2012年四川省内江市中考数学试卷及解析
2012年四川省内江市中考数学试卷
2012年四川省内江市中考数学试卷2012年四川省内江市中考数学试卷一、选择题(每小题3分,36分)3.(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()4.(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()5.(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()7.(2012•内江)函数的图象在()8.(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()9.(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )10.(2012•内江)如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )11.(2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )12.(2012•内江)如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )二、填空题(每小题5分,共20分)13.(2012•内江)分解因式:ab 3﹣4ab= _________ . 14.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为 _________ .15.(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是_________.16.(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=_________.三、解答题(共44分)17.(2012•内江)计算:.18.(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.19.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21.(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(2012•内江)已知三个数x,y,z,满足,则=_________.23.(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M 2,M3…,M n,则=_________.24.(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是_________.25.(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为_________.五、解答题(每小题12分,共36分)26.(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.27.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.28.(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c 经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.2012年四川省内江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,36分)3.(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为())代入函数解析式解:∵反比例函数2=4.(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()5.(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()7.(2012•内江)函数的图象在()由于函数解析式中有,则必为非负数,又由于函数解析式中有,故解:∵中8.(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()CD=(垂径定理)=,即阴影部分的面积为9.(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()=10.(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()11.(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()=;=;sinA==12.(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()cosA==二、填空题(每小题5分,共20分)13.(2012•内江)分解因式:ab3﹣4ab=ab(b+2)(b﹣2).14.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.15.(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是.的概率为=,故答案为:.16.(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=9.DE=3的面积为(三、解答题(共44分)17.(2012•内江)计算:.﹣.18.(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.,×,DG=8=DG==20=3000(立方米)DC=16=24i==19.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.=.21.(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(2012•内江)已知三个数x,y,z,满足,则=﹣4.将该题中所有分式的分子和分母颠倒位置,化简后求出的值,从而得到的值.解:∵=,=,﹣,=+,整理得,+﹣①,+②,=③,=+﹣=,++﹣=,=23.(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M 2,M3…,M n,则=.)P M M,则(,经过平移得到面积的和为M,于是面积和等于(﹣y=)P+M= M().故答案为.24.(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是.)满足,)满足,概率是=,故答案为:,25.(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为(,0).,解得,x=,,五、解答题(每小题12分,共36分)26.(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.,27.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.,得出=,•=可求出,+cx+=0≥+=,•=x+=,=0•≥28.(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c 经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.,﹣x x+2AB﹣﹣(,ME=﹣;CE=OD=BC=2BC×h=CBO=÷﹣﹣x x+42+2,﹣)参与本试卷答题和审题的老师有:caicl;zcx;CJX;gsls;lantin;sjzx;星期八;dbz1018;未来;gbl210;zjx111;sd2011;MMCH;ZJX;HJJ。
2012年四川省内江市中考数学试卷(含解析版)
28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.
(1)求抛物线y=ax2+bx+c的解析式;
(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;
A.5和5.5B.5.5和6C.5和6D.6和6
7.(3分)(2012•内江)函数 的图象在( )
A.第一象限B.第一、三象限C.第二象限D.第二、四象限
8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD= ,则阴影部分图形的面积为( )
A.4πB.2πC.πD.
造型花卉
甲
乙
A
80
40
B
50
70
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
则y=(6﹣x)2=(x﹣6)2(3<x≤6),
∴该函数的图象是在3<x≤6上的抛物线;
故选C.
二、填空题(每小题5分,共20分)
(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?
(2)求加固后的大坝背水坡面DE的坡度.
【初中数学】四川省各市2012年中考数学试题分类解析汇编(四边形等12份) 通用9
四川各市2012年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (2012四川攀枝花3分)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指【】A. 150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩【答案】C。
【考点】总体、个体、样本、样本容量。
【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩。
故选C。
2. (2012四川宜宾3分)宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是【】A.32,31.5 B.32,30 C.30,32 D.32,31【答案】A。
【考点】众数,中位数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是32,故这组数据的众数为32。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为29,30,30,30,31,32,32,32,32,33,处于这组数据中间位置的数是31、32,∴中位数为:31.5。
故选A。
3. (2012四川广安3分)下列说法正确的是【】A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定【答案】C。
【考点】统计量的选择,可能性的大小,调查方法的选择,方差。
【分析】分别利用统计量的选择,可能性的大小,调查方法的选择,方差的知识进行逐项判断即可:A、商家卖鞋,最关心的是卖得最多的鞋码,即鞋码的众数,故本选项错误;B、365天人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误。
最新四川省内江市中考数学试卷及解析汇总
2012年四川省内江市中考数学试卷及解析2012年四川省内江市中考数学试卷一、选择题(每小题3分,36分)1.(3分)(2012•内江)﹣6的相反数为()A.6B.C.D.﹣62.(3分)(2012•内江)下列计算正确的是()A.a2+a4=a6B.2a+3b=5ab C.(a2)3=a6D.a6÷a3=a23.(3分)(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()A.2B.C.1D.﹣24.(3分)(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个5.(3分)(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()A.100°B.105°C.110°D.115°6.(3分)(2012•内江)一组数据4,3,6,9,6,5的中位数和众数分别是()A.5和5.5 B.5.5和6 C.5和6 D.6和67.(3分)(2012•内江)函数的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()A.4πB.2πC.πD.9.(3分)(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.10.(3分)(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD 沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()A.15 B.20 C.25 D.30 11.(3分)(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.12.(3分)(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm 的速度,沿A→B →C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题5分,共20分)13.(5分)(2012•内江)分解因式:ab3﹣4ab=_________.14.(5分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.15.(5分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是_________.16.(5分)(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= _________.三、解答题(共44分)17.(7分)(2012•内江)计算:.18.(9分)(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.19.(9分)(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21.(9分)(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x,y,z,满足,则=_________.23.(6分)(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M 1,M2,M3…,M n,则=_________.24.(6分)(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是_________.25.(6分)(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为_________.五、解答题(每小题12分,共36分)26.(12分)(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.27.(12分)(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.2012年四川省内江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,36分)1.(3分)(2012•内江)﹣6的相反数为()A.6B.C.D.﹣6解答:解:﹣6的相反数是:6,故选:A,2.(3分)(2012•内江)下列计算正确的是()A.a2+a4=a6B.2a+3b=5ab C.(a2)3=a6D.a6÷a3=a2解答:解:A、a2+a4=a6,不是同底数幂的乘法,指数不能相加,故本选项错误;B、2a+3b=5ab,不是合并同类项,故本选项错误;C、(a2)3=a6,幂的乘方,底数不变指数相乘,故本选项正确;D、a6÷a3=a2,同底数幂的除法,底数不变指数相减,6﹣3≠2,故本选项错误.故选C.3.(3分)(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()A.2B.C.1D.﹣2解答:解:∵反比例函数的图象经过点(1,﹣2),∴﹣2=,∴k=﹣2.故选D.4.(3分)(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个解答:解:∵从左到右第一个和第三个图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它们是轴对称图形;∵从左到右第二个和第四个图形旋转180°后能与原图形重合,∴此图形不是中心对称图形,是轴对称图形;∴既是轴对称又是中心对称图形的有两个,故选C.5.(3分)(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()A.100°B.105°C.110°D.115°解答:解:过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠2+∠4=180°,∵∠2=140°,∴∠4=40°,∵∠1=65°,∴∠3=∠1+∠4=65°+40°=105°.故选B.6.(3分)(2012•内江)一组数据4,3,6,9,6,5的中位数和众数分别是()A.5和5.5 B.5.5和6 C.5和6 D.6和6解答:解:在这一组数据中6是出现次数最多的,故众数是6;将这组数据已从小到大的顺序排列,处于中间位置的两个数是5、6,那么由中位数的定义可知,这组数据的中位数是(5+6)÷2=5.5;故选B.7.(3分)(2012•内江)函数的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限解答:解:∵中x≥0,中x≠0,故x>0,此时y>0,则函数在第一象限.故选A.8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()A.4πB.2πC.πD.解答:解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△CDE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故选D.9.(3分)(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.解答:解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选C.10.(3分)(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD 沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()A.15 B.20 C.25 D.30解答:解:根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF.则阴影部分的周长=矩形的周长=2(10+5)=30.故选:D.11.(3分)(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.解答:解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO==;AC==;则sinA===.故选B.12.(3分)(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.解答:解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选C.二、填空题(每小题5分,共20分)13.(5分)(2012•内江)分解因式:ab3﹣4ab=ab(b+2)(b﹣2).解答:解:ab3﹣4ab=ab(b2﹣4)=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).14.(5分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.15.(5分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是.解答:解:在6×6的网格中共有36个格点,而使得三角形面积为1的格点有8个,故使得三角形面积为1的概率为=,故答案为:.16.(5分)(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= 9.解答:解:过点B作BE∥AC交DC的延长线于点E,过点B作BF⊥DC于点F,则AC=BE,DE=DC+CE=DC+AB=6,又∵BD=AC且BD⊥AC,∴△BDE是等腰直角三角形,∴BF=DE=3,故可得梯形ABCD的面积为(AB+CD)×BF=9.故答案为:9.三、解答题(共44分)17.(7分)(2012•内江)计算:.解答:解:原式=2﹣1+1+1﹣4+3=2.18.(9分)(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.解答:解:(1)分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.在Rt△ABF中,AB=16米,∠B=60°,sin∠B=,∴AF=16×=8,DG=8∴S△DCE=×CE×DG=×8×8=32需要填方:150×32=4800(立方米);(2)在直角三角形DGC中,DC=16∴GC==24∴GE=GC+CE=32,坡度i===19.(9分)(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?解答:解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算三种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低位70000元.20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.解答:解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,C组人数为:50×30%=15人,补全直方图如图;(2)F组发言的人数所占的百分比为:1﹣6%﹣20%﹣30%﹣26%﹣8%=1﹣90%=10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90人;(3)A组发言的学生:50×6%=3人,所以有1位女生,2位男生,E组发言的学生:50×8%=4人,所以有2位女生,2位男生,列表如下:画树状图如下:共12种情况,其中一男一女的情况有6种,所以P(一男一女)==.21.(9分)(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.解答:(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形;(2)当AE=2EF时,FG=3EF.证明:∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE,∵AE=2EF,∴BE:DE=AE:EF=2,∴BC:AD=BE:DE=2,即BG=2AD,∵BC=AD,∴CG=AD,∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF.四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x,y,z,满足,则=﹣4.解答:解:∵,∴=﹣,=,=﹣,=++,整理得,+=﹣①,+=②,+=﹣③,①+②+③得,=﹣+﹣=﹣,则++=﹣,∴=﹣,于是=﹣4.故答案为﹣4.23.(6分)(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M 1,M2,M3…,M n,则=.解答:解:延长M n P n﹣1交M1P1于N,如图,∵当x=1时,y=1,∴M1的坐标为(1,1);∵当x=n时,y=,∴Mn的坐标为(n,);∴=P 1M1×P1M2+M2P2×P2M3+…+M n﹣1P n﹣1×P n﹣1M n=(M1P1+M2P2+…+M n﹣1P n﹣1)=M1N=(1﹣)=.故答案为.24.(6分)(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是.解答:解:∵a i≠0(i=1,2,…,2012)满足,∴a i有22个是负数,1990个是正数,∵a i<0时直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限,∴使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是=,故答案为:,25.(6分)(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为(,0).解答:解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).五、解答题(每小题12分,共36分)26.(12分)(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.解答:(1)证明:∵菱形AFED,∴AF=AD,∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∴CF+CD=BD+CD=BC=AC,即①BD=CF,②AC=CF+CD.(2)解:AC=CF+CD不成立,AC、CF、CD之间存在的数量关系是AC=CF﹣CD,理由是:由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,∴∠BAC+∠DAC=∠DAF+∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴BD=CF,∴CF﹣CD=BD﹣CD=BC=AC,即AC=CF﹣CD.(3)AC=CD﹣CF.理由是:∵∠BAC=∠DAF=60°,∴∠DAB=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∴CD﹣CF=CD﹣BD=BC=AC,即AC=CD﹣CF.27.(12分)(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,•==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)①当a=b时,原式=2②当a≠b时,∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,∴a+b=15,ab=﹣5,∴====﹣47;(3)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=,∴a、b是方程x2+cx+=0的解,∴c2﹣4•≥0,c2﹣≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.解答:解:(1)Rt△ACB中,OC⊥AB,AO=1,BO=4;由射影定理,得:OC2=OA•OB=4,则OC=2,即点C(0,2);设抛物线的解析式为:y=a(x+1)(x﹣4),将C点代入上式,得:2=a(0+1)(0﹣4),a=﹣,∴抛物线的解析式:y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)直线CM与以AB为直径的圆相切.理由如下:如右图,设抛物线的对称轴与x轴的交点为D,连接CD.由于A、B关于抛物线的对称轴对称,则点D为Rt△ABC斜边AB的中点,CD=AB.由(1)知:y=﹣(x+1)(x﹣4)=﹣(x﹣)2+,则点M(,),ME=﹣2=;而CE=OD=,OC=2;∴ME:CE=OD:OC,又∠MEC=∠COD=90°,∴△COD∽△CEM,∴∠CME=∠CDO,∴∠CME+∠CDM=∠CDO+∠CDM=90°,而CD等于⊙D的半径长,所以直线CM与以AB为直径的圆相切;(3)由B(4,0)、C(0,2)得:BC=2;则:S△BCN=BC•h=×2×h=4,h=;过点B作BF⊥BC,且使BF=h=,过F作直线l∥BC交x轴于G.Rt△BFG中,sin∠BGF=sin∠CBO=,BG=BF÷sin∠BGF=÷=4;∴G(0,0)或(8,0).易知直线BC:y=﹣x+2,则可设直线l:y=﹣x+b,代入G点坐标,得:b=0或b=4,则:直线l:y=﹣x或y=﹣x+4;联立抛物线的解析式后,可得:或,则 N1(2+2,﹣1﹣)、N2(2﹣2,﹣1+)、N3(2,3).。
【初中数学】四川省各市2012年中考数学试题分类解析汇编(四边形等12份) 通用
四川各市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2012四川成都3分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误..的是【】A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OCB【答案】B。
【考点】菱形的性质。
【分析】根据菱形的性质作答:A、菱形的对边平行且相等,所以AB∥DC,故本选项正确;B、菱形的对角线不一定相等,故本选项错误;C、菱形的对角线一定垂直,AC⊥BD,故本选项正确;D、菱形的对角线互相平分,OA=OC,故本选项正确。
故选B。
2. (2012四川乐山3分)下列命题是假命题的是【】A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等【答案】C。
【考点】命题与定理,平行四边形的性质,菱形的判定,矩形的性质,等腰梯形的性质。
【分析】根据平行四边形的性质,菱形的判定,矩形的性质,等腰梯形的性质做出判断即可:A、平行四边形的两组对边相等,正确,是真命题;B、四条边都相等的四边形是菱形,正确,是真命题;C、矩形的对角线相等但不一定垂直,错误,是假命题;D、等腰梯形的两条对角线相等,正确,是真命题。
故选C。
3. (2012四川宜宾3分)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F分别为AB .AD 的中点,则△AEF 与多边形BCDFE 的面积之比为【 】A . 17B . 16C . 15D . 14【答案】C 。
【考点】直角梯形的性质,三角形的面积,三角形中位线定理。
【分析】如图,连接BD ,过点F 作FG ∥AB 交BD 于点G ,连接EG ,CG 。
∵DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F 分别为AB .AD 的中点,∴根据三角形中位线定理,得AE=BE=AF=DF=DC=FG 。
三角形2012年四川中考数学题(含答案和解释)
三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
【考点】锐角三角函数定义,特殊角的三角函数值。
【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。
∴∠A=30°。
∴∠B=60°。
∴sinB= 。
故选C。
2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。
内江中考数学试题及答案解析.doc
2014年内江中考数学试题及答案解析-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2、内江市资中县2012年初中毕业会考暨高中招生考试数学试题参考答案及评分意见(详解)
ABCD内江市资中县二○一二年初中毕业会考暨高中招生考试数学参考答案及评分意见班级: 学号: 姓名: 成绩:本试卷包括第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)和加试卷三部分。
第Ⅰ卷1至2页,第Ⅱ卷3至6页,满分100分;加试卷7至10页,满分60分。
考试时间120分钟。
第Ⅰ卷(选择题 共36分)注意事项:1、答第Ⅰ卷前,请考生务必将自己姓名、准考证号、考试科目写在试卷相应的位置上。
2、每小题选出答案后,用钢笔把答案标号填写在第Ⅱ卷卷首的选择题答题卡的相应号上,不能答在第Ⅰ卷的试题上。
3、考试结束后,监考人员将第Ⅱ卷收回并按考号顺序装订密封。
一、选择题(本大题共12个小题,每小题3分,共36分。
以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、5-的绝对值是( )A 、5-B 、5C 、51D 、51- 2、下列四副图案中,不是轴对称图形的是( )3、温总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小”如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食( )A 、5103.1⨯千克B 、6103.1⨯千克C 、7103.1⨯千克D 、8103.1⨯千克 4、如图,下列水平放置的几何体中,左视图不是长方形的是()HG E D 第12题图C ABF5、从1、2、-3三个数中,随机抽取两个数相乘,积为正数的概率是( )A 、0B 、31C 、32D 、16、下列计算结果正确的是( )A 、752=+B 、3223=-C 、1052=⨯D 、10552=7、如图,已知直线CD AB //,︒=∠125C ,︒=∠45A ,那么E ∠的大小为( ) A 、︒70 B 、︒80 C 、︒90 D 、︒100 8、有一组数据3、5、7、a 、4,如果它们的平均数是5,那么这组数据的方差是( ) A 、2 B 、5 C 、6 D 、79、已知线段cm AB 7=,现以点A 为圆心,cm 2为半径画⊙A ;再以点B 为圆心,3cm 为半径画⊙B ,则⊙A 和⊙B 的位置关系是( )A 、内含B 、相交C 、外切D 、外离10、如图,ABC ∆中,︒=∠90C ,3=AC ,︒=∠30B ,点P 是BC 边上的动点,则AP 长不可能是( )A 、3.4B 、4.5C 、5.6D 、6.811、若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A 、5B 、-3C 、-13D 、-27 12、在正方形ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 交BF 于点H ,AE CG //交BF 于点G .下列结论:①HEB HBE ∠=∠cos sin ;②CF BC BF CG ⋅=⋅;③GF BH = ④GF BG 4=.其中正确的序号是( )A 、①②③B 、②③④C 、 ①③④D 、①②④第7题图 CAEB DP第10题图A内江市资中县二○一二年初中毕业会考暨高中招生考试数学参考答案及评分意见第Ⅱ卷(非选择题 共64分)注意事项:1、第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上。
2012内江中考数学试题及答案
内江市2012年高中阶段教育学校招生考试及初中毕业会考试卷数学试题 逐题详解(全卷160分,时间120分钟) A 卷(共100分)一、选择题(每小题3分,36分)1.-6的相反数为( )A.6B.61C.61- D.- 6 【解析】:由相反数的定义:只有符号不同的两个数互为相反数知选A【考点】:本题考查相反数的定义及求法。
2.下列计算正确的是( )A.642a a a =+B.ab b a 532=+C.()632a a = D.236a a a =÷ 【解析】:由整式运算法则知选C【考点】:本题考查整式的运算法则。
3.已知反比例函数xk y =的图像经过点(1,-2),则K 的值为( ) A.2 B.21-C.1D.- 2 【解析】:221k k -=⇒=-,选D 【考点】:本题考查待定系数法求函数解析式,函数图象与点坐标的关系。
4.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 4个B. 3个C. 2个D. 1个【解析】:全是轴对称,只有2、4是中心的称,故选C【考点】:本题考查图形的对称性判断。
5.如图1,=∠=∠=∠3,1402,651,//00则b a ( ) A.0100 B.0105 C.0110 D.0115【解析】:如图1:连接AC ,则0231180∠+∠-∠=,0000031801218065140105∴∠=+∠-∠=+-=,故选B【考点】:本题考查三角形内角和定理,平行线的性质,以及构造图象添加辅助线。
6.一组数据4,3,6,9,6,5的中位数和众数分别是( )A. 5和5.5B. 5.5和6C. 5和6D. 6和6【解析】:∵4,3,6,9,6,5由小到大排列为3,4,5,6, 6,9;∴中位数为5.5;又∵出现次数最多的是6,∴众数是6,故选B【考点】:本题考查数据中的中位数、众数定义及其求法。
PS:双击获取文档,ctrl+A,ctrl+C,然后粘贴到word即可。
2007年--2012年内江中考数学B卷填空题
2007年--2012年内江中考数学加试卷填空题(希望同学们以此为参考,总结近几年内江中考数学加试卷的填空题的一些规律性)2007年一、填空题(每小题5分,4个小题,共20分).将最简答案直接填在题中的横线上.1.已知BC 是半径为2cm 的圆内的一条弦,点A 为圆上除点B C ,外任意一点,若BC =,则BAC ∠的度数为 .2.若a b ,均为整数,当1x =时,代数式2x ax b ++的值为0,则ba 的算术平方根为 . 3.如图(10),在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则DE DF +=4.如图(11),某小区有东西方向的街道3条,南北方向的街道4条,从位置A 出发沿街道行进到达位置B ,要求路程最短,研究共有多少种不同的走法.小东是这样想的:要使路程最短,就不能走“回头路”,只能分五步来完成,其中三步向右行进,两步向上行进,如果用用数字“1”表示向右行进,数字“2”表示向上行进,那么“11221”与“11212”就表示两种符合要求的不同走法,请你思考后回答:符合要求的不同走法共有 种.2008年一、填空题(本大题共4小题,每小题5分,共20分.请将最简答案直接填在题中横线上) 1.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 元钱.2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.3.如图,在34⨯的矩形方格图中,不包含阴影部分的矩形个数是 个. 4.如图,当四边形PABN 的周长最小时,a = .2009年一、填空题(本大题共4小题,每小题5分,共20分.请将最简答案直接填在题中横线上.) 1.如图所示,将ABC △沿着DE 翻折,若1280∠+∠=°,则B ∠= . 2.已知Rt ABC △的周长是4+,斜边上的中线长是2,则ABC S =△ .3.已知25350x x --=,则22152525x x x x --=-- .4.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么2007,2008,2009,2010这四个数中 可能是剪出的纸片数.2010年1.已知2510m m --=,则22125m m m -+=___________. 2.下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有___________个,图3中以格点为顶点的等腰直角三角形共有___________个,图4中以格点为顶点的等腰直角三角形共有___________个.B图(11)A 图(10)(2题图)1米(3题图)x(4题图)A E DCBG F1 23.已知非负数a b c ,,满足条件75a b c a +=-=,,设S a b c =++的最大值为m ,最小值为n ,则m n -的值为___________. 4.如图,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________.2011年四、填空题(本大题共4小题,每小题6分,共24分.请将最简答案直接填在题中横线上.) 22、若m =,则54322011m m m --的值是_________23、如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DE 交于点O .若△ADE 的面积为S ,则四边形B0GC 的面积= _________24、已知63(5)36m n m -+--m n -= _________25、在直角坐标系中,正方形1111A B C O 、2221A B C C 、…、n n n n-1A B C C 按如图所示的方式放置,其中点123A A A 、、、…、n A 均在一次函数y kx b =+的图象上,点123C 、C 、C 、…、n C 均在x 轴上.若点1B 的坐标为(1,1),点2B 的坐标为(3,2),则点n A 的坐标为_________2012年四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x ,y ,z ,满足,则= _________ .23.(6分)(2012•内江)已知反比例函数的图象,当x 取1,2,3,…,n 时,对应在反比例图象上的点分别为M 1,M 2,M 3…,M n ,则=_________ .24.(6分)(2012•内江)已知a i ≠0(i=1,2,…,2012)满足,使直线y=a i x+i (i=1,2, (2012)的图象经过一、二、四象限的a i 概率是 _________ . 25.(6分)(2012•内江)已知A (1,5),B (3,﹣1)两点,在x 轴上取一点M ,使AM ﹣BM 取得最大值时,则M 的坐标为 _________ .参考答案:2007年: 一、填空题(5分×4=20分)1、60°或120°(填对一个给3分,填对2个给5分)2、21 3、524 4、102008年: 150 0.5 26472009年: 1.40° 2.8 3.528 4.2 008 2010年:1.28 2.10,28,50 3.7 42011年: 四、填空题22. 023.74S 24. 2- 25. 11(21 2)n n ---,2012年: 四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x ,y ,z ,满足,则= ﹣4 .,﹣,==,=++整理得,=①,=②,+=③,③得,=+﹣﹣++=,=﹣于是23.(6分)(2012•内江)已知反比例函数的图象,当x 取1,2,3,…,n 时,对应在反比例图象上的点分别为M 1,M 2,M 3…,M n ,则=.y=,)P +M ()故答案为24.(6分)(2012•内江)已知a i ≠0(i=1,2,…,2012)满足,使直线y=a i x+i (i=1,2, (2012)的图象经过一、二、四象限的a i 概率是 .满足,概率是=故答案为:BM 取得最大值时,则M 的坐标为 (,0) .,解得,,点坐标为((。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年四川省内江市中考数学试卷一、选择题(每小题3分,36分)C D3.(3分)(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()C4.(3分)(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()7.(3分)(2012•内江)函数的图象在()8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为().9.(3分)(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,. C D .10.(3分)(2012•内江)如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )11.(3分)(2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ).CD .12.(3分)(2012•内江)如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( ).CD .二、填空题(每小题5分,共20分)13.(5分)(2012•内江)分解因式:ab 3﹣4ab= _________ . 14.(5分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为 _________ .15.(5分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是_________.16.(5分)(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=_________.三、解答题(共44分)17.(7分)(2012•内江)计算:.18.(9分)(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.19.(9分)(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21.(9分)(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G 是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x,y,z,满足,则=_________.23.(6分)(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M 1,M2,M3…,M n,则=_________.24.(6分)(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是_________.25.(6分)(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为_________.五、解答题(每小题12分,共36分)26.(12分)(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.27.(12分)(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.2012年四川省内江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,36分)C D3.(3分)(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()C解:∵反比例函数,7.(3分)(2012•内江)函数的图象在()中8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为().CD==,即阴影部分的面积为9.(3分)(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,.C D..10.(3分)(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()11.(3分)(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为().C D.====12.(3分)(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为().C D.cosA==二、填空题(每小题5分,共20分)13.(5分)(2012•内江)分解因式:ab3﹣4ab=ab(b+2)(b﹣2).14.(5分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.15.(5分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是.的概率为=故答案为:16.(5分)(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=9.的面积为(三、解答题(共44分)17.(7分)(2012•内江)计算:.18.(9分)(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.B=,×=8∴××8=3232=4800DC=16i==19.(9分)(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?,20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.=21.(9分)(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G 是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x,y,z,满足,则=﹣4.,,==,=++整理得,=①,=②,+=③,③得,=+﹣﹣+=,,=23.(6分)(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M 1,M2,M3…,M n,则=.,,M M)故答案为24.(6分)(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是.)满足概率是=故答案为:M的坐标为(,0).,解得,,,五、解答题(每小题12分,共36分)26.(12分)(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.27.(12分)(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.+﹣•==,+x+=,+cx+≥﹣28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.,(x x+2AB (()+,)ME=;,;h=CBO=BGF=÷=4x+2x+b﹣x+4,﹣﹣2。