101
y
AAA A15A A 296101
x A A AA O AA A 3811121247
如图2,已知A(1,0)、A(1,1)、A(,1,1)、A(,1,,1)、A(2,,1)、….则点A 的l23452007坐标为________.
解析:依题意,得第一象限里的点分别是A、A、A、…,第二象限里的点分别是A、26103A、A、…,第三象限里的点分别是A、A、A、…,第四象7114812
限里的点分别是A、A、A、…,由此可见点A是在第二象59132007
限内,而第二象限内点的横坐标是负数,纵坐标是正数,且绝
(,2,对值相等,并且由观察、推理、归纳得到A(,1,1)、A73
2)、A(,3,3)、…,因为2007,501…3,所以点A的坐标112007
应该是(,502,502).
提示:求解本题时要于归纳、猜想、验证~从中找到点坐标的
规律~从而使问题获解.
例10、在直角坐标系中,我们把横、纵坐标都为整数的点叫做
整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速
度为1cm/s,且整点P作向上或向右运动(如图1所示.运动时间(s)与整点(个)的关系如下表:
整点P从原点出发的时可以得到整点P的坐标可以得到整点P的个数
间(s)
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
… … …
根据上表中的规律,回答下列问题:
(1)当整点P从点O出发4s时,可以得到的整点的个数为________个. (2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.
(3)当整点P从点O出发____s时,可以得到整点(16,4)的位置.
regularly, neat in appearance, the main-beam with small harness line must be smooth transition, small wire harness tied to main beam should be at a 90-degree angle. 6.4.5 harness banding material for plastic cable tie, and banding material colors should
图1 图2
解析:本题为阅读型规律探索题,解决问题时需要认真阅读题意,即可根据题意写出整点的可能位置和坐标确定整点的个数,也可以通过表格发现出发时间与整点坐标以及整点P的个数之间的规律,通过规律解决问题.
解:(1)根据表格中的规律可知,当点P从点O出发4s时,可的到整点P的坐标为(0,4)(1,3),(2,2)(3,1)(4,0),共5个.
(2)如图2所示.
(3).从表格规律可得当整点P从原点0出发的时间为n(s)时,可得整点P的坐标为(x,y),则x,y,n,
因为16,4,20,所以当整点P从点O出发20s时,可到达整点(16,4)的位置. 如图6,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,,
0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为 (
y (5,4)
(4,3) (5,3)
(5,2) (3,2) (4,2)
(5,1) (4,1) (2,1) (3,1)
x O (1,0) (2,0) (3,0) (4,0) (5,0)
图6 图7
如图7,我们给中国象棋棋盘建立一个平面直角坐标系(每小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P(写出下一步“马”可能到达的点的坐标 ;
6、(14,8);
7、(0,0),(0,2),(1,3),(3,3),(4,2),(4,0)任填一个; 如图,在平面直角坐标系中,点A,B的坐标分别为(,1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD(
regularly, neat in appearance, the main-beam with small harness line must be smooth transition, small wire harness tied to main beam should be at a 90-degree angle. 6.4.5 harness banding material for plastic cable tie, and banding material colors should
y(1)求点C,D的坐标及四边形ABDC的面积 S 四边形ABDC
CD
AOB
x-13
(2)在y轴上是否存在一点P,连接PA,PB,使,, SS,PAB四边形ABDC若存在这样一点,求出点P的坐标,若不存在,试说明理由(
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与
,,,DCPBOP,,,DCPCPO的值不变,?的B,D重合)给出下列结论:?,CPO,BOP值不变,其中有且只有一个是正确的,请你找出这个结论并求其值( y CD
P AB
xO如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平
行(从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A,A,12A,A,…表示,则顶点A的坐标是( ) 3455
一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是( )
regularly, neat in appearance, the main-beam with small harness line must be smooth transition, small wire harness tied to main beam should be at a 90-degree angle. 6.4.5 harness banding material for plastic cable tie, and banding material colors should。

相关文档
最新文档