虚拟矿井通风系统说明书

合集下载

矿井智能局部通风系统使用说明书

矿井智能局部通风系统使用说明书

矿井智能局部通风系统使用说明书矿井智能局部通风系统使用说明书一、产品简介矿井智能局部通风系统是一种集智能化、自动化、智能控制于一体的新型通风设备,适用于煤矿、金属矿山等采掘行业中的矿井风道通风系统。

本产品实现了对局部通风系统的集中控制和监控,能够自动调节风量、风速、风向等参数,从而保证矿井工作面通风畅通,保持矿井稳定透气状态。

本产品使用了先进的传感器、运算处理器和人机交互界面,在保证通风效果的同时,也保障了矿工安全和环境保护。

二、产品性能1、智能监测:配备多个温度、湿度、氧气含量、有害气体等传感器,能够实时监测矿井通风情况,发现问题及时进行调整。

2、自动匹配:商品将监测到的数据与预设的合理范围进行比对,自动控制矿井风机启停、截流阀开关、风道开度等操作,实现自动匹配。

3、多方位控制:可在中央控制室、现场操作台、移动设备上进行实时控制、操作,实现多方位控制。

4、智能预警:产品可进行远程联网,通过电子邮件、短信等方式发出预警信息,第一时间解决矿井通风故障。

三、使用方法1、安装:将设备按照说明书安装至矿井通风系统中,连接好电源、传感器等设备。

2、开机:将设备接通电源,按照说明书进行开机操作。

3、预设参数:通过人机交互界面进行矿井通风参数的预设设定,包括风量、风速、风向等。

4、监测调整:设备会根据传感器监测到的数据进行智能调整,可在多方位进行实时监测和调整操作。

5、故障处理:设备自动进行故障预警并发送信息,可在中央控制室或移动设备接收并解决矿井通风系统的故障。

四、注意事项1、使用设备要按照说明书进行正确操作,切勿随意进行操作。

2、设备安装和操作过程中应当注意安全,切勿操作不可控制的设备。

3、在设备发生故障时要及时进行处理,防止出现意外情况。

4、定期对设备进行维护和保养,确保设备长期稳定运转。

以上是矿井智能局部通风系统使用说明书,如果操作方案出现疑问或问题,应及时联系相关技术人员进行咨询解决。

PLC矿井通风电机控制系统说明书

PLC矿井通风电机控制系统说明书

目录1.序言 (1)2.选用PLC的理由 (1)3.PLC工作原理 (2)4.题目分析 (4)5.程序编辑 (4)6.硬件连线图 (8)7.梯形图 (9)8.语句表 (13)9.操作说明 (14)10.设计小结 (15)11.参考文献 (15)序言煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分、合理、稳定、可靠的矿井通风系统是保证矿井安全生产的基础,矿井随着深度的增加,开采强度的增大,组合机械化程度的提高,瓦斯压力,瓦斯含量和瓦斯涌出量越来越大,使得矿井通风线路长,通风阻力大,同时矿井和采区所需风量也大幅度增加,为此需及时调整矿井通风系统,对已不能满足矿井安全生产需要和矿井通风能力要求的通风系统进行技术改造。

针对这一系列问题,本系统将使用PLC对电动机工作过程和运转速度的有效控制,使矿井通风机通风高效、安全,达到了明显节能效果。

且PLC控制系统具有对驱动风机的电机有过热保护、故障报警等功能特点,为煤矿矿井通风系统的节能技术改造提供一条新途径。

1.选用PLC的理由1.1 矿井通风的意义矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排除各种粉尘及有毒有害气体,创造良好的气候条件,为井下工作人员提供安全舒适的工作环境。

目前,金属与非金属地下矿山点多面广,民营小企业多,多处于交通,通讯不便的欠发达地区。

监管人员严重不足和专业技术人员的匮乏,难以应对越来越专业和具体的监管工作需要,工作质量难以保障。

在一些大中型矿山,由于同时作业的作业面比较多,通风系统的通风效率不能满足生产需要,加之在掘进独头巷道与天井,溜井时,未加强局部通风,致使炮烟中毒事故时有发生。

绝大多数矿山企业未按规定对矿井通风质量进行检测,矿井风量,风速和作业场所空气质量长期不符合安全规程,严重威胁井下工作人员的安全与健康。

1.2 矿井通风的目的矿井通风的目的有两个:在正常生产时期,保证向矿井各用风地点输送足够数量的新鲜空气,用以稀释有毒有害气体,排除矿尘和保持良好的工作环境,确保矿井安全生产;在发生灾变时,能有效、及时地控制风向及风量,并与其他措施结合,防止灾害扩大。

矿山通风安全仿真实验系统本科实验指导书lzl注范本

矿山通风安全仿真实验系统本科实验指导书lzl注范本

矿山通风安全仿真实验系统本科实验指导书lzl注新版本科实验实验一 风流点压力和平均风速的测定实验二 摩擦阻力系数和局部阻力系数测定实验三 掘进通风技术测定实验四 矿井安全监控系统的组装与测试实验类型:设计 实验学时:2实验要求:必修 实验房间:能源111一、实验目的1、验证速静全速静全,p p p h h h ±=±=,以巩固在不同的通风方式下三种压力的相互关系。

2、掌握某断面的平均风速的测定方法,并计算风量。

二、实验内容(一)点压力测定1、首先熟悉管网系统的风流方向,观看皮托管是否正对风流并量管道中心位置。

了解胶皮管与U 形水柱计的接头是否正确,明确每台U 形水柱计测哪一种压力。

(压入式与抽出式通风系统的测压布置如图1所示)图12、点压力测定全都检查无误并明确管网系统的布置方式,此时可开动风机待风机运转正常压、速压同时读出,填入表格,用空盒气压计或水银气压计测定大气压并填入表格。

3、验证就相对压力而言:抽出式 速静全h h h -=压入式 速静全h h h +=就绝对压力而言:速静全=P P P +注:压入式通风: 6.13全全=h P P a +6.13静静=h P P a +6.13速速=h P抽出式通风: 6.13全全-=h P P a6.13静静-=h P P a6.13速速=h P线路法测风 定点法测风图2(二)断面平均风速测定为了测得平均风速,可采用线路法或定点法(图2)。

根据测风员的站立姿势不同分为迎面法和侧身法两种。

迎面法需将测得的真风速乘以 1.14的校正系数。

侧身法校正系数K 由下式计算:SS -K 4.0 式中 S ——测风站的断面积,m 2;0.4——测风员阻挡风流的面积,m2。

三、仪器设备矿山通风安全仿真实验系统、皮托管、U形水柱计、空盒气压计、风表、秒表。

1、U形水柱计:U形水柱计如图3所示,它是由一根内径相同的玻璃管弯成U型水柱。

并在其中装入蒸馏水,在U形管中间有一刻度尺所组成,其测压原理是:在测压前U形管两端的水面处于水平位置,当一端加入较大的压力时,此端液面下降,另一端液面上升,此时两端液面的距图 3离若为L毫米时,就表明水柱计的两端压力差为L毫米水柱。

矿井通风仿真系统MVSS31说明书

矿井通风仿真系统MVSS31说明书

矿井通风仿真系统MVSS31说明书矿井通风仿真系统MVSS3.1说明书辽宁工程技术大学目录1软件总体介绍 (1)1.1................................... 注意事项11.2................................... 软件启动21.3................................... 系统退出2 2矿井通风仿真系统MVSS3.1可视化界面. (3)2.1.............................. 仿真系统菜单操作42.1.1.......................... 文件类下拉菜单52.1.2.......................... 绘制类下拉菜单62.1.3.......................... 视图类下拉菜单92.1.4.......................... 设置类下拉菜单102.1.5.......................... 编辑类下拉菜单122.1.6.................... 通风系统仿真分析下拉菜单172.1.7...................... 系统拓扑分析下拉菜单182.1.8...................... 通风系统数据分析菜单202.1.9..................... 查看类与窗口类下拉菜单252.2.............................. 工具栏与快捷方式25 3通风仿真系统图属性编辑 (27)3.1............................. 鼠标单击、双击操作273.2.............................. 属性数据字段解释313.3................................ 鼠标右键操作343.3.1........................... 巷道右键属性353.3.2........................... 节点右键属性363.3.3........................... 风机右键属性363.3.4........................... 风门右键属性40 4生成仿真系统图.. (41)4.1....................... 用DXF格式文件生成仿真系统图414.2.......................... 用鼠标在屏幕上直接绘制434.3................................... 注意事项43 5通风网络风流分配仿真.. (44)5.1........................... 矿井风流状态仿真菜单445.2................................ 风流调节仿真455.3................................ 仿真结果分析475.4.............................. 仿真结果误差分析58 6声明 (62)1软件总体介绍矿井通风仿真系统(简称MVSS),本说明书的版本号为3.1,目前MVSS3.1已取得中国版权保护中心的计算机软件著作权。

煤矿行业矿井通风设备操作说明书

煤矿行业矿井通风设备操作说明书

煤矿行业矿井通风设备操作说明书1. 前言本操作说明书旨在指导煤矿行业矿井通风设备的正确操作,保证工作人员的安全和设备的正常运行。

使用本设备前,请认真阅读本说明书,并按照要求操作。

2. 设备概述煤矿行业矿井通风设备旨在调节和维护矿井内的空气流通,为作业人员提供良好的工作环境。

该设备包括风机、排风管道、送风管道、防火墙等组成,具有通风、降温、防爆等功能。

3. 安全须知(1) 操作前,请确保设备正常工作,检查风机及相关管道是否有明显损坏或堵塞情况。

(2) 使用设备过程中,应保持通风系统畅通,不得随意关闭送风或排风口。

(3) 发现设备异常响声、异味或温度异常升高时,应立即停止使用,并及时上报维修人员进行检修。

(4) 操作设备时需穿戴防护装备,避免发生意外事故。

4. 设备操作步骤4.1 风机启动(1) 打开风机总电源开关,确保电源正常供电。

(2) 启动风机控制面板,将控制开关调至“启动”位置。

(3) 观察风机运行状态,确保无异常情况后,继续下一步操作。

4.2 送风管道操作(1) 检查送风管道连接情况,确保无漏风现象。

(2) 打开送风管道闸门,调整送风量,满足矿井内的通风需求。

(3) 操作结束后,关闭送风管道闸门,确保送风口封闭。

4.3 排风管道操作(1) 检查排风管道连接情况,确保无渗漏情况。

(2) 打开排风管道闸门,调整排风量,保持矿井内空气流通畅通。

(3) 操作结束后,关闭排风管道闸门,确保排风口封闭。

5. 维护与保养(1) 按照定期维护计划进行设备维护,包括清洁风机叶轮、检查电路连接等。

(2) 定期更换防火墙内的过滤网。

(3) 注意设备的存放环境,防止设备受潮、损坏。

(4) 随时关注设备运行状态,及时发现故障并进行处理。

6. 总结本操作说明书详细介绍了煤矿行业矿井通风设备的操作步骤和安全须知,希望能够为使用人员提供必要的操作指导,确保设备的安全运行和作业人员的人身安全。

同时,我们强调设备的定期维护和保养,以延长设备的使用寿命。

矿井三维通风仿真系统

矿井三维通风仿真系统

煤矿三维通风仿真系统大连比特软件有限公司2010年11月1.通风系统概述当前,我国煤矿矿井事故类型多种多样,但事故的成因总有一定的发展规律可循。

事故统计发现,但凡能造成重特大事故,一般都与通风系统有关,或者是通风系统不合理,或者是通风系统本身就没有完整地形成,导致包括瓦斯爆炸、煤尘爆炸重特大事故。

可见,合理的通风系统对于保证煤矿矿井安全生产极为重要。

合理的矿井通风系统是利用通风动力,以最经济的方式,向井下各用风地点提供足量的新鲜空气,提供适宜的温度、湿度,保持良好的气候条件,以保证井下作业人员的生命安全和改善劳动环境的需要,采取符合实际的矿井通风方式、矿井通风方法和矿井通风网络。

并且要求在发生灾害时,能及时而有效地控制风向及风量,并配合其它措施,将事故控制在一定范围内,防止灾害的进一步扩大。

只有能顺利完成以上任务的矿井通风系统才能算作是合理的,而体现在宏观上,合理的矿井通风系统必须具备以下几个特点:1)通风系统简单实用;2)通风设施安全可靠;3)保证稳定的风流导向;4)矿井通风阻力﹙包括摩擦阻力和局部阻力﹚最小,且分布合理;5)具备抗灾能力强。

借助于现代化的信息管理技术,以计算机作为辅助手段来对矿井通风系统进行管理已是大势所趋。

使用计算机图形系统建立矿井三维通风网络模型,通过对巷道的断面、风阻以及通风构筑物等参数进行赋值,可以实现通风系统的数字化、和可视化,然后通过一定的算法对网络数据进行处理、解算,对通风过程进行动态模拟,从而为矿山管理人员和技术人员提供必要的数据支持,以辅助通风和生产决策。

2 矿井三维通风仿真系统矿井三维通风仿真系统是我公司联合中国矿业大学在引进澳大利亚专业通风仿真软件技术的基础上进行开发并推广的,在矿井三维通风设计、通风网络解算、三维通风仿真方面处于世界领先水平。

系统可以用于矿井通风设计与优化、风机工况点分析、通风系统调整方案制定、风温计算、循环风预测、反风演习、通风系统经济性分析以及以通风仿真为基础的通风决策支持等领域,使用该系统可以帮助矿山企业进行合理的通风管理,节约通风成本,提升矿山企业整体形象。

矿井通风课程设计说明书

矿井通风课程设计说明书

矿井通风课程设计说明书..目录 (2)第一章井田概况及地质特征 (5)1.1 井田概况 (5)1.1.1 位置、交通 (5)1.1.2 矿区自然地理及经济概况 .. 51.2 地质特征 (6)1.2.1 区域地质 (6)1.2.2 矿区地质 (6)1.2.3 矿体地质 (6)1.3 水文地质 (6)第二章井田开拓 (7)2.1 井田境界及储量 (7)2.1.1 井田境界 (7)2.1.2储量82.2 矿井设计生产能力及服务年限 .. 102.2.1 矿井年生产能力确定 (10)2.2.3 矿井年生产能力的验证 (10)2.3 井田开拓 (10)2.3.1 开拓方式的选择原则 (10)2.3.2 方案选择 (11)2.4 开拓系统及井筒位置的确定 (11)2.4.1 井筒的数目、用途及位置 . 112.5 阶段运输巷道的布置 (12)2.6 开采顺序 (12)第三章采矿方法 (13)3.1采矿法的选择133.1.1 开采技术条件 (13)3.1.2 采矿方法的选择 (13)3.1.3 确定采矿方法 (13)3.2 采矿方案确定 (13)3.2.1 矿块布置及结构参数 (13)3.2.2 采准切割工作 (14)3.2.3 回采工作 (14)3.2.4 同时工作的矿块数目: (15)3.2.5 矿块回采工艺对照表 (15)第四章通风 (16)4.1 概况 (16)4.1.1 通风系统的选择原则 (17)4.1.2 通风系统的几项具体规定 . 174.2 矿井通风 (17)4.2.1 矿井通风方式 (17)4.2.2 通风系统 (18)4.3 风量计算 (18)4.3.1 全矿通风总量 (18)4.3.2 回采工作面风量 (18)4.3.3 备采工作面风量 (19)4.3.4 掘进工作面所需风量 (19)4.3.5 独立通风硐室 (19)4.4风量分配204.5 通风阻力计算 (20)4.5.1 容易时期通风总阻力 (20)4.5.2 困难时期通风阻力 (22)第五章设备选择 (24)5.1 通风设备的选择 (24)5.1.1 主扇 (25)5.1.2 扇风机选择 (26)5.1.3 局扇 (26)参考文献 (28)致谢 (29)第一章井田概况及地质特征1.1 井田概况1.1.1 位置、交通下湿壕矿区位于固阳县南东60公里,行政区划隶属固阳县下湿壕乡管辖。

矿山通风系统的控制模式和基于监控数据和安全信息的实现说明书

矿山通风系统的控制模式和基于监控数据和安全信息的实现说明书

7th International Conference on Energy and Environmental Protection (ICEEP 2018)Control Mode of Mine Ventilation System and Its Implementation Based on Monitoring Data and Safety InformationWei Yin-shang1,a, Jia Yu-quan2,b, Wang Yi-bo3,c1No. 50, Yanta Road, Xi’an, Shaanxi Province:2No. 50, Yanta Road, Xi’an, Shaanxi Province:3No.50, Yanta Road, Xi’an, Shaanxi Province:a****************,b****************,c*****************Keywords: ventilation system, monitor and control, intelligent control, ventilation device. Abstract: Based on the full monitoring of mine ventilation system by a safety surveillance control system, the feedback control is applied to design a hierarchical control model. It mean that the total mine air volume is controlled by a main fan power supply module converter, the roadway area is controlled by an electric ventilation door, and the air volume of workplaces is controlled by the air register installed at the end of compressed air duct. The control of whole ventilation system is implemented using intelligent modular design. Through the communication interface, the parameters of the air speed and pressure of each laneway and air point for the ventilation system are collected, and the environmental safety status parameter is also considered, to adjust the effective air volume in production, and to optimize the structure and air volume of the ventilation system in the changing conditions of environmental security. The control strategy is divided into a dynamic adjustment scheme for the production safety state, and a manual-intervened adjustment program in the conditions of prediction deviation of safety state with the change of environment security. Through the ventilation data provided by the adjustment scheme, the intelligent module controls the ventilator, the electric ventilation door and the wind regulator in the outlet of air-supply duct to achieve the effect of both major and fine adjustment. Thus, the air quantity is always maintained in the range of safe level.IntroductionAs an important measure to ensure the safety production of mine, protect the life safety of underground workers, and prevent and control the accidents of underground, the control of mine ventilation system has an overall impact on the safety of mine ventilation[1].The mine ventilation system not only should has a well-structured ventilation network and a well-matched ventilation facilities, but also should contains ventilation structures for guiding, isolating and regulating air volume, to ensure that the airflow is oriented and quantified in accordance with requirement[2].The causes for the occurrence and expansion of major disasters in the mines have an closely related to mine ventilation structures[3]. For example, the reason for the occurrence of a coal mine fire accident in the Dafoshi coal mine of Binchang mining group in 2012 was that the unreasonable mining methods and techniques led to small quantity ventilation structures in the inlet air section, and most ventilation structures were located in the return air section. During the production process, due to the inadequate maintenance and management for ventilation structures, air penetrate directly into the return airway through gaps in the ventilation structure, the goaf zone or the surface subsidence area, which resulted in a large amount of air leakage in the return air system, causedunderground air turbulence and the further expansion of fire smoke. Therefore, the installation of reasonable and well-maintained ventilation structures can effectively control the air flow during the accident or disaster period, reduce air leakage and improve the reliability, stability and resilience of ventilation systems. For example, the blast door must be installed at the outlet of the main ventilator to prevent the expansion of gas explosion accidents; When a fire occurs in the intake shaft, it is necessary to take the anti-wind or close the wellhead fire door.For many years, the adjustment and control problems of mine ventilation have attracted the attention of ventilation experts. Many research results of mine air conditioning and control technology have been applied to production, which has played a positive role in the safety production of mine. However, due to the complex and changeable conditions of mine and mining technology, there are many air flow control problems in the process of mine ventilation[4], such as air leakage, airflow short circuit, air flow circulation and no air blind area, etc, which seriously affect the stability of the ventilation system. On the basis of the theoretical models of nonlinear control, ejected air flow, neural network control, mining air curtain barriers and fuzzy control, numerous experts[5]~[8]have studied and developed many mine ventilation regulation and control techniques, such as technology and equipment of mine leakage risk control system, mining air curtain technology, expert system control technology, controllable circulating ventilation technology and automatic control technology of mine shaft ventilation. However, these control model and technology of ventilation systems have neglected the structure of mine ventilation system and the characteristics of air volume distribution. Therefore, in light of the structure of mine ventilation system and the characteristics of air volume distribution, we have proposed a hierarchical control model of mine ventilation system based on the full monitor of mine ventilation system by safety surveillance control system.Air volume distribution characteristics and control principles of mine ventilation system In mine ventilation system, air flow is composed of a oriented loop system in the form of its bifurcation and confluence. The flow of air in the system roadway is along oriented loop system thanks to the pressure difference in the two end of the roadway. In order to directly reflect the connection relationship between roadways, and the relationship between bifurcation and confluence, the roadway is simplified as a oriented line section, and the intersection point is simplified as a node. So the finite set V of the node element and the finite set E of the branch element constitute a oriented graph G= (V, E). The schematic diagram of the oriented path is shown in figure. 1.Figure.1 Diagram of oriented circuit pathFor most of Chinese mine adopts extraction ventilation method, according to the layout system of mine roadway and the layout of mining area, in terms of air volume distribution, the air flow is under the law of wind balance, wind pressure balance and resistance, which makes the air flow from high energy to low energy. The main air volume of mine is mainly distributed in the intake shaftand return shaf; Secondly, the working face, tunneling working surface and electrical and mechanical cavern are arranged within mining section, and the total air volume that enters into mining area flows through the rail roadway, haulage roadway and return air alleys; Finally, the air volume of various wind sites is small, and its spatial distribution is more dispersed. This air distribution characteristics and ventilation system structure is the basis of the control, which determines the mine air volume should be controled by different levels.According to the characteristics of air volume grading distribution, a hierarchical automatically-adjusted control model is built based on Programmable Logic Controller (PLC). When the system is in operation, the corresponding deviation is obtained by comparing the parameters of environmental quality and ventilation that are collected via real-time monitor through the communication interface, with the safety setting values of each parameter such as gas concentration, wind speed and pressure in different roadways and in the wind location. Guided by the deviation from normal automatic correction principle of control theory, the deviation of the state parameters of the wind location is adjusted and modified online, and the adjustment scheme of ventilation parameters is put forward. Finally, automatically output the state parameters of the adjustment program to each intelligent module that controls the ventilator, the electric damper, and the draught regulator in the outlet of air-supply duct, then according to the on-demand supply principle of the wind site, realizing the effect of both major and fine adjustment, which will realize intelligent control of mine ventilation system. The schematic diagram of the control principle is shown in figure 2, the schematic diagram of the algorithm program of feedback control is shown in figure 3.valueFigure.2 Diagram of control principleAir volume control criteria of underground roadwayIn the mine excavation project, due to the changes of the mining conditions and ventilationsystem management, the resistance of airway, the network structure and the air volume required for each site are real-timely and dynamically changed with the propulsion and replacement of the working surface, which needs the mine air volume to be adjustd timely[9]. Considering the nonlinear, multi-interference and multi-coupling characteristics of the mine ventilation system, and there are some uncertainty factors such as the time-varying parameters, so the accurate modeling calculation cannot be realized[10]. Based on the analysis of the nonlinear control, the neural network control and the fuzzy control that active in the current control areas, this paper puts forward following control criterion of the underground roadway air volume:(1) According to the regulations of Chinese《Coal Mine Safety Regulations》, comprehensively considered the ventilation requirements, mine exploitation modes and roadway layouts in different periods during the whole mining years, and in light of the methods of mine ventilation design and mine air quantity verification, the air volume in the underground mining face, the driving working face, the chamber and other roadway must be actively distributed to meet the basic requirement for the safety production. Based on the requirement of air volume for each site, all the ventilation roadways have the matched air volume that is known as the effective air volume of underground roadways.(2) In the normal mining and exploitation of the mine, no matter in the wind location or ventilation roadway, when the actual air volume is deviated from its effective air volume, it would pose a safety risk. Therefore, it is necessary to automatically correct the deviation in time. Because the air volume distribution characteristics of mine ventilation system presents the hierarchical classification characteristics, determining the local or small amount of air conditioning should be orderly adjusted along a oriented path.(3) The occurance of gas outburst, fire and other disaster would change the environment security status of mine. The volume control measure of anti-air, closure, etc in the ventilation system should be implemented sometimes for timely, effective control of airflow in the disaster period. Due to the uncertainty of disaster environment, and human’s inaccessible to underground to adjust the ventilation equipment, the system must be automatically switched to the manual adjustment mode in order to prevent the disaster from uncontrollably expanding and greatly improve the safety factor of mine ventilation system.Air flow control strategy of underground ventilation roadwayThe air volume adjustment of ventilation system is a systematic engineering. In the case of air volume control, the subsystems of the system should be adjusted gradually, systematically and coherently based on the systematic principles. According to the different conditions of air volume of air supply, return air and air-using area in the ventilation system, it is divided into three levels of total mine air volume control, mining area air volume control and working face air volume control. Aimed at the three level characteristics of mine air volume control, a hierarchical control model for mine ventilation system has been built using the principle of intelligent modular design. The total mine air volume is controlled by a main fan power supply module converter, the roadway’s airflow of mining area is controlled by an electric ventilation door, and the air volume of air-using area is controlled by the air register installed at the end of compressed air duct.Main air volume control strategy of mineThe main air volume of mine refers to the air volume of main inlet and return air shaft. The main ventilator’s working condition is automatically adjusted by using frequency control technology, realizing intelligent adjustment and control for the main air volume and air pressure ofmine. In terms of concrete implementation, to meet the air volume required for underground operation, the frequency control system in main fan power supply module is used to control the main fan frequency conversion operation, and automatically adjust the speed of the ventilator on a large scale to make it operate under the optimum condition. When need to reduce the air volume, the synchronous speed can be changed by reducing the stator supply frequency of the motor, which can realize the main fan speed decrease; Conversely, when need to increase the air volume, it can be realized by increasing the motor stator supply frequency. Using the frequency converter to drive the operation of the main ventilator not only can realize the soft start of the ventilator and the stepless smooth speed regulation but also can greatly reduce the energy consumption of the fan and save energy[11].The schematic diagram of the main air volume control of mine is shown in figure 4.Figure.4 Diagram of the main air volume control of mineMain air volume control strategy of mining area main roadwaysThe main air volume adjustment of mining area main roadways adopts the no-pressure damper installed at the mining area main return air alleys. The device adopts electric mode to adjust the opening angle of the damper, and then controls the main air volume of mining area. In terms of concrete implementation, a real-time monitoring and acquisition of roadway air volume is carried out by using the air volume and air speed sensor installed at the top of the roadway where air is stable in front of the no-pressure damper; Using infrared remote sensing technology and pneumatic technology to control the damper opening and closing linearly; Using displacement sensor to monitor the piston rod expansion of oil cylinder that adjust the opening angle of the damper, the results are also given to the intelligent control module, then the intelligent module control electric damper opening and closing linearly, drive cylinder piston rod to scale, which will automatically realize the no oscillating micro-adjustment of the damper’s opening angle , until the air volume of mining area meet the pre-set security deviation range. This method not only can realize the rapid anti-risk control system during disasters, but also can effectively solve the air leakage of traditional damper and the frequent collision. The schematic diagram of the main air volume control of miningarea main roadways is shown in figure 5.1. Door leaf2. Electric motor3. Slider4. Leading sheave5. Displacement sensorFigure.5 Diagram of the main air volume control of mining area main roadwaysAir volume control strategy of headingFirstly, the inflatable air bags are suspended in the air return side of heading. According to theregulations of Chinese《Coal Mine Safety Regulations》, all mines must be equipped with a separateset of mine compressed air self-rescue system. Next, the compressed air piping line is connected with the inflatable air bags through a branch pipe. If you need to reduce the air volume of working face, turn on the control valve to inflate the inflatable airbag, which can increase the air resistance of roadway and reduce the ventilation volume. Conversely, if we need to increase the air volume of working place, turn on the valve of the compressed air piping line that is located in the air return side of working face. The schematic diagram of the main air volume control of heading is shown in figure 6.1. Pressure air pipe line2. Compressed air self-rescue device branch3. Protecting band4. The inflatable airbag5. reducing valve6. Roadway floor7. Roadway roofFigure.6 Diagram of the main air volume control of headingDevelopment of ventilation system control technologyAt present, the ventilation system of mine in China mostly adopt decentralized and independent automatic equipment, which is difficult to realize real-time monitoring, centralized dispatching and management. Meanwhile, due to lack of self-diagnosis ability and remote-control function, it is not conducive to the safe and stable operation of mine ventilation system. Therefore, by constructing a reasonable control model of mine ventilation system and combining the intelligent control technology with the configuration software and the touch screen technology applied in the coal mine ventilation system can realize intelligent monitoring, fault diagnosis and early warning, report output, remote control and interactive man-machine dialogue function , which can make the mine ventilation system and the safety production management continuously improve, and this technique will be the trend of future development.The realization of ventilation system control technology requires mines to be equipped with the security monitoring and controlling system with remote control function at least. The system needs to integrate the main ventilator, the electric damper and the inflatable airbag control device in the outlet of air-supply duct through automatic control technology, to realize the real-time collection of related parameters that could reflect the environmental quality and ventilation status such as gas and dust concentration, roadway temperature and humidity, air pressure and air pressure etc. Furthermore, these parameters will be synchronously transmitted to the master control system for online fault diagnosis and warning. Then, according to the feedback control for guidance and relying on the hierarchical control model of mine ventilation system, the control strategies and adjustment plans are put forward. Finally, using the microcomputer process perform remote control intelligent module to quickly realize the dynamic adjustment of the effective air volume in production and the ventilation system structure and air volume adjustment in the circumstance of environmental security change. The architecture diagram of the implements of the control system is shown in figure 7.Figure.7 Architecture diagram of the implements of the control systemConclusionsAimed at the ventilation status of coal mines in China, a hierarchical control model of mine ventilation system has been built using intelligent modular design concept based on the ventilation system structure and air volume distribution characteristics of the extraction ventilation. Under the conditions of the full monitor of mine ventilation system by safety surveillance control system, we have put forward that airflow control technology, configuration software and touch screen technology are applied to hierarchical control model to realize the dynamic adjustment scheme in the production safety state, and the manual-intervened adjustment program in the conditions of prediction deviation of safety state with the change of environment security. The implementation of model effectively improves the effective air volume rate and the air distribution quality of mine, and reduces the operational expenses of ventilation system in order to scientifically control and adjust the overall conditions of ventilation system.References[1] Xu G, Jong E C, Luxbacher K D, et al. Effective utilization of tracer gas in characterization ofunderground mine ventilation networks. Process Safety & Environmental Protection 99, 1-10(2016).[2] ZHANG Guo-shu. Science of Ventilation safety. 2nd edn. China University of Mining andTechnology Press, Xuzhou (2000).[3] WANG H N, PENG B , PENG J l , et al. Analysis of commonly existing ventilation problemsand the optimal approach to deal with them in large-size mines. Journal of Safety and Environment 14(3), 24-27(2014).[4] Wang H N. Cavern type airflow control technology of mine. Journal of Chong qing University35(5), 126-131(2012).[5] Hu Y, Koroleva O I, Krstić M. Nonlinear control of mine ventilation networks ☆. Systems &Control Letters 49(4), 239-254. (2003).[6] Turchenko, Iryna, V. Kochan, and A. Sachenko. In: Neural-based Control of Mine VentilationNetworks. Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2007. Idaacs 2007. CONFERENCE 2007, pp. 219-224 . IEEE Workshop on, IEEE (2008).[7] Fu H, Sun s s, Xu Z L, et al.Application of the information fusion method in mine air supplyingsysten based on fuzzy neural network. Journal of China Coal Society 32(2), 264-267.(2006). [8] Wang P, Zhu K, Zhou Y, et al. Research and Application of Controlled Circulating Ventilationin Deep Mining ☆. Procedia Engineering 84(4), 758-763 (2014).[9] SONG Z Y, LI X C, QI W Y, et al. An Approach for Quantificational Determination of MineVentilation Stability. China Safety Science Journal 21(9), 119-124 (2011).[10] D u X H, Niu S, Wang X M, et al. Study on the Modeling of Main Mine Ventilator Based onArtificial Intelligence. Applied Mechanics & Materials 130-134, 3526-3530 (2011).[11] ZHAO Z J, ZHU B.Application of variably frequency variably voltage in highway tunnelventilation control. Journal of Chang’an University (Natural Science Edition) 26(4), 71-74(2006).。

一矿井三维通风动态仿真模拟系统主要技术参数及要求

一矿井三维通风动态仿真模拟系统主要技术参数及要求

一矿井三维通风动态仿真模拟系统主要技术参数及要求前言随着技术的发展和社会需求的不断提高,三维通风动态仿真模拟系统已经被广泛应用于各个领域。

在矿业行业中,三维通风动态仿真模拟系统的应用能够帮助矿工和矿场管理者更好地了解矿井情况,提高矿井的生产效率和安全水平。

本文将介绍一款用于矿井通风动态仿真模拟的系统,包括技术参数和要求。

技术参数系统架构本系统采用后端服务架构,前端和后端分离,保证了系统的稳定性和安全性。

系统后端采用了Spring Boot框架,前端采用了Vue.js框架。

为了保证系统安全,采用了分层架构,并使用了OAuth2作为安全认证机制。

功能模块本系统包含了以下几个主要的功能模块:1.矿井结构建模功能:通过输入矿井的结构信息,生成矿井的三维模型。

2.通风系统模拟功能:通过模拟矿井通风系统,实现通风过程的可视化展现和分析。

3.空气质量仿真功能:通过对矿井各个空间的空气质量进行仿真和分析,帮助矿工和矿场管理者了解矿井内部气体的变化趋势。

4.报警管理功能:通过设置报警规则,实现对矿井内部环境的实时监测和预警。

技术要求1.系统需要支持快速响应,保证系统的实时性和稳定性。

2.后端服务需要支持高并发,能够处理大量的数据和请求。

3.前端需要采用轻量级框架,保证系统的响应速度和用户体验。

4.系统需要支持分布式部署,保证系统的可扩展性和灵活性。

5.系统需要支持多平台(Windows、Linux、Mac)运行,保证系统的兼容性。

通过以上介绍,我们了解了一款用于矿井通风动态仿真模拟的系统的主要技术参数和要求。

随着矿业行业的快速发展,这样的系统有望在未来得到广泛应用,为矿工和矿场管理者提供更好的工作环境和更高的生产效率。

矿井采区通风设计说明书

矿井采区通风设计说明书

河南理工大学矿井通风设计说明书姓名:白建晔学号:310919422182班级:09级采矿工程日期:2013年6月日目录绪论ﻩ错误!未定义书签。

第一章采区概况 (4)1.1采区位置及范围............................................................ 错误!未定义书签。

1.2 地质特征ﻩ错误!未定义书签。

1。

3采区境界储量服务年限......................................... 错误!未定义书签。

1。

4采区内采煤工作面情况............................................... 错误!未定义书签。

第二章采区通风系统.................................................................... 错误!未定义书签。

2。

1采区通风系统要求.................................................... 错误!未定义书签。

2.2采区进回风上山的叙述与确定ﻩ错误!未定义书签。

2。

3 回采工作面的通风方式选择 (11)第三章采区风量的计算ﻩ错误!未定义书签。

3。

1 工作面的供风及工作面风量计算原则及要求ﻩ错误!未定义书签。

3.2 回采工作面风量的计算................................................ 错误!未定义书签。

3。

3 掘进工作面风量的计算.............................................. 错误!未定义书签。

3.4 硐室风量的计算............................................................ 错误!未定义书签。

3.5采区风量分配................................................................ 错误!未定义书签。

矿井通风设计说明书参考

矿井通风设计说明书参考

矿井通风设计说明书参考矿井通风设计说明书1、设计依据概述1.1、矿段地质、开拓⽣产情况矿区本次深部开采设计对象主要为-530m标⾼以下的Ⅰ号矿体和V号矿体群。

本次深部开拓设计开采的-530m标⾼以下的矿体赋存地质条件与上部矿体单⼀、品位⾼、厚度⼤、且相对稳定、完整的赋存条件,有明显的差异。

这将会增加深部开采的难度,需要采取必要的应对措施。

1.11、-530m以下深部开采范围内的地质储量及岩⽯性质:①Ⅰ号矿体,表内矿体重2.85t/m3 ,表外矿体重 2.79 t/m3。

矿⽯量12万吨,平均品位4.13g/t,⾦⾦属量495.53Kg。

矿体硬度系数f=7~8,顶底板f=11~12.;② V号矿体群体重2.74 t/m3,矿⽯量261万吨,平均品位6.38g/t,⾦⾦属量16708.82Kg。

V号矿体及顶底板硬度系数与Ⅰ号矿体⼤体相似。

顶板平均抗压强度110.99Mpa,矿体107.42Mpa,底板101.05Mpa。

-530m标⾼以下⾄-730m深部开采范围内全部设计地质储量,矿⽯量273万吨,平均品位6.29g/t,⾦⾦属量17204.35Kg。

③围岩体重:2.70 t/m3。

④矿岩松散系数:1.6。

⑤⾃燃性:⽆本次设计⽣产规模为80万t/a。

根据计算并结合矿⼭实际情况,确定Ⅴ号矿体开采范围内的服务年限为6年。

1.12、矿区地形及矿区⽓候概况矿区地处望⼉⼭北麓,西临莱州湾,处于低⼭丘陵向海湾平原过度地带,地势平坦开阔。

地⾯标⾼23.42-26.65m。

地表⽔体主要为万深河,其发源于⾦华⼭-望⼉⼭之间,流经矿区东侧,向北注⼊渤海,全长8km。

该河上游汇⽔⾯积3.90km2,源近流短,属季节性河流。

矿区属北温带东亚季风区⼤陆性⽓候,四季分明,光照充⾜,依⼭傍海,⽓候宜⼈,冬⽆严寒,夏⽆酷暑,属于暖温带季风⽓候,全年平均⽓温12摄⽒度左右,是我国北⽅著名的旅游避暑和休闲度假胜地。

年降⽔量约610mm,属于半湿润地区。

矿井通风仿真系统简介

矿井通风仿真系统简介

矿井通风仿真系统简介1.项目简介1.1通风系统主要功能1.1.1日常通风系统改造仿真功能●新掘巷道贯通仿真;●巷道打密闭报废仿真;●巷道清理、扩帮等断面积变化仿真;●工作面推进巷道长度变化仿真;●风门位置、风窗调节量仿真;●通风系统优化改造仿真:●采区风量调整仿真;●新采区贯通仿真;●主要进回风巷调整仿真;●新掘进风井、回风井仿真;●主要通风机更换仿真;●通风系统反风仿真。

1.1.2通风系统的分析与评价●通风系统风流温度预测分析●地面主扇选型与多风机联合运转分析;●矿井自然风压分析;●矿井功耗分析;●通风系统调节位置与调节量分析与评价;●巷道风速分布与评价;●矿井需风量分析与评价;●通风系统可靠性分析;●通风系统灵敏性分析;●通风系统最大通风能力分析;●井下空气成分、温度、湿度分析与评价;●矿井分区通风分析与评价;以上各项分析评价均能自动生成相应的分析评价报告。

2.技术创新点其中拓扑关系自动建立与管理(正是这一技术的成功开发,使得通风仿真系统推广应用成为可能);基于最小调节功耗的网络优化调节通路法、角联自动识别、含有单向回路的网络解算、多级机站通风仿真等成果在国际上是独创的。

3.已推广应用仿真系统已在辽宁铁煤集团、沈煤集团、阜矿集团;吉林通化矿业集团;黑龙江龙煤集团、双鸭山煤业集团;河北开滦精煤公司;河南永煤公司;山西晋煤集团、同煤集团、潞安集团、阳煤集团;甘肃金川公司等集团公司40余个矿井进行了项目推广,解决了一系列现场实际问题。

4.经济和社会效益从根本上改变了管理思维和理念,提高了煤炭企业的办公自动化水平;为制定矿井救灾决策系统、救灾决策系统预案,提供了有力的科学技术手段,节约宝贵的救灾时间;利用其反风演习功能制定矿井主要通风机反风情况下井下人员及通风系统管理方案;通过矿井通风仿真系统在全国特别是辽宁省煤矿的推广应用,取得了显著的经济与社会效益。

其整体水平达到国际领先水平,其中拓扑关系自动建立与管理、基于最小调节功耗的网络优化调节通路法、角联自动识别、含有单向回路的网络解算、多级机站通风仿真等成果在国际上是独创的。

矿井通风设计说明书

矿井通风设计说明书

第一章 矿井概况某新设计矿井,已知条件如下:(1)煤层地质情况:单一煤层,倾角25°,煤层厚度4m ,相对瓦斯涌出量为13min 3m ,煤尘有爆炸危险。

(2)井田范围:设计第一水平深度240m ,走向长度7200m ,双翼开采,每翼长3600m 。

(3)矿井生产任务:设计年产量60万t ,矿井第一水平服务年限为23a 。

(4)矿井开拓与开采:用竖井主要石门开拓,在底板开掘岩平巷,其开拓系统如图9-2所示。

拟采用两翼对角式通风,No7、No8两采区中央上部边界开回风井,其采区划分见图9-3.采区巷道布置见图9-4。

全矿井有两个采区同时生产,分上、下分层开采,共有4个采煤工作面,1个备用工作面。

为准备采煤有4条煤巷掘进,采用4台11kw 局部通风机通风,不与采煤工作面串联。

井下同时工作的最多人数为380人。

有一个大型火药库,独立回风。

(5)井巷尺寸及支护情况见表1-1。

表1-1 井巷尺寸及支护情况区段 井巷名称 井巷特征及支护情况巷长m 断面积 m 21~2 副井 两个罐笼,有梯子间,风井直径D=5m 240 2~3 主要运输石门 三心拱,混凝土碹,壁面抹浆 120 9.5 3~4 主要运输石门 三心拱,混凝土碹,壁面抹浆 80 9.5 4~5 主要运输巷 三心拱,混凝土碹,壁面抹浆 450 7.0 5~6 运输机上山 梯形水泥棚 135 7.0 6~7 运输机上山 梯形水泥棚135 7.0 7~8 运输机顺槽 梯形木支架d=22cm ,Δ=2 420 4.8 8~9 联络眼 梯形木支架d=18cm ,Δ=4 30 4.0 9~10 上分层顺槽 梯形木支架d=22cm ,Δ=280 4.8 10~11 采煤工作面 采高2m 控顶距2~4m ,单体液压,机采 110 6.0 11~12 上分层顺槽 梯形木支架d=22cm ,Δ=2 80 4.8 12~13 联络眼 梯形木支架d=18cm ,Δ=4 30 4.0 13~14 回风顺槽 梯形木支架d=22cm ,Δ=2 420 4.8 14~15 回风石门 梯形水泥棚30 7.5 15~16 主要回风道 三心拱,混凝土碹,壁面抹浆 2700 7.5 16~17回风井混凝土碹(不平滑),风井直径D=4m70第二章选择矿井通风系统一、矿井通风系统要求(1)每一矿井必须有完整的独立通风系统。

煤矿通风设备操作说明书

煤矿通风设备操作说明书

煤矿通风设备操作说明书1. 前言本操作说明书旨在指导煤矿工作人员正确操作通风设备,确保矿井的安全通风,预防事故的发生。

请在使用通风设备之前,认真阅读本操作说明书,并按照说明进行操作。

2. 设备概述煤矿通风设备主要包括风机、排风机、通风柜等。

这些设备的作用是通过对矿井进行强制通风,将新鲜空气输送到作业面,并排出矿井内的有害气体,维护矿井环境的安全与舒适。

3. 操作准备在操作通风设备之前,请确保已经完成以下准备工作:- 检查设备是否完好,无损坏或异常情况。

- 了解设备的基本构造和工作原理。

- 穿戴好个人防护装备,包括安全帽、防护眼镜、耳塞等。

4. 操作步骤4.1 风机的操作步骤4.1.1 启动风机(1)检查电源开关是否处于关闭状态。

(3)观察风机运行是否正常,如有异常情况请及时停机检修。

4.1.2 调节风机转速(1)根据矿井通风需求,选择合适的风机转速档位。

(2)将风机转速调至设定的转速。

4.1.3 停止风机(1)按下停止按钮,风机停止运行。

(2)等待风机完全停止后,断开电源。

4.2 排风机的操作步骤4.2.1 启动排风机(1)检查电源开关是否处于关闭状态。

(2)按下启动按钮,开始启动排风机。

(3)观察排风机运行是否正常,如有异常情况请及时停机检修。

4.2.2 调节排风机转速(1)根据矿井通风需求,选择合适的排风机转速档位。

(2)将排风机转速调至设定的转速。

4.2.3 停止排风机(2)等待排风机完全停止后,断开电源。

5. 通风柜的操作步骤5.1 启动通风柜(1)检查通风柜的电源开关是否处于关闭状态。

(2)按下启动按钮,开始启动通风柜。

5.2 设置通风柜参数(1)根据矿井通风需求,调节通风柜的风量、风速等参数。

(2)保持通风柜参数设定的稳定状态。

5.3 停止通风柜(1)按下停止按钮,通风柜停止运行。

(2)等待通风柜完全停止后,断开电源。

6. 安全注意事项在操作煤矿通风设备时,请务必遵守以下安全注意事项:- 操作人员应经过培训,具备操作技能和安全意识。

矿井通风安全操作手册

矿井通风安全操作手册

矿井通风安全操作手册一、前言矿井通风是保障矿井安全生产的重要环节。

良好的通风系统能够有效地排除矿井内的有害气体、粉尘,提供新鲜空气,创造适宜的工作环境,预防瓦斯爆炸、火灾等事故的发生。

为了确保矿井通风系统的安全运行,特制定本操作手册,以供相关人员参考和遵循。

二、矿井通风系统概述(一)通风系统的组成矿井通风系统主要由通风机、通风管道、通风设施(如风门、风窗、风桥等)以及通风网络等组成。

(二)通风方式常见的通风方式有压入式通风、抽出式通风和混合式通风。

(三)通风方法包括自然通风和机械通风。

三、通风设备的操作与维护(一)通风机的操作1、启动前的检查检查通风机的各部件是否完好,连接是否紧固。

检查电气设备的接线是否正确,绝缘是否良好。

检查风道内是否有杂物堵塞。

2、启动操作按照操作规程,依次启动电气设备。

观察通风机的运转情况,有无异常声响和振动。

3、运行中的监控定期检查通风机的电压、电流、功率等参数,确保其在正常范围内。

检查轴承温度、电机温度,防止过热。

注意观察风道内的风压、风量,及时调整。

(二)通风机的维护1、定期进行设备的清洁,清除表面的灰尘和油污。

2、定期检查和更换轴承的润滑油。

3、对易损部件进行定期检查和更换,如皮带、叶轮等。

(三)通风管道的维护1、定期检查管道的密封性,发现漏风及时修补。

2、清理管道内的积尘和杂物,防止堵塞。

3、检查管道的支撑和吊挂装置,确保其牢固可靠。

(四)通风设施的操作与维护1、风门的操作开启和关闭风门时要动作平稳,避免用力过猛造成损坏。

严禁同时打开两道风门,防止风流短路。

2、风窗的调节根据通风需要,合理调节风窗的开度。

定期检查风窗的密封性和灵活性。

3、风桥的维护确保风桥的结构稳固,无坍塌和漏风现象。

定期清理风桥上的杂物。

四、通风系统的日常检查(一)检查内容1、通风机的运行状况,包括声音、温度、振动等。

2、通风管道的漏风情况。

3、通风设施的完好性和有效性。

4、矿井内的风量、风压、风速等参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计说明书虚拟矿井通风系统1 VIRTUAL MINE VENTILATION SYSTEM 1学院(部):机械工程学院专业班级:机设07—12班学生姓名:张磊指导教师:张立祥教授2011年 6 月 3 日虚拟矿井通风系统1摘要矿井通风系统是由向井下各作业地点供给新鲜空气并排出污浊空气的通风网络、通风动力和通风控制设施等构成的体系的总称。

矿井通风系统是矿井生产系统的重要组成部分,其设计是否合理,对整个矿井通风状况的好坏和能否保障矿井安全生产起着重要的作用。

现阶段的有关矿井通风系统方面的教学都采用板书和PPT的形式,一般都是文字化描述,比较抽象,很难被接受。

如果在教学过程中能够插入一些形象具体的视频动画,将有助于学生理解掌握。

虚拟矿井通风系统是运用3dmax等软件对矿井通风的一种虚拟模拟,能够形象直观的表达出矿井通风系统的工作原理过程及状况,将相关动画放入教学中能使其被形象具体地理解,更加容易吸收。

关键词:矿井通风系统,教学,虚拟矿井通风系统,3dmaxVIRTUAL MINE VENTILATION SYSTEM 1ABSTRACTMine ventilation system is operating from the location of all underground supply to the fresh air and exhaust polluted air ventilation network, ventilation facilities, power and ventilation control system composed of a group.Mine ventilation system is an important part of the production system, its design is reasonable, on the whole good or bad of mine ventilation and mine safety protection can play an important role.At this stage about the teaching of mine ventilation systems are used in the form of writing on the blackboard and the PPT are generally text of the description, more abstract, it is difficult to be accepted.If in the teaching process the image to insert some specific video animation will help students understand and master.Virtual mine ventilation system is to use the software such as 3D Studio Max on a virtual simulation of mine ventilation, to express the visual image of the mine ventilation system and the status of the working principle of the process will be related to the animation into the teaching of specific understanding of the image to be more easily absorption.KEYWORDS: mine ventilation system, teaching,virtual mine ventilation system,3d studio max目录摘要(中文) (1)摘要(英文) (2)1 概述 (5)1.1 本课题的意义 (5)1.2 本领域的工作进展 (5)2 矿井通风系统 (5)2.1 系统的组成、作用和要求 (5)2.1.1 矿井通风系统的组成 (5)2.1.2 矿井通风系统的作用 (6)2.1.3 矿井通风系统的要求 (6)2.2 矿井通风方式和通风系统 (7)2.2.1 矿井通风方式 (7)2.2.2 矿井通风系统 (8)2.3 矿井通风设备 (9)2.3.1 矿井通风设备的要求 (9)2.3.2 通风机的工作原理 (9)2.3.3 反风装置 (12)2.3.4 矿井漏风及有效风量 (13)2.3.5 通风机的特性参数 (14)2.3.6离心式与轴流式通风机的比较 (16)2.4通风机网络工况 (17)2.4.1通风网路的特性 (17)2.4.2工况和工业利用区 (17)3 虚拟工作系统的一般制作流程 (20)3.1 选用软件平台 (20)3.1.1 电脑三维动画软件3dmax简介 (20)3.1.2 3dmax的特点 (20)3.1.3 学习3dmax必须掌握的内容 (20)3.2 建模 (21)3.3 渲染 (23)3.4 动画制作 (23)3.4.1 动画制作 (23)3.4.2 动画输出 (23)4 虚拟矿井通风系统 (24)4.1 虚拟通风装置 (24)4.1.1 风井及防爆门 (25)4.1.2 电动机及联轴器 (25)4.1.3 风门 (26)4.1.4 轴流式通风机 (26)4.2 虚拟通风系统 (27)5 总结与展望 (28)参考文献 (29)致谢 (30)1 概述1.1本课题的意义在煤矿井下开采时,不但煤层中所含的有毒气体(如甲烷、一氧化碳、硫化氢、二氧化碳等)会大量涌出,而且伴随着采煤过程还会产生大量易燃、易爆的煤尘;同时,由于地热和机电设备散发的热量,使井下空气温度和湿度也随之增高。

这些有毒的气体、过高的温度以及容易引起爆炸的煤气和瓦斯,不但影响井下工作人员的身体健康,而且对矿井安全构成很大的威胁。

通风的目的是为了向井下输送新鲜空气,供人呼吸,并使有害气体的浓度降低到对人体和安全无害的程度;同时,调节温度和湿度,改善井下工作环境,保证煤矿生产安全。

虚拟矿井通风系统是对矿井通风的一种软件模拟,能够形象直观的表达出矿井通风系统的工作原理过程及状况,将相关动画放入教学中能使其被形象具体地理解,更加容易吸收。

1.2本领域的工作进展现阶段的有关矿井通风系统方面的教学都采用板书和PPT的形式,一般都是文字化描述,比较抽象,很难被接受。

如果在教学过程中能够插入一些形象具体的视频动画,将有助于学生理解掌握。

当然,目前也有一些相应的视频,不过都是直接拍摄的。

对于矿井而言,如果运用摄像机等对其进行拍摄,将具有很多安全隐患,并且矿井通风系统,贯穿整个矿井,拍摄工作也不易进行,故而对我们的实际研究没有可行性。

因此本系统是运用3Dmax等软件对矿井通风系统的一种软件模拟,将矿井通风系统的工作过程及原理制作成动画形式,再将相关动画用于实际教学。

2 矿井通风系统2.1 系统的组成、作用和要求2.1.1矿井通风系统的组成利用机械或自然通风动力,使地面空气进入井下,并在井巷中作定向和定量地流动,最后排出矿井的全过程称为矿井通风。

风流由入风井口进入矿井后,经过井下各用风场所,然后进入回风井,由回风井排出矿井,风流所经过的整个路线称为矿井通风系统。

矿井通风系统是矿井通风方式、通风方法和通风网路与通风设施的总称。

矿井通风系统是由通风机和通风网络两部分组成。

矿井通风系统是否合理,对整个矿井通风状况的好坏和能否保障矿井安全生产起着重要的作用,同时还应在保证安全生产的前提下,尽量减少通风工程量,降低通风费用,力求经济合理。

2.1.2矿井通风系统的作用在煤矿井下开采时,不但煤层中所含的有毒气体(如甲烷、一氧化碳、硫化氢、二氧化碳等)会大量涌出,而且伴随着采煤过程还会产生大量易燃、易爆的煤尘;同时,由于地热和机电设备散发的热量,使井下空气温度和湿度也随之增高。

这些有毒的气体、过高的温度以及容易引起爆炸的煤气和瓦斯,不但影响井下工作人员的身体健康,而且对矿井安全构成很大的威胁。

因此,矿井通风系统的作用是为井下输送新鲜空气,供人呼吸,并使有害气体的浓度降低到对人体和安全无害的程度;同时,调节温度和湿度,改善井下工作环境,保证煤矿生产安全。

2.1.3矿井通风系统的要求1)矿井必须装设两套同等能力的主通风设备,其中一套作备用。

2)选择通风设备应满足第一开采水平各个时期工况变化,并使通风设备长期高效率运行。

3)风机能力应留有一定的余量。

4)进、出风井井口的高差在150m以上,或进、出风井井口标高相同,但井深400m以上时,宜计算矿井的自然风压。

5)每一矿井必须有完整的独立通风系统。

6)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。

7)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。

8)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。

9)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

10)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。

11)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。

2.2 矿井通风方式和通风系统2.2.1矿井通风方式《煤矿安全规程》规定,所有矿井都必须采用机械通风,其通风方式可分为抽出式和压入式两种。

(a)(b)图2-1 矿井通风方式示意图(a)抽出式(b)压入式1——进风井;2——井底车场;3——石门;4——运输平巷;5——采煤工作面;6——回风巷;7——出风井;8——风哃;9——通风机;10——风门图2-1(a)所示为抽出式通风方式示意图。

装在地面的通风机9运行时,在其入口处产生一定的负压,由于外部大气压力的作用,迫使新鲜空气进入风井1,流经井底车场2、石门3、运输平巷4,到达采煤工作面5,与工作面的有害气体及煤尘混合变成污浊气体后,沿回风巷6、出风井7、风哃8,最后由通风机排出地面。

通风机连续不断的运转,新鲜空气不断流入矿井,污浊空气又不断地排出,在井巷中形成连续的风流,从而达到通风目的。

目前,煤矿通常采用抽出式通风方式。

抽出式通风的特点是:1、在矿井主要通风机的作用下,矿内空气处于低于当地大气压力的负压状态,当矿井与地面间存在漏风通道时,漏风从地面漏入井内。

2、抽出式通风矿井在主要进风巷无需安设风门,便于运输、行人和通风管理。

相关文档
最新文档