矩阵论课后题答案(研究生用书)

合集下载

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2

2 2 2 2
( ) 2( , ) ,

于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n

矩阵论课后题答案(研究生用书)改

矩阵论课后题答案(研究生用书)改

⎞ ⎠

A
P
⎞ ⎠
⎠ ⎞
P

− 1
A

A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E

A
A A E
A

f A
A
A
A
A
A
E
A
E
E
A A


A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E


⎞ ⎠
f A E
E

A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F

《矩阵论》习题答案,清华大学出版社,研究生教材习题 1.2

《矩阵论》习题答案,清华大学出版社,研究生教材习题 1.2

C=( e1 , e2 , e3 ) 1 (1 , 2 , 3 )
1 2 1 0 1 1 1 0 1 1 1 2 2 2 2 1 1 1 1
2
=
=
1 1
3 2 3 2 1 2
3 2 3 2 5 2
(2) 故
(
(e1 ) ,
(e 2 ) ,
(e3 ) )=( 1 , 2 , 3 ) = ( e1 , e2 , e3 ) C
(4) 据题设:
( f (t )) f ' (t )

4
( x1 ) =( e at cos bt ) ' = ae at cos bt be at sin bt = ax1 bx2 ( x 2 ) =( e at sin bt ) ' = ax2 bx1
( x3 ) =( te at cos bt ) ' = x1 ax3 bx4
14. 解:
7
(1) 由于
1
E11
a 0 aE11 cE 21 0 c 0 a aE12 cE 22 0 c b d 0 bE11 dE 21 0
1
E12
1
E 21
1
E 22
2
(e 1 )+k 2
(e 2 )=
2
(α)

1
=
2
.
8. 解:(1) 因为 i, j 在 xoy 平面上,其投影不变,故有
3
(i)=i , 又 k 垂直 xoy 平面,则 ( (i), (j),
(k ) 0 , 得
(j)=j ,
(k))=( i , j , k )

研究生矩阵论课后习题答案(全)习题一

研究生矩阵论课后习题答案(全)习题一
A = ∑∑ aij Fij ,故 F11 ,L , F1n , F22 , L , F2 n , L , Fnn 是 R n×n 中全体对称矩阵所构
i =1 j =1 n n
成的线性空间的一组基,该线性空间的维数是
n(n + 1) . 2
② 令 Gij = Eij − E ji (i < j ) , 则 Gij 是 反 对 称 矩 阵 , 易 证

(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1(1 − 1) 2 a ) = ( a, b) 2
= k o ( a, b) + l o ( a, b) = k o α + +l o α ;
⑧ k o (α ⊕ β ) = k o (a + c, b + d + ac)
k (k − 1) (a + c) 2 ) 2 k (k − 1) 2 k (k − 1) 2 = (ka + kb, (kb + a ) + (kd + c ) + (ka)(kc)) 2 2 k (k − 1) 2 k (k − 1) 2 = (ka, kb + a ) ⊕ (kc, kd + c ) 2 2 = (k (a + b), k (b + d + ac) +

戴华《矩阵论》习题答案

戴华《矩阵论》习题答案

第一章第一章第6题实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法。

解:实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间n n R ⨯,记 {}{}A A R A A W A A RA A V T n n T nn -=∈==∈=⨯⨯,/;,/以为,对任意的,,,,B B A A V B A TT==∈则(),B A B A T+=+即V B A ∈+,所以V 对加法运算是封闭的;对任意的A A R k V A T=∈∈,,,则(),,V kA kA kA T∈=即所以V 对数乘运算封闭;所以,V 是nn R⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。

同理可证,W 也是一个线性空间。

P41第一章第8题(参考P10例题 1.2.5) 证明:存在1k ,2k ,3k ,4k 使得112233440k k k k αααα+++=即11111k ⎡⎤⎢⎥⎣⎦+21101k ⎡⎤⎢⎥⎣⎦+31110k ⎡⎤⎢⎥⎣⎦+41011k ⎡⎤⎢⎥⎣⎦=0 解12341231341240000k k k k k k k k k k k k k +++=⎧⎪++=⎪⎨++=⎪⎪++=⎩ 得12340k k k k ====所以1α,2α,3α,4α线性无关P42第1章第12题解:因为A=x 1α1+x 2α2+x33α+x 4α4即x 1+x 2+x 3+x 4=1x 1+x 2+x 3=2x 1+x 3+x 4=-2x 1+x 2+x 4=0⇒x 1=-2x2=3x 3=1 x 4=-1所以A 的坐标为[x 1,x 2,x 3,x 4]T=[-2,3,1,-1]TP42第一章第13题 答案 f(x)=3+1-n 2x( 泰勒展开))(f x '=2(n-1)2-n x(x)f ''=2(n-1)(n-2)3-n x ……)1(f -n (x)=2(n-1)! )(f n (x)=0f(1)=5 )1(f '=2(n-1) (1)f ''=2(n-1)(n-2) ……)1(f -n (1)=2(n-1)!f(x)=f(1)+ )1(f '(x-1)+!21(1)f ''2)1(-x +……+)!1(1-n )1(f -n (1)1)1(--n x=5+2(n-1)(n-2)+!2)2)(1(2--n n 2)1(-x +……+)!1()1(2--n n !1)1(--n x=5+211-n C (x-1)+221-n C 2)1(-x +……+211--n n C 1)1(--n x取f(x)=3+1-n 2x在基1, (x-1), 2)1(-x , ……,1)1(--n x 下的坐标为(5 , 211-n C , 221-n C ,…… , 211--n n C T) 教材P42习题14:求基T)0,0,0,1(1=α,T )0,0,1,0(2=α,T )0,1,0,0(3=α,T )1,0,0,0(4=α,到基T )1,1,1,2(1-=β,T )0,1,3,0(2=β,T )1,2,3,5(3=β,T )3,1,6,6(4=β的过度矩阵,确定向量Tx x x x ),,,(4321=ξ在基1β,2β,3β,4β,下的坐标,并求一非零向量,使它在这两组基下的坐标相同。

研究生 矩阵论 课后答案

研究生 矩阵论 课后答案

|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A

1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知

考博必备 研究生矩阵理论课后答案矩阵分析所有习题共73页

考博必备 研究生矩阵理论课后答案矩阵分析所有习题共73页
考博必备 研究生矩阵理论课后答案矩 阵分析所有习题
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*)
其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.

研究生矩阵理论课后答案第5章

研究生矩阵理论课后答案第5章

按范数收敛
定义:赋范空间V的序列{x(n)|n=1,2,…}按范数 ‖‖α收敛于aV,如果 limn‖x(n)-a‖α=0 命题:对赋范空间V的任意两个等价向量范数 ‖‖α, ‖‖β, 都有 limn‖x(n)-a‖α=0 limn‖x(n)-a‖β=0 (即按任意两个向量范数的收敛实质上等价) 因 0 limn‖x(n)-a‖α d limn‖x(n)-a‖β 0 limn‖x(n)-a‖β(1/c)limn‖x(n)-a‖α
1=|yk|(i=1n|yi|p)1/p =‖y‖p n1/p (*) (i|yi|=|xi|/|xk|1) 1=limp1limp‖y‖p limpn1/p=n0=1 1=limp‖y‖p=limp‖x‖p/‖x‖ ‖x‖=limp‖x‖p
同一向量的三种范数之间的大小关系
Frobenius 矩阵范数
例5.2.2:矩阵的Frobenius范数定义为 ‖A‖F=(i=1mj=1n|aij|2)1/2. (ACmn的向量2-范数蕴含前3条公理)不难证明4 条范数公理全部满足.因非负性和齐次性是显 然的;③的证明见课本.我们只讲④的证明. ‖AB‖F2=i=1mj=1n|k=1paikbkj|2 i=1mj=1n((k=1p|aik|2)(k=1p|bkj|2))(C-S不等


n
1 ak 1 bk a k bk a b p q q b p a
1 a k bk a b k 1 pa
p

n k 1
ak
p
1 qb
q

b k 1 k
n q
1 1 ab ab q xn|}=|k‖x‖; ‖x+y‖= max{|x1+y1|,…,|xn+yn|} max{|x1|+|y1|,…,|xn|+|yn|} max{|x1|,…,|xn|}+max{|y1|,…,|yn|} =‖x‖+‖y‖

研究生矩阵理论课后答案第8章

研究生矩阵理论课后答案第8章

线性方程组一般理论复习续
定理B:对一般线性方程组
Ax=b, ACrmn,xCn,bCm (1) ①(1)有解的充要条件是 bR(A)={Ay|yCn}(R(A)也称为A的值域) ②(1)有解的充要条件是rank(A,b)=rank A (增广矩阵(A,b)与系数矩阵A的秩相等,其 意义是b是A的某些列的线性组合即bR(A)) ③(1)的通解=(1)的特解+齐次方程组通解N(A) (齐次方程组解空间N(A)={xCn|Ax=0}也称为A的核) ④(1)有无穷多解的充要条件是 rank A < n dim N(A)= n-rank A= n-r > 0
①运算T,*与- 可交换(这是T,*与-1可交换的推广) AA-A=A(AA-A)T=AT即AT(A-)TAT=AT(A-)T=(AT)AA-A=A(AA-A)*=A*即A*(A-)*A*=A*(A-)*=(A*)②(A)-=+A-,其中,+=1/,当0;+=0,当=0 利用显然的等式:+= 不难验证 (A)(+A-)(A)=(+)AA-A=A(A)-=+A③ SCmmm,TCnnn ,(SAT)-=T-A-S这是(SAT)-1=T-1A-1S-1推广
3
1 0 0 1 1
3 1
0 0 5 2 0 0 1
2 1/ 2 0 P 1 0 0 3 2 1
1 0 11/ 2 5 / 2 0 1 3 Q 1 0 1
0 1 1 1
11 2 5 2
1 5 | 0 1 0 3 0 | 1 0 0 9 0 | 0 2 1 11/ 2 5 / 2 | 2 1 / 2 0 3 0 | 1 0 0 0 0 | 3 2 1

河海大学研究生矩阵论习题答案

河海大学研究生矩阵论习题答案

对 k R ,有
kf t 1 kf t dt k f t dt k f t 1
b b a a
对于 g t Ca, b,有
f t g t 1 f t g t dt f t dt g t dt
又已知
T
2

2
0 ,故 T , , 2 2 .
证 :( 1 ) 充 分 性 . 由 C C=I 及 坐 标 变 换 公 式 C 可 得
T
16 .

2 2
T C C T C T C T 2 ,即
M max hi .再由
i

则有
M max hi .对任给正数 ,取 M ,则当 max hi 时,
i
i
4
结论恒成立. 13. 证: (1)设 x1 , 面又有
x2 , , xn ,且 max xi xi 0 ,则
T B T
可 得
i j i j , 由
bii bij b ji b jj 2


bij 0i j, i, j 1,, n ,故有 B=I,也就是 CTC=I.)
(2) 取正交矩阵
1 2 1 C 2 0
n
4 . 证 法 提 示 : 与 上 题 类 似 . 图 形 在 第 一 象 限 的 部 分 由 x1 1,
x2 1 和
2 x1 x2 1 所围成. 3
5 . 证 : 考 虑 0, 1 ,
T
1, 0T , 则 当 p

矩阵论课后参考答案(第一二三四

矩阵论课后参考答案(第一二三四

;
则 TE 11 E 11ca
b d


a11E 11
a21E 12
a31E 21
a41E 22

a0
b 0



a11 a 31
a a
21 41

所以
a 11

a ,a 21
b,a31

0,a 41

0
同理可得: a12 c,a22 d ,a32 0,a42 0
x k11 k22 l11 l22

k1 k2 2l1 l2 0
kk212k1kl12k273lll221

l2 0
0

0
,故有
kk12

l2 4l2
l1 3l2
即 x k11 k22 l2 (42 1) l2 (5,2,3,4)
1 1 3 C 1 2 5
1 3 6
17.证明:秩为 1 的 n(n>1)阶阵 A 的最小多项式是 2 (trA) 。
证明:由题知 n 阶矩阵 A 的秩为 1,则说明 A 有 n-1 重 0 特征根
与一个特征根 0 。又因存在 特征多项式可写为
n
i tr(A) ,故可知 0 tr( A) ,故 A 的
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.3

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.3
1 T
当 n 为奇数时,如果 A 是反对称阵,则 A AT 1n A A ,所以
A 0 ,故不存在奇数阶可逆反对称方阵.
5. 证: (1)因为 AT A ,设 B P T AP ,所以有
B T P T AP


T
P T AT P B
则 B 为对称阵. (2)由于 A 与 B 相合,知存在满秩矩阵 P ,使 B P T AP ,又因
的特征向量,u m 为相应的特征值, 因此 B 的 n 个线性无关的向量都是
A 的线性无关的向量. 从而,B 与 A 的特征向量完全一致.同理,C 与 A 的特征向量也完全一致,从而 C 与 B 的特征向量完全一致.并且,
设 C , 则有 v m C m A B m u m ,但 , 所以v m u m ,但 所以 v u .这样, B 与 C 有完全一致的特征向量和相 v与u 都是正实数, 应的特征值,因此 B 与 C 可用同样的矩阵 P,使 P 1 BP与P 1CP 是同样 的对角矩阵,即
习题 2.3
1. 证:因为 A H A, B H B ,又
( AB) H AB B H A H AB
即 BA=AB .
2. 证:设 A 为任一复方阵,令
A BC

其中 B 为 Hermite 矩阵,C 为反 Hermite 矩阵,于是,可得
AH B H C H B C
由①与②联立得 B
A AH A AH ,C . 2 2
3. 证:设 V n 的标准正交基为 1 , 2 , , n ,
A ( aij ) nxn ,则有
在该基下的矩阵为
( i ) a1i 1 a 2 i 2 a ni n ,

矩阵论课后参考答案(第一二三四

矩阵论课后参考答案(第一二三四

矩阵为 A

1 1
18 22
15 20



T
在 基 1 (1,2,1) , 2 (3,1,2),

1
21,2)下的矩阵。
解:由题可知1,2,3 与1,2,3 时空间 L(F 3) 的两组基,则存在一个
过渡矩阵 C 使得
3 -1 2
2 1 2
1 0 0
0 1 0
0 r 2(2)r1 1
0 r3(1)r10
1
0
3 5 -1
2 5 0
1 2 -1
0 1 0
0 0 1
1r2



5 (1)r 3
1 3 2 1 0
0
1 3 2 1 0 0
r2r30 1 0 1 0 1 r3(1)r20 1 0 1 0 1
2
1 0 0 0 0 1 0 0
0 0 0 0
0
0
0
0

1
0
0
0


0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1
(3)解:同上理,对 AT A 分析可知其为一个上下成负对称的矩阵,
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
0 0
所以V1 V2 {0} 。
2)明显V1 V2 Fn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档