实验四 金属电化学腐蚀极化曲线.
金属极化曲线测定及机理分析
金属极化曲线测定及机理分析一、实验目的1. 了解测定金属极化曲线的意义和方法。
2. 了解自腐蚀电势、自腐蚀电流和钝化电势、钝化电流等概念以及它们的测定方法。
3. 了解电化学保护的概念、种类及其意义。
4. 了解CHI电化学工作站基本工作原理,掌握其使用方法。
二、基本原理将一种金属(电极)浸在电解液中,在金属与溶液之间就会形成电位,这种电位称为该金属在该溶液中的电极电位。
当有外加电流通过此电极(电解)时,其电极电位会发生变化,这种现象称为电极的极化。
如果电极为阳极,则电极电位将向正方向偏移,称为阳极极化;对于阴极,电极电位将向负方向偏移,称为阴极极化。
令:(16.1)图16.1 典型的阴、阳极极化曲线对于可逆电极,即为平衡电极电位; 对于不可逆电极,为系统达到稳态时的电极电位,即稳态电极电位,或称自腐蚀电位。
习惯上将电极电流密度为i 时对应的电极电位与平衡电极电位之差定义为在该电流密度时的过电位,用符号表示。
并规定阴、阳极的过电位均为正。
根据上述定义,可以分别写出阴、阳极的过电位计算公式为:过电位是一个很重要的电化学参量。
例如在金属电沉积中,析出金属的过电位越小,消耗的电能也就越少。
在电解提纯工艺中,往往借助改变析出金属的过电位,来改变金属的析出顺序,从而获得所需的金属,达到提纯的目的。
如前所述,过电位的大小与流经电极的电流密度有关,电极电位(或过电位)与电流密度的关系曲线称为极化曲线。
图16.1是一种典型的极化曲线。
随着电流密度的增加,电极电位将越来越偏离平衡电位,亦即过电位将越来越大。
极化曲线还常用半对数座标表示,如图16.2 所示。
考察图16.2 可知,当电流密度较大时,过电位与电流密度的对数成线性关系,即:式(16.4),式(16.5) 均称为塔菲尔(Tafel)公式。
图16.2 半对数极化曲线示意图事实上,对于任一电极总是同时存在着两个共轭反应(也可存在两对或两对以上的反应),一是还原反应:(16.6)与之相对应的共轭反应是氧化反应:(16.7)式中o为氧化态;R 为还氧态。
极化曲线测试实验
极化曲线的测试与分析一.实验目的:掌握测定金属极化曲线的方法;二.实验装置及实验材料1.电化学测量系统(PS-268A型)1台2.计算机1台3.三电极系统(研究电极:试样;参比电极:甘汞;辅助电极;铂)1套4. 低碳钢电化学试样1个5.碳钢挂片试样4个6.过饱和KCl、蒸馏水、丙酮、脱脂棉、砂纸等若干7.量尺、分析天平、量杯、烧杯、毛刷等。
三.实验原理1、电化学腐蚀原理金属腐蚀按腐蚀机理可分为化学腐蚀,电化学腐蚀两类。
电化学腐蚀是指金属表面与电解质溶液发生电化学反应而引起的破坏。
其特点是反应过程中金属构成电极,整个系统有阳极失去电子和阴极获得电子及电子流动的产生。
电化学腐蚀服从电化学动力学的基本规律。
当金属浸入电解质溶液时,由于水分子极性的静电作用,或由于金属电子的吸附作用。
在两相界面的两侧将形成由电子层与正离子层组成的双电层。
由于双电层的存在而产生的电位差称为金属―溶液体系的电极电位。
不同的金属在不同的溶液体系中有不同的电极电位。
至今还没有可靠的方法可以测定金属电极电位的绝对值,但可以求其相对值。
通常是指定某一电位稳定的电极为基准电极也叫参比电极或参考电极,人为规定其电位值;再把它与被研究电极组成原电池;测定出原电池的电动势,则被研究电极的电极电位就被测出。
通常采用的参比电极是标准氢电极,但在实际工作中常常采用更方便、更结实的参比电极,如甘汞电极,银-氯化银电极等。
实际上,金属大多是含有杂质的或者以合金的形态存在。
因此,金属浸入电解质溶液后,其界面不是存在单一电极而是存在着几个电极,测得的电位也是其混合值,金属与电解质溶液接触一定时间后,达到的稳定电位值称为该金属在该电解质溶液中的腐蚀电位或自然腐蚀电位,又叫开路电位或混合电位。
腐蚀电位决定于金属材料的成分,金相组织结构,表面状态以及电解质溶液的成分,浓度,温度和PH值等。
腐蚀电位的大小与金属腐蚀速度之间没有简单的对应关系,但其可以大致指出金属的耐腐蚀性。
腐蚀过程的极化曲线分析
极化曲线分析钢筋的腐蚀过程极化曲线分析钢筋的腐蚀过程摘要:为了确定混凝土中钢筋锈蚀速率的控制因素,运用腐蚀极化曲线图分析活化钢筋阴阳极极化曲线和腐蚀电流随环境相对湿度的变化规律,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程。
结果表明,有锈蚀产物存在时,锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程的阴极去极化剂,钢筋的总腐蚀电流为氧去极化和锈蚀产物去极化产生的腐蚀电流的加和。
钢筋的总腐蚀电流随着环境相对湿度的提高而增大,和氧在混凝土中的扩散速率的变化趋势截然相反,从而证明氧仅是混凝土内钢筋开始的锈蚀的必备条件,但却不是混凝中钢筋锈蚀过程控制素。
关键词:混凝土;钢筋;极化曲线;氧;腐蚀产物混凝土中钢筋的锈蚀是一个非常复杂的电化学过程,目前国内外学者在建立钢筋锈蚀速率模型时,普遍借鉴了金属腐蚀学的研究成果,假定混凝土中钢筋的锈蚀速率受氧扩散速率所控制[1-7],这种假定的正确和合理性直接决定了由此建立的理论模型的适用程度.由于金属腐蚀学研究的对象,大都是金属处于溶液、水或土壤中,整个腐蚀过程受氧扩散控制已为无数的研究所证实。
然而大气环境混凝土中钢筋的腐蚀和前几种不同,目前已有的研究发现钢筋的锈蚀速率随混凝土湿含量增大而增大,直至混凝土饱水,钢筋锈蚀速率也没有出现下降[8-9],和混凝土中氧扩散速率的变化趋势[10]截然相反,这是上述假定所无法解释的.姬永生等[11]通过试验研究和钢筋锈蚀产物物相组成的变化分析证明锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程阴极反应的新的去极化剂,传统的氧作为单一阴极去极化剂的锈蚀机理面临着严峻的挑战。
因此,探究高湿供氧困难情况下混凝土内钢筋仍高速锈蚀的内在机理,对于建立正确、合理钢筋锈蚀速率模型具有重要的意义。
腐蚀极化曲线图是进行金属腐蚀机理分析的重要工具之一。
本文在文献[11]研究的基础上,运用腐蚀极化曲线图全面解释混凝土中钢筋锈蚀过程,探究混凝土由干燥到饱水变化过程混凝土内钢筋锈蚀速率变化的内在机理,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程,为预测钢筋混凝土的使用寿命奠定基础。
极化曲线求自腐蚀电流密度
极化曲线求自腐蚀电流密度
自腐蚀电流密度可以通过测量极化曲线来获得,具体方法如下:
1. 准备工作:准备好待测的金属样品,并将其作为工作电极放在电解质溶液中。
2. 极化曲线测量:在测量中,需要通过改变工作电极的电势来获得极化曲线。
可以使用电位扫描法或电流密度扫描法进行测量。
- 电位扫描法:在这种方法中,将工作电极的电势从一个起始
点线性变化到一个终止点,并记录在每个电位下测得的电流密度值。
根据所测得的数据绘制极化曲线,横坐标为电势,纵坐标为电流密度。
- 电流密度扫描法:在这种方法中,将工作电极的电流密度从
一个起始点线性变化到一个终止点,并记录在每个电流密度下测得的电势值。
根据所测得的数据绘制极化曲线,横坐标为电流密度,纵坐标为电势。
3. 求自腐蚀电流密度:自腐蚀电流密度通常对应于极化曲线的原点,即在工作电极无外加电势的情况下的电流密度值。
4. 分析结果:根据所测得的极化曲线,可以进一步分析金属的腐蚀行为。
如果极化曲线在原点处呈现水平线,则说明金属处于自腐蚀状态,该水平线对应的电流密度即为自腐蚀电流密度。
需要注意的是,测量极化曲线时要注意电解质溶液的温度、测量仪器的准确性等因素,以获得可靠的结果。
铁的极化曲线的测定
实验步骤
2.测量极化曲线: (2)将三电极分别插入电极夹的三个小孔中,
使电极进入电解质溶液中。将CHI工 作站的 绿色夹头夹Fe电极,红色夹头夹Pt片电极, 白色夹头夹参比电极。
实验步骤
2.测量极化曲线: (3)测定开路电位。点击“T”(Technique) 选中对话框中“Open Circuit PotentialTime”实验技术,点击“OK”。点击“░” (parameters)选择参数,可用仪器默认 值,点击“OK”。点击“►”开始实验,测得 的开路电位即为电极的自腐蚀电势Ecorr。
仪器与药品
CHI660A电化学工作站1台;电解池1个; 硫酸亚汞电极(参比电极)、Fe电极(研究 电极)、Pt片电极(辅助电极)各1支。 0.1mol•L-1、1mol•L-1H2SO4溶液; 1mol•L-1HCl溶液; 乌洛托品(缓蚀剂)
实验步骤
1. 电极处理:用金相砂纸将铁电极表面打磨 平整光亮,用蒸馏水清洗后滤纸吸干。每次测 量前都需要重复此步骤,电极处理得好坏对测 量结果影响很大。
实验步骤
2.测量极化曲线: (4)开路电位稳定后,测电极极化曲线。点
击“T”选中对话框中“Linear Sweep Voltammetry”实验技术,点击“OK”为 使Fe电极的阴极极化、阳极极化、钝化、过 钝化全部表示出来。
实验步骤
初始电位(Init E)设为“-1.0V”,终态电 位(Final E)设为“2.0V”,扫描速率 (Scan Rate)设为“0.01V/s”灵敏度 (sensivitivty)设为“自动”,其它可用 仪器默认值,极化曲线自动画出。
测量方法
动态法:控制电极电势以较慢的速度连续地 改变(扫描),并测量对应电势下的瞬时电 流密度,并以瞬时电流密度值与对应的电势 作图就得到整个极化曲线。所采用的扫描速 度(即电势变化的速度)需要根据研究体系 的性质选定。
(完整版)电化学曲线极化曲线阻抗谱分析
电化学曲线极化曲线阻抗谱分析一、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图1是Fe在H+中的阳极极化和阴极极化曲线图。
图2 铜合金在海水中典型极化曲线当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
2.图形分析(1)斜率斜率越小,反应阻力越小,腐蚀速率越大,越易腐蚀。
斜率越大,反应阻力越大,腐蚀速率越小,越耐腐蚀。
(2)同一曲线上各各段形状变化如图2,在section2中,电流随电位升高的升高反而减小。
这是因为此次发生了钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降。
(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),自腐蚀电位降低,说明更容易腐蚀。
对于X轴,七天后曲线正移,腐蚀电流增大,亦说明更容易腐蚀。
二、阻抗谱1.测量原理它是基于测量对体系施加小幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。
从这些数据中可以计算出电化学响应的实部和虚部。
阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因而阻抗谱可以通过多种方式表示。
章腐蚀金属电极的极化
5.1 腐蚀金属电极的极化曲线 1 极化曲线的合成
在一个电极上同时发生几个电极反应时,具有两 个特点 各个电极反应都在相同的电极电位下进行; 整个电极的外测电流密度是各个电极反应的电 流密度的代数和。
若电极上有n个电极反应,每个电极反应的电流 密度与电位的关系为 I1=1(E),I2=2(E),…,In=n(E) 则在电极电位为E时,整个电极的外测电流密度 I为I=I1+I2+…+In=1(E)+2(E)+…+n(E)=(E) 如果已知各个电极反应的E-I关系,就可以得到 整个电极的外测电流密度I与电极电位E的关系, 得到整个电极的极化曲线。
讨论
(1) Ig或Ia1及g随A2/Al的比值增大而增大,它们的对数 之间存在线性关系
ln I a1 β c2 ln g A A ln( 2 ) ln( 2 ) β a1 +β c2 A1 A1
如a1c2,例如Ml阳极溶解反应的塔菲尔斜率仅为几 十毫伏,阴极反应速度由扩散过程控制,其表观c2很 大,A2/A1对Ia1或g值的影响最大,接近线性关系。 如a1c2,例如Ml处于钝化状态,Ia1≈Icorr,接触腐 蚀效应很小。
每个电极反应的电流密度与电极电位的关系往 往不是一个简单的函数,整个电极的外测电流 密度I与E的关系(E)是更复杂的函数。 一般用作图法从各个电极反应的E-I关系求得整 个电极的极化曲线。 先将各个电极反应的E-I曲线画在同一个E-I图 上,将各个电极在每一个电位时的反应电流密 度相加,从而作出总的极化曲线。
极化曲线的合成与分解是腐蚀电化学研究中常 用到的方法。 极化曲线的分解在腐蚀电化学研究中很重要。 腐蚀金属电极总的极化曲线称为表观极化曲线。 构成腐蚀过程的两个电极反应的E-I曲线称为 真实极化曲线。 金属阳极溶解反应的E-I曲线称为真实阳极极化 曲线。 腐蚀过程的阴极反应的E-I曲线称为真实阴极极 化曲线。
极化曲线腐蚀电流与腐蚀电位
极化曲线腐蚀电流与腐蚀电位介绍极化曲线是研究腐蚀电流与腐蚀电位之间关系的重要工具。
本文将从极化曲线的定义、测量方法以及与腐蚀电流、腐蚀电位的关系等方面进行详细探讨。
一、极化曲线的定义极化曲线是指在某一刺激作用下,随着刺激量的变化,所得到的反应物性质与刺激量间的关系曲线。
在腐蚀研究中,极化曲线描述的是电流与电位之间的关系。
二、极化曲线的测量方法1. 三电极系统为了测量极化曲线,通常使用一个工作电极、一个参比电极和一个对电极组成的三电极系统。
工作电极是被测样品,参比电极提供参比电位,对电极则是为了维持电路的稳定性。
2. 实验条件在测量极化曲线时,需要控制一些实验条件,比如溶液的组成、温度、电极表面的状态等。
这些条件的变化会对极化曲线产生影响,所以在测量过程中要保持这些条件的稳定性。
3. 电位扫描在测量极化曲线时,常用的方法是通过改变工作电极的电位来扫描整个电位范围。
通过记录工作电极的电流响应,可以得到不同电位下的腐蚀电流。
三、极化曲线与腐蚀电流的关系极化曲线中的腐蚀电流对应着电位上的表面腐蚀速率。
当电位越正时,腐蚀电流也越大,表示腐蚀速率增加。
而当电位越负时,腐蚀电流较小,腐蚀速率减小。
1. 极化曲线的形状极化曲线的形状可以反映出腐蚀行为的特点。
常见的极化曲线形状有Tafel曲线、线性极化曲线和非线性极化曲线等。
2. 极化曲线的参数极化曲线可以通过一些参数来描述。
常见的参数有Tafel斜率、交流阻抗和腐蚀电位等。
这些参数可以用来研究腐蚀行为及其机制。
3. 极化曲线的应用极化曲线在腐蚀研究和工程实践中有着重要的应用。
通过分析极化曲线,可以评估材料的腐蚀性能、预测腐蚀速率以及设计腐蚀防护措施等。
四、腐蚀电位与腐蚀电流的关系腐蚀电位是触发腐蚀过程的电位,而腐蚀电流是腐蚀过程中产生的电流。
腐蚀电位与腐蚀电流之间有一定的关系。
1. 过电位理论过电位理论是解释腐蚀电位与腐蚀电流关系的一种理论模型。
根据该理论,腐蚀过程中的电位是由电化学反应的阻抗决定的,而腐蚀电流则是由电化学反应的速率决定的。
极化曲线求自腐蚀电流密度
极化曲线求自腐蚀电流密度1. 引言自腐蚀电流密度是表征金属在自腐蚀环境中的腐蚀性能的重要参数。
通过测量极化曲线,可以获得金属在自腐蚀条件下的电流密度,进而评估其腐蚀倾向和腐蚀速率。
本文将介绍极化曲线的概念和测量方法,并详细探讨如何通过极化曲线求得自腐蚀电流密度。
2. 极化曲线的概念极化曲线是描述金属在电化学腐蚀条件下的电流密度与电位之间关系的曲线。
它是通过在不同电位下测量金属电流密度的变化来得到的。
一般来说,极化曲线可以分为两个区域:阳极极化区和阴极极化区。
在阳极极化区,金属电流密度随着电位的增加而增加;在阴极极化区,金属电流密度随着电位的增加而减小。
3. 极化曲线的测量方法测量极化曲线的方法有很多种,其中最常用的是三电极法和双电极法。
以下将详细介绍这两种方法的原理和步骤。
3.1 三电极法三电极法是通过在被测金属表面插入一个参比电极和一个工作电极,通过控制参比电极和工作电极之间的电位差来测量金属的电流密度。
具体步骤如下:1.准备工作电极、参比电极和电解质溶液。
2.将工作电极和参比电极插入电解质溶液中,使其与溶液充分接触。
3.通过外部电源控制参比电极和工作电极之间的电位差,并测量工作电极的电流响应。
4.通过改变电位差,测量不同电位下的电流密度。
5.根据测量数据绘制极化曲线。
3.2 双电极法双电极法是通过在被测金属表面插入一个工作电极和一个参比电极,通过改变工作电极的电位来测量金属的电流密度。
具体步骤如下:1.准备工作电极、参比电极和电解质溶液。
2.将工作电极和参比电极插入电解质溶液中,使其与溶液充分接触。
3.通过外部电源控制工作电极的电位,并测量工作电极的电流响应。
4.通过改变工作电极的电位,测量不同电位下的电流密度。
5.根据测量数据绘制极化曲线。
4. 极化曲线求自腐蚀电流密度的方法通过测量得到的极化曲线,可以通过以下方法求得金属的自腐蚀电流密度。
4.1 Tafel斜率法Tafel斜率法是通过极化曲线的斜率来求得自腐蚀电流密度的方法。
实验四 金属电化学腐蚀极化曲线
以下是腐蚀电池形成的缺一不可的条件: 1.必须有阴极和阳极。 2.阴极和阳极之间必须有电位差(这种电位差 因金属内晶间、应力、疲劳程度、电偶等的差 异的存在以及金属表面缝隙、氧浓差等现象的 存在,极容易在同一金属结构体内形成);亦 可在两个不同电位金属间形成。 3.阴极和阳极之间必须有金属的电流通道。 4.阴极和阳极必须浸在同一电解质中,该电解 质中有流动的自由离子。
实验四、金属电化学腐蚀及腐 蚀极化曲线测定
一、实验目的
1、了解金属腐蚀原理,及腐蚀电池的形成。 2、绘制腐蚀极化曲线(电动势—电流曲
线),学会分析极化曲线。
二、实验原理
腐蚀电池可在两种不同金属元素间形成,由于不同金 属本身的电偶序(即电位)存在着差别,当两种金属 处于同一电解质中,并由导体连接这两种金属时,腐 蚀电池就形成了。电流通过导体和电解质形成电流回 路,此时两种金属之间的电位差越大,则电路产生的 电压越大。腐蚀电池一旦形成,阳极金属表面因不断 地失去电子,使金属原子转化为正离子,形成以氢氧 化物为主的化合物,也就是说,阳极遭到了腐蚀;而 阴极金属则相反,它不断地从阳极处得到电子,其表 面因富集了电子,在电解质中几乎没有离子产生,金 属表面始终原子状态,即没有腐蚀现象发生。
极化曲线表示电极电位和电流之间的关系, 通过对实验测量的极化曲线进行分析,可以从 电位与电流密度之间的关系来判断极化程度的 大小,由曲线的倾斜程度可以看出极化程度, 极化率是电极电位随电流密度的变化率,一般 用ρ表示: ρ=△E/△I=tanα 极化率越大,电极极化的倾向也越大,电 极反应速率的微小变化就会引起电极电位的明 显改变,电极过程不容易进行,受到阻力比较 大,反之极化率越小,则电极过程越容易进行。
第4章金属腐蚀极化曲线与测试方法课件
钝化电流 真实阳极曲线 致钝电流
表观阳极极 化曲线
特征:
•表观与真实曲线相似
•E<Ee,c后表观比真实 电流低,差值为 Ic
腐蚀电位
阴极电流
表观阳极极化曲线 钝化电流 Imax
I Ic I (EP) Ep时的真实阴极电流> Imax
特征:可自钝化 •EK处于钝化区——自 钝化,不用外加电流 •表观与真实差别极大: 表观曲线随E单调上升 •E>Ee,c后重合
活化钝化过渡区
•金属可钝化并进入第3种情况
-IC
阴极极化曲线 •阳阴极极化曲线交点在钝化区
活化溶解区
钝化区
腐蚀电位 EK
过钝化区
阳极平衡电位
Ee,c
钝化电位
活化电位 (Flade电位
)阴极平衡电位
过钝化电位
补充:实现自钝化的途径 (/link?url=mhrFetw_9kAuLVby_sAuh1hWlujaGj_DYaLiNvppr0WZ0Ms Nj_ChE6rkO89lxSKdE1bwRJFvxjVEsFKVtvIzvykMe3mC2VuJdWFAlwIgCnC)
4、扩散有影响甚至其控制下的金属腐蚀速度
腐蚀电位处的阳、阴极电流相等即 为腐蚀速度 = IL(阴极电流)
IK:自腐蚀电流 icorr
此后两线接近、相似 I:表观腐蚀电流
阴极平衡电位
相似
IL:阴极极限扩散电流
自腐蚀电位 阳极平衡电位
5、具有完整阳极钝化曲线金属的腐蚀速度
• 真实极化曲线上交点的电位就是腐蚀电位 • 此点对应的阳极真实电流即为腐蚀速度,也是此电位阴极电流的绝对值
问题:自钝化、化学钝化、阳极钝化、电化学钝化的区别?
致钝电流
金属电极的极化曲线
金属电极的极化曲线介绍金属电极的极化曲线是描述金属电极在不同电位下电流与电势之间关系的曲线。
通过研究金属电极的极化曲线,可以了解电极在电化学反应中的行为特性,对电化学领域的研究具有重要意义。
极化曲线的构成极化曲线通常由电流密度(i)和电势(E)之间的关系图示形成。
E轴表示电势,i轴表示电流密度。
在实验中,通过改变电势的值,测量相应的电流密度,得到一系列的数据点,从而绘制出金属电极的极化曲线。
极化曲线的类型1. 极化曲线的基本形状金属电极的极化曲线一般呈现出以下几种基本形状:(1) 直线形直线形极化曲线通常表示电极处于在低电流密度下的平稳状态。
在这种状态下,电极的电化学反应速率与电势之间存在线性关系。
(2) 曲线形曲线形极化曲线通常表示电极发生了某种非均匀的极化过程。
这种非均匀的极化可能是由于电极表面发生了物理或化学变化,导致电化学反应速率与电势的关系不再是线性的。
(3) 反S形反S形极化曲线通常表示电极出现了过渡性的行为。
在某个特定的电势区间内,电极的电化学反应速率明显变化,呈现出S形曲线的倒置。
2. 极化曲线的特征金属电极的极化曲线具有以下几个特征:(1) 线性段极化曲线的线性段通常是在电流密度较低的区域。
在这个区域内,电极的电化学反应速率与电势之间存在着线性关系。
(2) 饱和段极化曲线的饱和段通常是在电流密度较高的区域。
在这个区域内,电极的电化学反应速率已经饱和,不再随电势的增加而增加。
(3) 极化电势极化曲线上的极化电势是指电流密度为零时对应的电势值。
极化电势可以反映电极的活性和稳定性。
(4) 极化电阻极化曲线上的极化电阻是指电流密度与电势之间斜率的倒数。
极化电阻越大,说明电极的极化程度越高。
极化曲线的应用1. 材料研究通过分析金属电极的极化曲线,可以评估材料的耐蚀性和抗氧化性能。
这对于材料的选择和设计具有重要意义。
2. 腐蚀研究金属电极的极化曲线可用于研究金属在不同环境条件下的腐蚀行为和机理。
腐蚀电极的极化曲线测量
注:A= lg[s + s2 − t 2 ] − lg 2 ,B= lg[s − s 2 − t 2 ] − lg 2
作 s 2 − 4r -(iC) △E 图,如图 4:
s2 − 4r
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
-4 .5 0 E -0 0-47.0 0 E -0 0-37.5 0 E -0 0-37.0 0 E -0 0-27.5 0 E -0 0-27.0 0 E -0 0-17.5 0 E -0 0-17.0 0 E -0 -057.0 0 E -0 0 8
的电位就是其混合电位 Ecorr。而实测极化曲线是直接由电化学仪器通过施加外电 流测得的腐蚀金属电极的极化曲线。小电流密度下,极化曲线和实测曲线有本质 的区别,随着极化电流增大,理想极化曲线和实测极化曲线都呈直线并相互重合。
实测极化曲线
理想极化曲线
图 2 理想极化曲线和实测极化曲线
本次实验采用恒电位法中的动态法测量极化曲线,即通过控制电极电位以较 慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对 应的电极电位作图,获得整个的极化曲线。扫描速度(即电位变化的速度)应较慢 (一般控制在 2Mv/s),使所测得的极化曲线与采用静态法的接近。
2.197651 2.114552 2.00068 2.062129 2.105605 2.048342 2.088428 2.050734 2.056741 2.033893 2.039921 2.011617
1.335024 1.023463 0.711489 0.854195 0.933632 0.747891 0.851568 0.783041 0.813635 0.766814 0.736979 0.645484
实验报告-极化曲线测量金属的腐蚀速度
课程 实 验 者 名 称 页数( ) 专业 年级、班 同组者姓名 级别 姓 名 实验 日 期 年 月 日一、目的和要求1、 掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流2、论极化曲线在金属腐蚀与防护中的应用二、基本原理当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。
此时,金属发生阳极溶解,去极化剂发生还原。
在本实验中,镁合金和钢分别与0.5mol/L 的NaCl 溶液构成腐蚀体系。
镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为:阳极: Mg= Mg 2++2e阴极: 2H 2O+2e=H 2+2OH -钢与NaCl 溶液构成腐蚀体系的电化学反应式为:阳极: Fe= Fe 2++2e阴极: 2H 2O+2e=H 2+2OH -腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ϕ。
根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。
金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。
因此求得金属腐蚀电流即代表了金属的腐蚀速度。
金属处于自腐蚀状态时,外测电流为零。
极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。
测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。
在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。
在活化极化控制下,金属腐蚀速度的一般方程式为:其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。
第4章金属腐蚀极化曲线与测试方法
• 问题:能通过腐蚀电位大小比较说明腐蚀速度的大小吗?
实例
阴极控制
阳极控制
实例
Evans图
不同金属上:同一个阴极反应的动力学会不同,极化率不同
哪个因素控制? 腐蚀极化图与控制因素:阳极、阴极、混合、电阻控制
阴极极化率
控制因素原理:金属远离平衡腐蚀的动力学方程式(极化控制下)
阳极交换电流 腐蚀电位 阳极电流 阴极电流
腐蚀电流为 icorr 腐蚀电位为 Ek
?
• 电化学极化下金属腐蚀动力学方程式
即表观总阴极电流:
即表观总阳极电流:
哪种曲线的塔菲尔常数?
过电位,出发点?
• 对比一个电极反应的巴氏方程:公式相同但含义不同!
或写为:
极化值,出发点?
式中:
问题:
如何推导电化学极化下腐蚀速度的一般动力学方程式 (即非 远离平衡极化的普遍情况)
活化钝化过渡区
•金属可钝化并进入第3种情况
-IC
阴极极化曲线 •阳阴极极化曲线交点在钝化区
活化溶解区
钝化区
腐蚀电位 EK
过钝化区
阳极平衡电位
Ee,c
钝化电位
活化电位 (Flade电位
)阴极平衡电位
过钝化电位
补充:实现自钝化的途径 (/link?url=mhrFetw_9kAuLVby_sAuh1hWlujaGj_DYaLiNvppr0WZ0Ms Nj_ChE6rkO89lxSKdE1bwRJFvxjVEsFKVtvIzvykMe3mC2VuJdWFAlwIgCnC)
即可获得E-Ia真实极化曲此线后两线接近、相似
I:表观腐蚀电流
IK:腐蚀电流 icorr
阴极平衡电位
相似
实验报告-极化曲线测量金属的腐蚀速度
一、目的和要求1、 掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。
此时,金属发生阳极溶解,去极化剂发生还原。
在本实验中,镁合金和钢分别与L 的NaCl 溶液构成腐蚀体系。
镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为:阳极: Mg= Mg 2++2e阴极: 2H 2O+2e=H 2+2OH -钢与NaCl 溶液构成腐蚀体系的电化学反应式为:阳极: Fe= Fe 2++2e阴极: 2H 2O+2e=H 2+2OH - @腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ϕ。
根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。
金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。
因此求得金属腐蚀电流即代表了金属的腐蚀速度。
金属处于自腐蚀状态时,外测电流为零。
极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。
测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。
在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。
在活化极化控制下,金属腐蚀速度的一般方程式为:其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。
极化曲线在电化学腐蚀中的应用
极化曲线在电化学腐蚀中的应用娄浩(班级:材料化学13-1 学号:120133202059) 关键词:电化学腐蚀;极化;极化曲线;极化腐蚀图据工业发达国家统计,每年由于腐蚀造成的损失约占国民生产总值的l~4%,世界钢铁年产量约有十分之一因腐蚀而报废,因此研究金属腐蚀对于国民经济发展和能源的合理利用具有重大意义。
其中电化学腐蚀是金属腐蚀的一种最普遍的形式。
论文分析了电化学腐蚀的机理以及极化曲线的理论基础。
利用测量极化曲线的方法,研究金属腐蚀过程,已经得到广泛的应用。
1.金属腐蚀的电化学原理金属腐蚀学是研究金属材料在其周围环境作用下发生破坏以及如何减缓或防止这种破坏的一门科学[1]。
通常把金属腐蚀定义为:金属与周围环境(介质)之间发生化学或电化学而引起的破坏或变质。
所以,可将腐蚀分为化学腐蚀和电化学腐蚀[2]。
化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。
其反应的特点是金属表面的原子与非电解质中的氧化剂直接发生氧化还原反应,形成腐蚀产物[3]。
腐蚀过程中电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。
电化学腐蚀是指金属表面与电子导电的介质(电解质)发生电化学反应而引起的破坏。
任何以电化学机理进行的腐蚀反应至少包含有一个阳极反应和一个阴极反应,并以流过金属内部的电子流和介质中的离子流形成回路[4]。
阳极反应是氧化过程,即金属离子从金属转移到介质中并放出电子;阴极反应为还原过程,即介质中的氧化剂组分吸收来自阳极的电子的过程。
例如,碳钢[5]在酸中腐蚀,在阳极区Fe被氧化成Fe2+所放出的电子自阳极Fe流至钢表面的阴极区(如Fe3C)上,与H+作用而还原成氢气,即阳极反应:Fe - 2e →Fe2+阴极反应:2H+ + 2e →H2总反应:Fe + 2H+ →Fe2+ + H2与化学腐蚀不同,电化学腐蚀的特点在于,它的腐蚀历程可分为两个相对独立并可同时进行的过程。
由于在被腐蚀的金属表面上存在着在空间或时间上分开的阳极区和阴极区,腐蚀反应过程中电子的传递可通过金属从阳极区流向阴极区,其结果必有电流产生[6]。
铁的极化和钝化曲线的测定
实验4 铁的极化和钝化曲线的测定一、实验目的1.理解和掌握极化曲线测定的原理和实验方法。
2.学会用恒电位仪测定极化曲线的方法。
二、实验原理在研究可逆电池的电池反应和电动势的时候,电极处于平衡状态,与之相对应的电势是平衡电势φ平,随着电极上电流密度的增加,电极的不可逆程度愈来愈大,其电势值对平衡电势值的偏离也愈来愈大,在有电流通过电极时,电极电势偏离于平衡值的现象称为电极的极化。
根据实验测出的数据来描述电流密度与电极电势之间的关系曲线称为极化曲线。
通过极化曲线的测绘,可使我们对电极极化过程以及金属的腐蚀与保护等加深认识和理解。
在金属做阳极的电解池中通过电流时,通常发生阳极的电化学溶解过程,如下式所示:M=M n++ne阳极极化不大时,阳极溶解速度随电位变正而逐渐增大,这是金属正常的阳极溶解。
但在某些化学介质中,当阳极电位正移到某一数值时,阳极溶解速度随电位变正而大幅度降低,这种现象称为阳极的钝化。
处于钝化状态的金属的溶解速度是很小的,这是因为在金属表面生成了一层电阻高、耐腐蚀的钝化膜,这在金属防护以及作为电镀的不溶性阳极时,正是人们所需要的。
利用阳极的钝化,使金属表面生成了一种耐腐蚀的钝化膜来防止金属腐蚀的方法,叫做阳极的保护。
金属的钝化现象是常见的,人们已对它进行了大量的研究工作。
影响金属钝化过程及钝化性质的因素,可归纳为以下几点:1. 溶液的组成溶液中存在的氢离子、卤素离子以及某些具有氧化性的阴离子,对金属的钝化现象起着颇为显著的影响。
在中性溶液中,金属一般比较容易钝化,而在酸性或者某些碱性的溶液中,钝化则困难的多,这与阳极反应产物的溶解度有关。
卤素离子,特别是氯离子的存在,则明显的阻止了金属的钝化过程,已经钝化了的金属也容易被它破坏(活化),而使金属的阳极溶解速度重新增大。
溶液中存在某些具有氧化性的阴离子(如CrO42-)则可以促进金属的钝化。
2. 金属的化学组成和结构各种纯金属的钝化能力不尽相同,以铁、镍、铬三种金属为例,铬最容易钝化,镍次之,铁较差。
极化曲线实验报告
腐蚀金属电极稳态极化曲线测量和数据处理一、实验目的:1、掌握恒电位测定极化曲线的原理和方法2、巩固金属极化理论,确定金属实施阳极保护的可能性。
初步了解阳极保护参数及其确定方法。
3、了解恒电位仪器及相关电化学仪器的使用。
4、测定铁在酸性介质中的极化曲线,求算自腐蚀电位、自腐蚀电流、掌握线性扫描伏安法和TAFEL方法测定极化曲线。
实验原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)Fe/HCl体系是-个二重电极,即在Fe/H+界面上同时进行两个电极反应:Fe Fe2+ + 2e (b)2H+ + 2e H2 (c)反应(b)、(c)称为共轭反应。
正是由于反应(c)存在,反应(b)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。
当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)IFe的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图12-1 Fe的极化曲线图12-1是Fe在H+中的阳极极化和阴极极化曲线图。
当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
由于反应(c)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即:(2)直线的斜率为bFe。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
由于H+在Fe电极上还原出H2的过程也是由迁越步骤所控制,故阴极极化曲线也符合塔菲尔关系,即:(3)当把阳极极化曲线abr的直线部分ab和阴极极化曲线cdr的直线部分cd 外延,理论上应交于一点(z),z点的纵坐标就是,腐蚀电流Icor的对数,而z 点的横坐标则表示自腐蚀电势εcor的大小。
铁的极化曲线
铁的极化曲线实验结果的记录与处理:1、Fe在0.1mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A;Ecorr= ‒0.564V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V2、Fe在1.0mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒3.89A , Icorr=1.30×10‒4A;Ecorr= ‒0.528V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=1.30×10‒4 /(Π×0.0012)=41.5(A/ m2)由图知,钝化电流Ip=1.68×10‒2A,钝化电流密度=1.68×10‒2/(Π×0.0012)=5.34×103(A/ m2)钝化电位范围:0.305−1.581V3、Fe在1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒3.25A , Icorr=5.63×10‒4A;Ecorr= ‒0.467V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.63×10‒4 /(Π×0.0012)=179.2(A/ m2)自腐蚀速率与自腐蚀电流密度关系为:ν=3600MI/nF (其中M=56g/mol,n=2,F=96484C/mol) 故腐蚀速率:v=187.2g/(m2·h)Fe在盐酸中不钝化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以下是腐蚀电池形成的缺一不可的条件: 1.必须有阴极和阳极。 2.阴极和阳极之间必须有电位差(这种电位差 因金属内晶间、应力、疲劳程度、电偶等的差 异的存在以及金属表面缝隙、氧浓差等现象的 存在,极容易在同一金属结构体内形成);亦 可在两个不同电位金属间形成。 3.阴极和阳极之间必须有金属的电流通道。 4.阴极和阳极必须浸在同一电解质中,该电解 质中有流动的自由离子。
实验四、金属电化学腐蚀及腐 蚀极化曲线测定
一、实验目的
1、了解金属腐蚀原理,及腐蚀电池的形成。 2、绘制腐蚀极化曲线(电动势—电流曲
线),学会分析极化曲线。
二、实验原理
腐蚀电池可在两种不同金属元素间形成,由于不同金 属本身的电偶序(即电位)存在着差别,当两种金属 处于同一电解质中,并由导体连接这两种金属时,腐 蚀电池就形成了。电流通过导体和电解质形成电流回 路,此时两种金属之间的电位差越大,则电路产生的 电压越大。腐蚀电池一旦形成,阳极金属表面因不断 地失去电子,使金属原子转化为正离子,形成以氢氧 化物为主的化合物,也就是说,阳极遭到了腐蚀;而 阴极金属则相反,它不断地从阳极处得到电子,其表 面因富集了电子,在电解质中几乎没有离子产生,金 属表面始终原子状态,即没有腐蚀现象发生。
实验装置示意图
五、 数据处理
作阳极极化曲线和阴极极化曲线,由二条切
பைடு நூலகம்
线的交点z求Ecor、Icor,求出本实验中的腐蚀 速率。
六、 思考讨论
三个电极各有何作用?
三、仪器及试剂
仪器:CHI660B电化学工作站,电解池、
辅助电极(铂电极).参比电极(带盐桥的 饱和甘汞电极),铁工作电极 。
试剂:硫酸(1mol/L的H2SO4溶液) ,中
性水溶液
四、操作步骤
1.电极处理 工作电极先后800#,1000#砂纸打磨,然后用三次水 清洗,再放入乙醇清洗。 2. 线性扫描伏安法测量铁的极化曲线在工作站中选择 线性扫描伏安法(Linear Sweep Voltammetry),设 置电位范围为-0.6V ~ +1.9V ,扫描速率为2550mV/s,扫描间隙(Interval)设为0.002V及相应的性 能参数,可由仪器自动获得整个的极化曲线。所采用 的扫描速率(即电势变化的速率)需要根据研究体系 的性质选定。 3.测完之后,应使仪器复原,清洗电极。把参比电极 放回原处。
极化曲线法又称塔菲尔(Tafel)线外推法,
一般以纵坐标表示电极电位,横坐标表示电 流密度。它是一种测定腐蚀速率的方法。做 法是将金属样品制成电极浸入腐蚀介质中, 测得电压ε和电流I的关系,作log|I|-ε图,将阴、 阳极极化曲线的直线部分延长,所得交点对 应的即为logIcor,由腐蚀电流Icor除以事先精确 测量的样品面积S0,即得腐蚀速率。本实验 测铁在硫酸中的极化曲线。
极化曲线表示电极电位和电流之间的关系, 通过对实验测量的极化曲线进行分析,可以从 电位与电流密度之间的关系来判断极化程度的 大小,由曲线的倾斜程度可以看出极化程度, 极化率是电极电位随电流密度的变化率,一般 用ρ表示: ρ=△E/△I=tanα 极化率越大,电极极化的倾向也越大,电 极反应速率的微小变化就会引起电极电位的明 显改变,电极过程不容易进行,受到阻力比较 大,反之极化率越小,则电极过程越容易进行。
同一种金属内的腐蚀电池也是普遍存在的,
它同样导致了金属的电化学腐蚀。同种金属 内部不同部位的电位差是因为金属内部不可 避免地存在着晶间、应力、疲劳、电偶、缝 隙等诸多因素而产生的,这些诸多的因素又 是金属结构在冶炼、加工、安装、焊接等过 程中造成的。这就导致在同一金属结构内部 存在着众多小范围的阳极区和大片的阴极区。 金属一旦处于电解质的环境中,腐蚀电池即 开始工作。