用于宽范围光电二极管的跨阻抗放大器具有苛刻的要求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于宽范围光电二极管的跨阻抗放大器具有苛刻的要求
光电二极管广泛见诸于众多的应用,其用于把光转换为可在电子电路中使用的电流或电压。从太阳能电池到光数据网络、从高精度仪器到色层分析再到医疗成像等均在此类应用之列。所有这些应用都需要用于对光电二极管输出进行缓冲和调节的电路。对于那些需要高速和高动态范围的应用,通常采用如图1所示的跨阻抗放大器(TIA)电路。在图1中,反馈电容显示为一个寄生电容。对于许多应用来说,这是一个为确保稳定性而有意布设的电容器。
该电路让光电二极管处于“光电导模式”,并在其负极
上施加了一个偏置电压。两个运放输入之间的虚拟连接把正极保持在地电位,从而在该光电二极管的两端施加了一个恒定的反向偏置电压。可以把光电二极管看作是一个电流源(与光强成比例)、一个电容器、一个大的电阻器和一个所
谓暗电流的全并联连接。二极管两端的偏置电压越大,光电二极管电容往往会变得越小。虽然这对速度有益,但在实际中则受限于光电二极管承受大反向电压的能力。
由光电二极管产生的电流(IPD)被TIA电路放大,并通过跨阻抗增益电阻器(这里也称为反馈电阻器,即RF)转换为一个电压。理想的情况是,该电流全部流过RF(即:IFB=IPD),
然而实际上,放大器会以运放输入偏置电流的形式“窃取”部分电流。此偏置电流在输出端上产生一个误差电压并限制了动态范围。增益电阻器越大,这种影响就越厉害。应选择具有足够低偏置电流(以及输入失调电压和输入失调电压漂移)的放大器以实现所需的动态范围和总体准确度,这一点很重要。
另一个考虑因素是运放输入电流随温度变化的影响。采用双极性输入级的运放具有相当恒定的输入电流。但是该电流即使在室温条件下也非常高(达到nA甚至μA级),因而导致无缓冲双极放大器不适合很多高跨阻抗增益应用。为此,相比于双极放大器,人们通常优先选择具有一个FET输入级的运放,因为它们天生具有较低的输入电流,在室温条件下常常为几个pA或更低。但是,输入ESD保护二极管在变热
时会发生泄漏,从而造成输入电流随温度呈指数性上升。一个在室温下具有pA级偏置电流的运放在125℃时输入电流
达到nA级的情况并不少见。本文稍后将介绍一款通过ESD
二极管的自举来解决该问题的运放。另一种可选方案是使用一个分立的FET在放大器输入端上对光电二极管进行缓冲,但这需要一个额外的组件(相应地需要占用电路板空间),
而且具有相对较高的输入电容。
由于动态范围是最大输出信号与噪声之比,因此应选择具有足够低噪声的运放,这一点很重要。运放的电流噪声和
电压噪声均至关紧要,其影响程度的高低取决于RF和CIN
的数值。输入电容CIN(见图2)是光电二极管电容、放大器输入电容和电路板杂散电容的组合。在跨阻抗放大器电路中,电流噪声与RF相乘,从而使噪声表现为一个输出电压误差。另外,放大器的电压噪声与噪声增益相乘。因此,对于较高的RF值,电流噪声(in)变得更具支配作用,而对于采用高CIN的电路,电压噪声(en)届主导地位。想找到一款兼具
低电流噪声和低电压噪声的运放会是一件十分棘手的事。
此外,输入电容还限制了带宽。有关于此的一种思考方法是:把输入电容器的阻抗看作是传统负输出运放配置中的增益电阻器(RG)。该电容器越大,则阻抗越小,而且运放“承受”的有效增益(1+ RF/RG,常被称为噪声增益)越大。由于放大器的带宽与增益之间成反比关系(因增益带宽乘积的恒定特性之故),因此这意味着大的输入电容将限制电路
带宽。对此也可以从稳定性的角度来思考。运放输入端上的电容会在频域中产生一个极点,或在时域中产生一个延迟。通过增设一个(有意的,而不是寄生的)反馈电容器(CF),可对该极点进行补偿以使电路稳定。该电容越大,对电路带宽的限制也就越大。因此,应选择一个具有低输入电容的放大器,并谨慎地进行电路板的布局以消除杂散输入电容和反馈电容,这一点很重要。