加速器重离子束的产生重离子束惯性约束聚变重离子束治癌
医用重离子加速器

第三章医用重离子加速器医用重离子加速器提供的重离子束主要应用于重离子束治癌,而提供的放射性核素以在核医学方面的应用为主。
重离子束治癌在美,日,德等发达国家已进入到临床试验阶段,而放射性核素在核医学方面的应用大都处于试验研究阶段。
由中国科学院近代物理研究所、甘肃省医学科学研究院、甘肃省肿瘤医院合作、兰州军区兰州总医院参与的甘肃省科技重大项目——“重离子束辐射治疗癌症的关系就是开发研究”,于2006年12月开始临床研究。
到目前,已应用重离子束放射治疗浅表肿瘤受试者127名,效果显著,绝大部分病人无明显不良反应,治疗后病人的随访率达96%以上,使我国成为国际上第4个有能力进行重离子治癌临床研究的国家。
第一节重离子治癌原理一、概述重离子束与物质相互作用的特殊机理使得它在肿瘤治疗方面具有一系列明显的优点:重离子束治疗精度高达(毫米量级);剂量相对集中,照射治疗时间短,疗效高;对肿瘤周围健康组织损伤小;重离子束治疗能做到实时监测,便于控制辐照位置和剂量。
以上优点使得重离子束的治疗作用可以与手术刀媲美,达到普通电离辐照(此处普通电离辐照指x、r及电子束)治疗难以实现的疗效,因而重离子束被称为是21世纪最理想的放射治疗用射线。
也正是由于重离子束在放射治疗中的上述优点,世界上许多国家都倾注了大量的人力和物力进行医用重离子束加速器的研制,或利用已有的重离子加速器进行治癌装置的建造和治癌基础及临床应用研究,这使得重离子治癌成为放射治疗领域的前沿性研究课题。
二、重离子治癌的科学依据和优势放射治疗的主要原则就是给予肿瘤尽可能大的辐射剂量,将癌细胞杀死,同时又尽可能地保护肿瘤周围和辐射通道上的正常组织使其少受损伤。
由于普通电离辐照对剂量深度分布均呈指数衰减或略微上升而后衰减的特征,使治疗受到很大限制;而重离子束以其独特的放射物理学和放射生物学性质,在放射治疗上独具优势。
(一)重离子束的物理特性1.特殊的深度剂量分布荷电重离子贯穿靶物质时主要是通过与靶原子核外电子的碰撞损失其能量,随离子能量的降低,这种碰撞的概率增大。
重离子束技术在材料研究和制备中的应用

重离子束技术在材料研究和制备中的应用材料科学是一门研究材料的性质和构造的学科,其在现代科技、电子、医学等领域中有着广泛的应用。
如何研究、制备出更优质的材料一直是材料科学家们的追求。
近年来,随着科学技术的不断发展,重离子束技术逐渐被应用于材料研究与制备中,其优异的性能在多方面得到了验证。
重离子束技术是指将带电粒子(通常是离子)加速至一定速度后,以高能束流的形式射入材料内部的技术过程。
这种技术可以控制粒子的能量、流量、轰击角度等参数,通过调整这些参数可以使得材料在粒子的轰击下发生退火、自组装、蚀刻、掺杂等反应,从而改变其结构和性质。
下面将从以下几个方面介绍重离子束技术在材料研究和制备中的应用。
一、表面改性将重离子束轰击材料表面,可以改变其表面形貌和化学性质。
通过单次甚至多次轰击可以使得表面纳米化,表面硬度和抗腐蚀性能大幅度提升。
这种技术已经在航空航天、汽车等领域得到应用。
二、材料合成以前很难合成的材料,通过重离子束技术可以轻松合成。
例如,通过重离子束轰击玻璃,可以使得玻璃变得更加耐磨、耐腐蚀,而且强度也得到了提高。
重离子束还可以用于纳米结构的制备,通过控制离子轰击的角度和能量可以呈现不同的纳米结构。
三、材料改性轰击材料可以对其内部结构进行改变,例如离子注入可以改变材料的电子结构,使得其导电性提高。
此外,重离子束还可以用于制备核反应堆的密封材料,这种材料可以快速地吸收辐射能量,有效避免核泄漏。
四、生物医学领域重离子束在生物医学领域也有着广泛的应用。
例如,通过改变生物大分子的二级和三级结构,可以影响生物体的生命活动。
同时,在肿瘤治疗中,重离子束技术可以通过高能离子束直接杀死癌细胞,而对正常细胞的伤害则很小。
综上所述,重离子束技术在材料科学中的应用是多样的。
它不但可以用于表面改性、材料合成和改性,同时在生物医学领域也有着广泛的应用。
未来,随着该技术的不断发展,它将在更多的领域中得到应用,为材料研究和制备带来更多的机遇和挑战。
了解质子重离子医院设备的工作原理与安全性控制

了解质子重离子医院设备的工作原理与安全性控制质子重离子治疗是一种先进的肿瘤治疗技术,它利用质子和重离子射线对肿瘤进行精确定位和治疗。
与传统的放疗技术相比,质子重离子治疗可以减少对健康组织的损伤,提高治疗效果。
了解质子重离子医院设备的工作原理和安全性控制对于患者和医务人员都至关重要。
一、质子重离子医院设备的工作原理质子重离子治疗设备主要由以下几个部分组成:质子加速器、束流输送系统、治疗头和控制系统。
1. 质子加速器质子加速器是质子重离子治疗设备的核心部分,它能将质子加速到高能状态。
加速器中的强磁场和电场可以使质子获得足够的能量,并控制其在空间中的运动轨迹。
加速器通过静电加速方法和磁场调控质子束的能量和强度。
2. 束流输送系统束流输送系统负责将加速器产生的质子束输送到治疗头部位。
质子束的输送系统需要具备高精度的定位和调节能力,确保束流的准确定位和治疗过程的安全性。
在输送过程中,束流可能会受到外界因素的干扰,如磁场漂移、空气散射等,因此需要采取相应的控制措施。
3. 治疗头治疗头是质子束与患者接触的部位,它包括质子束准直器、侧向调节系统和剂量调节器。
质子束准直器负责将质子束聚焦到肿瘤区域,减少对健康组织的损伤;侧向调节系统能够使质子束按照预定的路径进行扫描,以适应不同形状和位置的肿瘤;剂量调节器则用于调节质子束的剂量,确保治疗的准确性和安全性。
4. 控制系统控制系统是质子重离子治疗设备的核心控制部分,它通过计算机控制设备的运行和各部分的配合。
控制系统能够实时监测和控制质子束的能量、强度和位置,确保治疗过程的精确性和安全性。
二、质子重离子医院设备的安全性控制质子重离子医院设备的安全性是非常重要的,它包括患者的安全和医务人员的安全两个方面。
1. 患者安全在质子重离子治疗过程中,患者需要接受精确的治疗计划和定位,确保质子束能够准确照射到肿瘤组织上,同时最大限度地减少健康组织的损伤。
治疗前,医务人员需要对患者进行详细的评估和诊断,确保患者适合接受质子重离子治疗。
加速器、重离子束及其应用-近代物理研究所

核 物 理 实 验
裂变现象的发 开始超(铀)重 热核物质性质(状态方程), 现及应用 元素合成 素105—118合成
人工合成放射 新反应机制(深 超形变核(预言核形状的多样性) 性核素 部非弹,大质量 奇异核结构—晕结构, 新的衰变模 转移)高自旋 式
107号同位素264,265,266Bh的合成
宇宙射线的来源: • 银河宇宙射线-数百MeV-GeV高 能质子α粒子少量重离子; • 太阳宇宙射线-数百MeV高能质 子; • 范· 阿伦辐射带-数MeV的质子
辐射对航天器的危害 • 充放电效应 • 总剂量效应 • 单粒子效应-翻转,锁定,烧毁
高能离子
宇航元器件单粒子效应试验基地
近物所已与几十家航天单位、半导 体厂家、相关研究所和高校开展合作研 究;2010年,单粒子效应试验的束流时 间达770小时,占总供束时间1/6,2010 年用户提出了2500多小时的束流申请。
国防重大专项
利用HIRFL装置为我国 新一代卫星关键器件的选 用提供了重要参考依据。
束流需求
LET≥75 MeV·cm2/mg, >1000小时/年
国内只有HIRFL满足
LET<75 MeV· 2/mg, >1000小时/年 cm
航天—宇宙射线对宇航员的危害
造血系统,生殖系统,神经系统; 细胞变异,致癌作用,诱发白内障, 重离子辐照的地面模拟,找出预防措施! 重离子辐射生物学研究
重离子束的特点
• • • •
高能量的载体—MeV/nGeV/n; 脉冲窄,可调性好—几纳秒几十纳秒; 重复频率高(10Hz),重复性好—10-4 整体转换效率高—电能离子能量(感应加速)
可以用于惯性约束聚变!
环境和经济性能的考虑
重离子加速器研究中的束流物理学基础

重离子加速器研究中的束流物理学基础引言随着科技的不断发展和人类对物质世界的认识加深,对于如何更深层次地研究物质构成和本质的需求也越来越迫切。
而作为物质领域研究的重要工具之一,重离子加速器在束流物理学基础的研究中扮演了重要的角色。
本文将围绕重离子加速器研究中的束流物理学基础这一主题展开阐述,从束流物理学基础的概念入手,进一步深入探讨束流的物理状态及物理学定律的应用,最终在束流物理学应用拓展领域中达到理论探讨和实践应用相结合的目的。
一、束流物理学基础概念束流,指在空间中通过集中的电场或磁场将带电粒子(如电子、质子、重离子等)加速并聚集成流,使其速度、方向和能量分布以一定形式稳定存在的物理状态。
束流概念的提出源于对于聚焦和加速的需求,通过对束流的物理状态的实验和理论探讨,成功实现了对于底层微观领域的研究。
二、束流物理状态的探究束流物理状态的研究是束流物理学基础的核心,它探究了束流在物理状态上的具体表现。
1. 速度分布束流中带电粒子的速度是分布在一定范围内的,其分布的形式会根据粒子数目、开始加速方式、束流加速器的结构、及加速器内部环境等因素产生不同的变化。
根据统计物理学中的玻尔兹曼分布,速度分布可以在一定意义下控制粒子束流的物理状态。
2. 空间分布束流的空间分布也可以反映束流的性质,比如峰值密度、横向展宽度、纵向展宽度等。
根据空间位置分布的不同,可以为物理实验者提供直观的信息。
3. 动量分布束流动量分布也是束流物理状态的重要表现。
这里的动量可以理解为质量与速度的乘积,对于不同的实验系统,动量分布的变化可以反映粒子间的相对作用力、能量分布等重要因素。
三、物理学定律的应用束流物理学基础可不仅只是对于束流物理状态的探究,建立了一套完备的物理理论,可应用于近代物理学研究的多个领域。
1. 加速器物理学重离子加速器是近几十年来物理学研究的重要工具之一,它们通过加速器的作用,将重离子粒子加速偏转并形成束流。
加速器物理学主要研究加速器的基本原理、加速器部件、束流质量等方面的问题,客观性和严密性成为该领域研究的特点。
重离子治疗的原理与应用

重离子治疗的原理与应用重离子治疗是一种新型的肿瘤放疗技术,它采用重离子束直接攻击肿瘤细胞,从而达到治疗的效果。
目前在全球范围内,已有多家医院采用该技术进行治疗,取得了较为显著的疗效。
本文旨在深入探讨重离子治疗的原理和应用。
一、重离子治疗的原理在了解重离子治疗的原理之前,我们需要先了解什么是离子束。
离子束是一种具有高能量、高精度和高剂量的束流,通过加速器控制离子的能量和位置,从而将其定向投射至人体内部。
离子束内的离子具有带电性质,可以准确地瞄准肿瘤细胞,将其损伤或杀死,从而达到治疗的目的。
传统的肿瘤放疗技术大多采用X线或γ射线,这些射线虽然能够杀死癌细胞,但同时也会损伤周围正常细胞。
而重离子束则具有更强的穿透力和更高的剂量效应,可以减少对周围正常组织的损伤,有效降低抗癌治疗过程中的副作用和并发症。
离子治疗的原理是利用离子束的强穿透力,将肿瘤细胞内部的DNA链断裂或者使其失去正常生长和分裂的功能,从而达到杀死癌细胞的效果。
在治疗过程中,医生会通过计算机技术、放疗规划和成像技术等手段,为每个患者定制量身匹配的治疗方案,以达到最佳的治疗效果。
二、重离子治疗的应用重离子治疗的应用范围比较广泛,目前主要用于耳鼻喉肿瘤、前列腺癌、鼻咽癌、头颈肿瘤、肺癌、胰腺癌、肝癌等癌种的治疗。
由于离子治疗的剂量效应更强,因此可以在相对较短的时间内达到更好的疗效。
与传统的放疗技术相比,重离子治疗具有更低的治疗副作用和并发症,且治疗期间不需要手术操作,较为便捷和节省医疗资源。
同时,离子束的精确攻击范围也很小,可以有效避免对周围正常组织的损伤,从而保证患者的健康安全。
值得一提的是,重离子治疗并不是一种简单的技术,它需要多个层面的专业人才共同合作,从放疗规划、加速器控制、成像技术等方面进行精细化的处理,最终才能为患者提供最优的治疗服务。
三、重离子治疗的前景随着离子束技术和计算机技术的不断发展,重离子治疗在未来的应用前景也十分乐观。
【VIP专享】质子束和重离子束疗法来治疗癌症

德国医院看病质子束和重离子束疗法来治疗癌症杭州五舟医院管理有限司是目前国外服务体系最完善的海外就医全程服务司。
杭州五舟医院管理有限司致力于为国内患者提供国外权威医院推荐、国外权威专家预约、出国看病病情材料收集整理、病历材料的医学翻译、病历材料邮寄、国外医院邀请函及费用预估函的翻译、医疗签证的办理、机票住宿预订、出国前指导、国外看病期间的接机住宿及看病接送、国外就医全程医学翻译、在国外期间的生活翻译陪同及护工陪同安排、归国后的病情跟踪、国外药品邮寄、医院费用账单折扣申请等一站式服务。
杭州五舟医院管理有限司在德国设有三个服务中心,分别是柏林、慕尼黑、海德堡,每个服务中心均有医学服务团队,为患者提夏里特医院、慕尼黑大学附属医院、海德堡质子中离子治疗中心等德国权威医院的一站式就医服务。
质子束和重离子束用于癌症治疗的历史1947年,原子物理学家罗伯特·威尔森首次建议利用质子照射来治疗癌症。
1954年,美国首次进行了利用质子照射治疗癌症的试验,之后该疗法不断改进并成功用于治疗癌症。
欧洲在癌症领域利用质子照射治疗的先驱是位于瑞士维利根地区的保罗·谢尔研究所,它早在1984年便开始运用该方法治疗癌症患者。
而德国是从1989年起,在诸多医院大范围地利用质子照射来治疗癌症。
1977年,美国加州大学伯克利分校开始尝试利用重离子来治疗癌症。
目前,全世界共有三个医疗机构能够利用碳离子治疗癌症,其中两个位于日本。
另一个医疗机构是德国的海德堡离子束治疗中心[HIT],于1997年12月13日首次利用离子束来治疗癌症患者,这也是整个欧洲范围内首次利用离子束来治疗癌症的病例,同时还是世界范围内首次应用可调整强度的重离子治疗。
从2009年起,质子束和重离子束疗法纳入常规的癌症治疗手段。
技术难题的攻克为使质子和重离子有效应用于医学治疗,在技术方面必须克服诸多难题:1. “离子源”需产生自由质子/重离子,并引入到加速器中。
重离子加速器的原理和应用

重离子加速器的原理和应用随着科技的不断发展,我们的生活中不断涌现出各种高科技技术。
其中,重离子加速器就是一种非常重要的科技设备,能够广泛应用于核物理、医疗和材料学等领域。
本文将详细介绍重离子加速器的原理、结构和应用。
一、原理重离子加速器的原理是通过电场和磁场来对带电粒子进行加速。
其中,电场的作用是加速、磁场的作用则是把粒子引导到正确的轨道并控制它们的速度和方向。
具体来说,可以将重离子加速器分为三个部分:离子源、加速器和束流线。
离子源是重离子加速器的起点,它能够将气态原子中的离子从中抽出来,并使离子带上电荷,变为带电粒子。
接下来,带电粒子会通过加速器的不同部分进行加速,直到达到所需的能量。
这个过程中,加速器系统会通过不同的结构来增强和聚焦电场和磁场,以确保粒子能够按照正确的轨迹前进。
最后,带电粒子会进入束流线,这是将带电粒子聚集成为束流并将其传送到实验环境中的最后一步。
束流线的设计可以控制带电粒子的流量、密度和集中度,确保带电粒子能够在实验中按照需要进行相互作用。
二、结构重离子加速器的结构可以分为三大类:直线型、环形和螺旋型。
这三种类型的重离子加速器各有特点,可以针对不同的实验需求进行选择和设计。
直线型加速器是最简单的一种结构,能够将带电粒子加速到极高的速度。
这种加速器的加速管是一条直线,由连续的电场区间构成。
在每一个电场区间中,带电粒子的速度都会增加,从而达到更高的能量水平。
环形加速器常被用于强子物理和核物理领域。
这种加速器的结构是一个环形,由隔壁的加速器区域组成。
在环上,带电粒子会通过连续的磁场加速区域,提高其能量水平。
环形加速器的优点是它能够周期性地重复使用,因此可以非常高效地进行研究工作。
螺旋型加速器的结构是一种介于直线型和环形加速器之间的结构。
这种加速器的设计是将直线型和环形加速器的优点结合在一起,使得能量提高在空间和时间上都是均匀的。
因此,它能够提供更均匀的束流,适用于需要高质量束流的实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加到初级线圈上驱动电压Vd(t)
Drive voltage waveform applied at helix input
-1
S感n应ap电sh压o传t o播f Vv(ozl,tta=gcoenpsrtaonpt)agating on helical line
回旋加速器
兰州重离子加速器-100MeV/u
MeV 256Lr
E= 8.93 257Lr MeV
E= 8.43, 8.52, 8.39
MeV
25.9 s
0.65 s
E= 8.86, 8.80 MeV
262Db
40.9s 1.5 s
2.469s 1.31s
E= 9.08MeV 9.77MeV
Z.G. Gan et al., Euro. Phys. J A20(2004)385
---------------------0
c
-------
-2
-2
0
2
t
V(z, t= const) 1
---- lb -
+ + +++ + +
ion bunch
---------- lc ----------------------------
0 0
lc vcc
z
2
-- vc
V0 ------------------------------
s.f. E=204.051M6 eV
192.32MeV
承担单位:近物所、高能所、等离子体所
质子直线加速器 液态金属散裂靶 铅铋冷却反应堆
平台与配套设施
直线加速器:突破强流超导质子直线加速器低能段关键技术 (<10 MeV) 散裂靶:突破适用于ADS的液态金属散裂靶关键技术(直流束、MW) 先进核能材料:研制出适用于4代裂变堆尤其是ADS的结构材料 ADS仿真平台:建立ADS专用数据库与设计仿真平台
重离子束惯性约束聚变
解决能源的根本途径 ——可控核聚变能
聚变能的先进性
• 新的大量的能源; 3.4*1011J/g10吨煤
• 燃料充足;0.03g/l海水,43万 亿吨氘;
• 安全性高:任何事故都会自动停 运;
涉 • 自动控制——上万参数,高精度;
及
• 离子源——强流,高电荷态; • 辐射防护——多种辐射同时存在;
的
• 离子冷却——强流电子束(A,几百kV)
技 术
• 机械 • 水、风、电(MW)
重离子束的应用
能源
功能材料
航天
医疗 生物诱变
粒子物理
核学科 恒星演化
加速器产生于核物理的需要,反过 来又促进核物理飞发展
CSR主环一角
CSRe
CSRm
加速离子种类: p, C-U 束流能量 (MeV/u) : (p) 2800,(12C6+) 1100 ,(238U72+) 520
接近光速
加 速
• 高电压——MV; • 高频——MHz,百kW;
器 • 固定和交变磁场——kG; 所 • 真空技术——10-12mb;
• 电源——kA,稳定度10-4—10-5;
加速器—重离子束的产生
• 重离子束产生装置——重离子加速器,重 离子在电场中获得能量装置;
• 重离子加速器类型:
静电加速器-串列静电加速器,低能
感应加速器——低能
直线加速器——低、中能 -
回旋加速器——低、中能
⊕+
带电离子在电场中获得能量, 磁场可用来控制其方向。
高压倍加器
属于静电加速器,用倍压 的方法产生高电压,用来 加速粒子。一般只加速轻 粒子 ,质子,氘等。
60年代的600kV高压倍加器
串列加速器
直线加速器-强流
质子注入
漂移管 电磁波E分量
高能质子
HV Cable Glass Tube
感应加速器的结构示意图
Ground Return
Support Structure
回旋加速器 原理图
世界第一台 回旋加速器
分常规磁铁和超导磁铁两种
固定场变梯度加速器(FFGA)
(Fixed Field Alternating Gradient)
同步加速器
RHIC 周长2.4英里,能量达100GeV/u(Au),光速!
重离子冷却存储环-CSR
自主设计和建造;核物理, 强子物理,原子物理
Voltage Divider
Beam Direction
Primary Turn (s)
Helix Winding
Outer Oil Vessel
Helix Termination
感应加速器的原理
Vd (t) V0 -- -------------------------------------------------------1----------------------------
加速器—重离子束的产生 重离子束惯性约束聚变 重离子束治癌 重离子束诱变育种
重离子束特殊功能材料制备
中科院近代物理研究所 靳根明 2012.5
重离子及重离子束
• 重离子-比粒子重的离子, • 重离子束-连续的,或脉冲的重离子流,包
含的离子数可多可少,最多可达1015/s以上; 束流的斑点一般很小(mm), 微束直径<微米; 能量范围很宽 keV(~1m/s)-GeV/u(~光速); • 在物质中穿行时,产生电离,与原子核反应, 瞬时沉积大量能量;
1932-1940年 1955年
1980年
1990年
加 速 开创轻粒子加 增加能量;开创 中 能 重 离 子 及 进一步增加能量
器 速器
重离子加速器 相 对 论 重 离 子 (GeV-TeV/u)
加速器
核结构研究及 超铀核合成 核结构模型的 核 提出
物
远离稳定线核 极端条件下的核物理
合成;放射性 (同位旋,自旋,激
束物理;核子 发能,质量),夸克
结构;
—胶子等离子体
理 裂变现象的发 开始超(铀)重 热核物质性质(状态方程), 超重元
现及应用
元素合成
素105—118合成
实
人工合成放射 新反应机制(深 超形变核(预言核形状的多样性)
验 性核素
部非弹,大质量 奇异核结构—晕结构, 新的衰变模
转移)高自旋 式
107号同位素264,265,266Bh的合成
26Mg + 243Am 269Bh* 264Bh + 5n 265Bh + 4n 266Bh + 3n
E= 9.48, 9.62 MeV
260Db
264Bh
440ms (1 s)
265Bh
0.94+0.70
-0.31
E= 9.24 261Db MeV
1.5 s
1.8 s
266Bh
E= 9.04, 9.07, 9.12