研究生矩阵论课后习题答案全15章.pdf
研究生矩阵理论课后答案矩阵分析所有习题
习题3-22设A,B均是正规矩阵,试证:A 习题3 22设A,B均是正规矩阵,试证:A 均是正规矩阵 相似的充要条件是A 与B相似的充要条件是A与B酉相似
因为A,B是正规矩阵,所以存在U,V∈ A,B是正规矩阵 存在U,V 证:因为A,B是正规矩阵,所以存在U,V∈Un×n 使得 A=Udiag(λ B=Vdiag(µ A=Udiag(λ1,…,λn)U*, B=Vdiag(µ1,…,µn)V*, , , 其中λ A,B的特征值集 其中λ1,…, λn,,µ1,…,µn分别是A,B的特征值集 , , 分别是A,B 合的任意排列. 合的任意排列. 必要性: 相似, ,i=1…,n, ,n,于是 必要性:若A与B相似,则λi=µi,i=1 ,n,于是 B=VU*AUV*=W*AW, W=UV*∈Un×n 即得证A 酉相似. 即得证A与B酉相似. 充分性:显然,因为,酉相似必然相似. 充分性:显然,因为,酉相似必然相似.
习题3 习题3-14
#3-14: =E,则存在 则存在U #3-14:若A∈Hm×n,A2=E,则存在U∈Un×n使得 U*AU=diag(Er,-En-r). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=E=Udiag(1,…,1)U* 和 =E=Udiag(1, ,1)U =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , =1,即 1,i=1,…,n,. ∴ λi2=1,即λi=±1,i=1, ,n,. 1(设共有 取λ1,…,λn的排列使特征值1(设共有r个)全排在 , 的排列使特征值1(设共有r 前面, (*)式即给出所需答案 式即给出所需答案. 前面,则(*)式即给出所需答案.
矩阵论简明教程习题答案
1 p1 = 4 , 0
1 p 2 = 0 4
=-1 所对应的方程组 (I+A)x=0 有解向量 1 p 3 = 0 0
令
7.
3 0 1 1 1 0 1 1 P=(p 1 , p 2, p 3 )= 4 0 0 , 则 P = 4 1 4 . 于是有 12 0 4 1 16 4 4 2100 4 2100 2100 1 2100 1 1 2100 0 3 2100 0 A 100 =P P 1 = . 3 100 100 100 1 2 1 4 2 1 4 4 2 2 (1) I A = ( 1) =D 3 ( ), I-A 有 2 阶子式
1 3 2 3 2 T ) . 3
2 1 2 2 1 2 4 ~ 0 0 0 2 4 2 4 4 0 0 0
当 =1 时, 对应的齐次线性方程组 (I-A)x=0 的系数矩阵
由此求出特征向量 p 2 =(-2, 1, 0) T , p 3 =(2, 0, 1) T . 单位化后得
是
d1 1, d 2 1,
d 3 ( 1)( 2)
1 A~J= 1 2
因为 A 可对角化,可分别求出特征值-1,2 所对应的三个线性无关 的特征向量: 当 =-1 时,解方程组 ( I A) x 0, 求得两个线性无关的特征向量
矩阵论习题课答案
习题课答案 一1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。
(a) 1||n A λ- (b) 1||A λ- (c) ||A λ (d) ||n A λ2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立.()a A 的所有顺序主子式为非负数 ()b A 的所有特征值为非负数()c A 的所有顺序主子式大于零()d A 的所有特征值互不相同3).设矩阵11111A ααββ⎛⎫⎪= ⎪ ⎪⎝⎭与000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似,则,αβ的值分别为( a )。
(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1二 填空题4)若四阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则1B E --= 24 。
5)设532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则100A =10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231⎛⎫+---- ⎪+---⋅-⎪ ⎪--⋅-⎝⎭三 计算题3.求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■4.设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得T Q BQ A =依题意有011003121003111003A -⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1T X =-,()21,1,0TX =-.特征向量为1122l X l X +.⑵23λ=,解特征方程(3)0E A X -=得()31,1,1TX =.特征向量为33l X . 以上123,,l l l R∈.把向量12,X X 正交并单位化得1(η=,2η⎛⎫= ⎝.把向量3X单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ ⎪ ⎪== ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 5解:A 的行列式因子为33()(2)D λλ=+, 21()()1D D λλ==.所以,不变因子为33()(2)d λλ=+, 21()()1d d λλ==,初等因子为3(2)λ+,因而A 的Jordan 标准形为21212J -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦8.设A 是n 阶特征值为零的若当块。
《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2
= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2
:
2 2 2 2
( ) 2( , ) ,
于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n
矩阵论课后题答案(研究生用书)改
⎞ ⎠
⎠
A
P
⎞ ⎠
⎠ ⎞
P
⎠
− 1
A
⎠
A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E
⎞
A
A A E
A
⎠
f A
A
A
A
A
A
E
A
E
E
A A
⎠
⎞
A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E
⎠
⎞
⎞ ⎠
f A E
E
⎞
A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F
矩阵论习题答案
自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。
研究生矩阵论课后习题答案(全)习题二
习题二1 2 (1)J 1 2 2 20 0 0 0 0 2(2)0 ( 1)2 02 0 03 2 2 3 2 1 (3)4 235 322422343 6(4) 0611 3 3 1 22解:( 1) 对矩阵 作初等 变换1 2c 1 c31 22 21 0 0c 22c 1 0c3 c 10 0(1) 则该矩阵为 Sm ith 标准型为1.化下列矩阵为 Smith 标准型: 20 0 02 2 323 4;11 222 00 00 01212r3r 02 2r11001 0c 3 c2 r 1( 1)0,0 0( 1)( 1)2)矩阵的各阶行列式因子为 D 4( )4( 1)4,D 3( )( 1)2( 1)2,D 2( ) ( 1),D 1( ) 1,从而不变因子为 1)4() D 3() D 2()1),d 4()D 4() D 3()2(1)1 0 0 (1)0 00 0(3)对矩阵作初等变换3 2 2 3 2 1 22 3 4 235 3 2234 242 147 263r 2 r1片(22)「32 1 2247 2 632q ( 2)03 °? ( 2)C3213213q ( 1)°2321 0H ( 25) r 2r 1 ( 1)0 d i ( ) 1阳)D 2^-)( D i () 故该矩阵的Smith 标准型为 故该矩阵的Smith 标准型为0 0 0 0 (1) 02 20 ( 1)3 2 2 21 22 C 1 03“4 2 3 322222 2 12 245 010 2 1 2 245 0 10 0 1 2 245 01 010 10 01 0r 1r 31C 30 1 010 (1)2(111(1)2( 1)(4)对矩阵作初等变换2 3 01143 62 2 C l2 C52 2 062 0 C2 3C 32 01 010 110 3 31223 3 12 20 10 01C 1 3C 2 02 2 「2 2r 10 C 3 2C 220 C 3 C 1211 0 010 00 0110 1 01 0「12C30 0 0 02C1C40 2C 40 0C2C50 01 0 0 0 00 0 01 00 10 0 00 00 1在最后的形式中,可求得行列式因子11;(2);1 01;(32 1 0(1) 0 2 11 0 0 00 1 0 00 0 10 0 0 (1)0 0 0 02•求下列矩阵的不变 :因子:故该矩阵的Smith 标准形为0 0 02( 1)D 5( ) 3( 1)2,D 4()1),D 3() D 2( ) D !( ) 1, D 4()1),d 5() D 5()D 4() 2( 1)于是不变因子为0 0 15 4 3 20 0 1 20 1 2 0(4) 1 2 0 0.2 0 0 0解:1)该矩阵的右上角的 2 阶子式为 1,故(D1( ) D2( ) 1,而D3( ) ( 2)3,所以该矩阵的不变因子为d1( ) d2( ) 1,d3( 2) ( 2)2;(2)当0由于时,D4( ) ( )4,D3( ) () 2,D2( ) D1( ) 1,故不变因子为d1( ) d2( ) 1,d3( )()2,d4( ) ( )2当0 时,由于D4( ) [( )2 2] ,且该矩阵中右上角的 3 阶子式为2( ),且( 2( ),D4( )) 1,则 D 3( ) 1,故 D 2( ) D 1( ) 1 ,所以该 矩阵的不变因子为22 d 1( ) d 2( ) d 3( ) 1, d 4( ) [()22];3)该 矩阵的右上角的 3 阶子式为 1,故D 1( ) D 2( )D 3( ) 1,而D 4 ( ) 4233 245 ,所以该矩阵的不变因子为d 1( ) d 2( ) d 3( )1, d 4( ) 4 2 3 3 2 45;(4)该矩阵的行列式因子为D 1( ) D 2( )D 3()1,D 4( ) ( 2)4,所以该矩阵的不变因子为d 1( ) d 2( )d 3()41, d 4( ) ( 2)4 .3.求下列 矩阵的初等因子:3231(1)2323 2 32;2(2)3222 1 22 1232 2 2 1 222解:(1)该矩阵的行列式因子 为D 1( ) 1 ,D 2()2( 1)( 1)2 ,故初等因子为1,( 1)2;故不变因子为(2) 该矩阵的行列式因子为D 1( )1,D 2(1)( 1)2, d 1( ) 1,d 2( ) ( 1)( 1),解:( 1)设该矩阵为 A ,则1 0 0E A 0 10,0 0(1)2( 3)故 A 的初等因子为(1)2( 3),则 A 的 Jordan 标准形为300 0 1 1 0 0 12)设该矩阵为 A ,则1 0 0EA0 1 0,0 0( 1)3故 A 的初等因子为( 1)3 , 从而 A 的 Jordan 标准形为110 0 1 1 ; 00113 16 16 4 52 3 731)5 76 ;(2) 2 2 1; ( 3) 2 5 26871 1 14 1031 2 3 41 1 10 33 0 1 2 3 4) 3 3 3 ;(5) 18 6 ;(6)0 0 1 22 2 221410 0 0 0 14.求下列矩阵的 Jordan 标准形:1 0 0EA 0 1 00 0 (1)( 2 1) 故A 的初等因子为1i ,i,,从而A 的 Jordan 标准形为1 0 00 i 0 J0 0 i(4)设该矩阵为A ,则1 0 0E A 0 0,0 0 2故A 的初等因子为2从而A 的 Jordan 标准形为0 0 00 0 1 J0 0 0(5)设该矩阵为A,则1 0 0EA 0 1 00 0( 1)2故A 的初等因子为,( 1)2,从而A 的 Jordan 标准形为(6)设该矩阵为A ,则E A该矩阵的各阶行列式因子为D i ( ) D 2( 则不变因子为d i ( ) d 2(故初等因子为0 01 1 ;0 0112 3 41 230 1 21)D 3() 1,D 4()( 1)4,)d 3( ) 1,d 4() ( 1)4,(1)4,110 0 0 110 00 1 1.0 0 0 1故A 的特征值为11, 5.则A 的Jordan 标准形为5•设矩阵属于特征值 1 1的特征向量为 1 (1,0,0) T,求 A 的 Jordan 标准形 J,并求相似变换矩阵P ,使得 1P 1AP J .解 :(1) 求 A 的 Jordan 标准形 J .2111 00IA2 1 20 101120 ( 1)故其初等因子为1,(1)2,故 A 的 Jordan 标准形1 0 0J0 1 1.0 0 1(2)求相似变换矩阵 P . 考虑方程组属于2 35 的特征向量为 设P [ 1, 2, 3] 则 A P P 1.,故A 5 P 5P 16.设矩阵A2(2,1,2)T , 3(1, 2,1)T.12 1 1 0 0 01 2 , 0 5 0 , 02 10 0 5441 4 54 3 54 1440 3 54 4 54440 4 54 3 542 1 1 2 1 2 ,11 1 x1(I A)X 0, 即2 2 2 x2 0,11 1 x3解之 ,得1 0X1 0 ,X2 1.1 1其通解为k1k1X1 k2 X2=k2Jk1 k2其中k i,k2为任意常数考虑方程组1 11 x1 k12 22 x2 k211 11 x3k1 k21 1 1 k1 1 1 1 k12 2 2 k2 0 0 0 2k1 k21 1 1 k1 k2 0 0 0 2k1 k2 故当2k1 k2 0 时,方程组有解 .取k1 1,k2 2 ,解此方程组 ,得X3 01则相似变换矩阵1 0 0P [X1,X2,X3] 0 1 01 1 17•设矩阵试计算2A8 3A5A A2 4I .解:矩阵A的特征多项式为f A() I A 3 2 1, 由于2 83 54 2 4 ( 3 202 1)f( ) (24 3710)其中f( ) 2 5 4 3 5 29 14.且A3 2A I O, 故证明:设矩阵A的特征多项式为f A() I A n na1 1 na22 L an 1a n3 48 262A8 3A5 A4 A2 4I=24A2 37A 10I 0 95 610 61 34 8•证明:任意可逆矩阵A的逆矩阵A 1可以表示为A的多项式则A n a1A n 1a2A n 2 L a n 1A a n I O, 即A(A n1 a1A n 2 區n 3a?A L a n 1I) a n I , 因为A可逆,故a n ( 1)n A 0,则11n 1 n 2 n 3A(A a i A a ?A L a n J)a n9•设矩阵2 1A,1 3试计算(A 45A 36A 26A 8I) 1.解:矩阵A 的特征多项式为f A ( ) | I A 257,则A 2 2A 7I O ,而故143211111 21(A 5A 6A 6A 8I) (A I )-23 1 1解:矩阵A 的特征多项式为f A ( ) I A (1)( 1)( 2),则设由 f (1) 0, f( 1) 0, f (2) 0,得a b c 1, a b c 1,2n4a2b c 2 .解之,得7)( 21)1,10.已知3阶矩阵A 的三个特征值为11,2,试将A 2n表示为A 的二次式.2n2f( )g( ) a bc ,a 3(22n 1),b °,c£(22n 4), 33因此A 2n aA bA cI -(22n 1)A 2 ^(22n 4)I 3 3(3) n 阶单位阵I n 的最小多项式为 m() ⑷因为3 1 14 2 2 (1) 0 2 0 ;( 2)5 7 5 1 1 16 7 4a 。
矩阵论习题答案
矩阵论习题答案矩阵论习题答案在数学领域中,矩阵理论是一门重要的分支,它在各个学科领域都有广泛的应用。
矩阵论习题是学习矩阵理论的重要环节,通过解答这些习题,我们可以更好地理解和运用矩阵的性质和操作。
本文将为大家提供一些常见矩阵论习题的答案,希望能够对大家的学习有所帮助。
1. 习题:计算矩阵的转置。
答案:对于一个m×n的矩阵A,其转置矩阵记为A^T,其行和列互换。
即,如果A的第i行第j列元素为a_ij,则A^T的第i列第j行元素为a_ij。
可以通过编写程序或手动计算来得到转置矩阵。
2. 习题:计算矩阵的逆矩阵。
答案:对于一个可逆矩阵A,其逆矩阵记为A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。
可以通过高斯消元法或伴随矩阵法来计算逆矩阵。
3. 习题:计算矩阵的秩。
答案:矩阵的秩是指矩阵中线性无关的行(或列)的最大个数。
可以通过高斯消元法或矩阵的行(或列)简化形式来计算矩阵的秩。
4. 习题:计算矩阵的特征值和特征向量。
答案:对于一个n×n的矩阵A,其特征值和特征向量满足方程A·v = λ·v,其中λ为特征值,v为特征向量。
可以通过求解特征方程det(A - λ·I) = 0来计算特征值,然后将特征值代入方程(A - λ·I)·v = 0来计算特征向量。
5. 习题:计算矩阵的奇异值分解。
答案:对于一个m×n的矩阵A,其奇异值分解为A = U·Σ·V^T,其中U为m×m的正交矩阵,Σ为m×n的对角矩阵,V为n×n的正交矩阵。
可以通过奇异值分解算法来计算矩阵的奇异值分解。
6. 习题:计算矩阵的广义逆矩阵。
答案:对于一个m×n的矩阵A,其广义逆矩阵记为A^+,满足A·A^+·A = A,A^+·A·A^+ = A^+,(A·A^+)^T = A·A^+,(A^+·A)^T = A^+·A。
矩阵论课本习题解答
习 题 11.验证以下集合对于所指的运算是否构成实数域R 上的线性空间:(1)实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法;实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间n n R ⨯,记},|{A A R A A V T n n =∈=⨯;},|{A A R A A W T n n -=∈=⨯因为,对任意的V B A ∈,,B B A A T T ==,,则B A B A T +=+)(,即V B A ∈+,所以V 对加法运算封闭;对任意的V A ∈,R k ∈,A A T =,则kA kA T =)(,即V kA ∈,所以V 对数乘运算封闭;所以,V 是n n R ⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。
同理可证,W 也是一个线性空间。
(2)平面上不平行于某一向量的全体向量所组成的集合,对向量的加法和数量乘法; 设2R ∈α,0≠α,记},|{2α不平行于x R x x V ∈=,任取V x ∈0,则V x ∈+0α,V x ∈-0α,但V x x ∉=-++ααα2)()(00,所以,V 对加法运算不封闭,故V 不构成实数域R 上的线性空间。
(3)实数域R 上次数等于n 的多项式全体,对多项式的加法和数量乘法;记][x R n 表示实数域R 上次数不超过n 的多项式全体,则次数等于n 的多项式全体可表示为:][][1x R x R V n n --=,任取V x f ∈)(,均有V x f ∉=⋅0)(0,所以,V 对数乘运算不封闭,故V 不构成实数域R 上的线性空间。
(4)全体实数对},|),{(R b a b a ∈,对于如下定义的加法⊕和数量乘法 :),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(211111a k k kb ka b a k -+= ; 因为该加法⊕和数量乘法 运算满足线性运算的全部性质: i )),(),(),(),(),(11222121212211b a b a a a b b a a b a b a ⊕=+++=⊕; ii )),(),(),()),(),((33212121332211b a a a b b a a b a b a b a ⊕+++=⊕⊕ ))(,(32132121321a a a b a a b b a a a +++++++= ),(323121321321a a a a a a b b b a a a +++++++=)),(),((),(332211b a b a b a ⊕⊕=; iii )),()0,0(),(1111b a b a =⊕;iv ))0,0(),(),(211111=+--⊕a b a b a ;v )),()2)11(11,1(),(111211111b a a b a b a =-+= ; vi )))(2)1(2)1(,()2)1(,()),((212111211111la k k a l l k klb kla a l l lb la k b a l k -+-+=-+= ),()()2)1(,(112111b a kl a kl kl klb kla =-+=; vii ))2)1(,()2)1(,()),(()),((211121111111a l l lb la a k k kb ka b a l b a k -+⊕-+=⊕ )2)1(2)1(,(2121121111k l a a l l lb a k k kb la ka +-++-++= ),()()2)1))((()(,)((112111b a l k a l k l k b l k a l k +=-+++++=; viii )),()),(),((2121212211a a b b a a k b a b a k +++=⊕))(2)1()(),((221212121a a k k a a b b k a a k +-++++= )2)1(2)1(,(22212122121a k k a k k a a k kb kb ka ka -+-++++= )2)1(,()2)1(,(22222111a k k kb ka a k k kb ka -+⊕-+= )),(()),((2211b a k b a k ⊕=。
矩阵论(2016研究生) 百度文库第2版, 杨明、刘先忠编著
6 欧氏空间中向量的夹角: 定义:0,0,夹角定义为: cos= ( , ) 和 正交 (,)=0
7 线性空间的内积及其计算: 设{1,2,…, n } 是内积空间Vn(F)的基, ,Vn(F),则有 =x11+x22+…+x n n = (12… n)X; =y11+y22+…+y n n= (1 2… n)Y 度 (,)=
归纳:
任何线性空间V n[F]在任意一组基下的坐标属于Fn 。 每一个常用的线性空间都有一组“自然基”,在这 组基下,向量的坐标容易求得。 求坐标方法的各异性。
2、 线性空间V n(F)与Fn的同构
坐标关系
V n (F)
基{1,2,。。。 n}
Fn
由此建立一个一一对应关系
V n (F),X Fn, ()=X (1+2)=(1)+(2) (k)=k()
V n (F)表示数域F上的 n 维线性空间。 只研究有限维线性空间。
三、坐标
1 定义 1 .3 (P . 3)设{1,2,…, n } 是空间 n Vn ( F ) 的一组基, Vn ( F ) , = xi i ,则x1 , i 1 x2, …, xn 是在基{i}下的坐标。
矩阵被认为是最有用的数学工具,既适用于应用 问题,又适合现代理论数学的抽象结构。
二、教学安排
学时配置 讲授第1章至第6章 (36学时) 第1章:8学时; 第2章:6学时 第3章:6学时; 第4章:6学时; 第5章:6学时; 第6章:4学时
考核方式:课程结束考试
三、教学指导意见
背景要求:线性代数 矩阵与计算工具:MATLAB,MAPLE, … 矩阵与现代应用:应用选讲 教学参考书:
矩阵论
课程:矩阵论(Matrix Theory) 学时: 36学时 (36 Lectures) 教材:矩阵论(第2版, 杨明、刘先忠编著), 华中科技大学出版社,2005
研究生 矩阵论 课后答案
|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
矩阵论de 课后答案.pdf
习题 1.11.解:除了由一个零向量构成的集合{θ}可以构成线性空间外,没有两个和有限(m)个向量构成的线性空间,因为数乘不封闭(kα 有无限多个,k∈p数域).2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭.3. 解:⑴不是,因为当k∈Q 或 R 时,数乘kα不封闭;⑵有理域上是;实数域上不是,因为当k∈R时,数乘kα不封闭.⑶是;⑷是;⑸是;⑹不是,因为加法与数乘均不封闭.4.解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理.5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量).6. 解:(1)设A的实系数多项式f(A)的全体为{f (A)= a0 I + a1 A + a m A m a i∈ R, m正整数}1显然,它满足两个封闭性和八条公理,故是线性空间.(2)与(3)也都是线性空间.7. 解:是线性空间.不难验证sin t,sin 2t,…,sin nt是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V中的一个组基.由高等数学中傅里叶(Fourier)系数知c i= 1 2π t sin itdt .π ⎰08. 解:⑴不是,因为公理 2 ')不成立:设 r=1, s=2, α=(3, 4),则(r+s) (3, 4)= (9, 4),而r (3, 4)⊕s (3, 4)=(3,4)⊕(6, 4)= (9, 8), 所以(r+s)α≠rα⊕sα.⑵ 不是,因为公理1)不成立:设α= (1,2) ,β= (3,4) ,则α⊕β=(1,2)⊕(3,4) = (1,2),β⊕α= (3,4)⊕(1,2) = (3,4) , 所以α⊕β≠β⊕α.⑶ 不是,因为公理2')不成立:设r=1, s=2,α=(3,4) ,则(r+s)α=3 (3, 4)= (27, 36) 而r α⊕ s α=1 (3,4)⊕ 2 (3,4)=(3, 4)⊕ (12, 16)= (15, 20),于是(r+s) α≠ r α⊕ s α.⑷ 是.9.证若α,β∈V,则2(α+β)= 2α+ 2β=(1 + 1)α+(1 + 1)β=(1α+ 1α)+ (1β+ 1β )= (α + α )+ (β + β )= α + (α + β )+ β2另一方面,因此从而有2(α+β)=(1+ 1)(α+β)=(1α+ 1β)+ 1(α+β)= (α + β )+ (α + β ) = α + ( β +α )+ βα+(α+β)+β=α+(β+α)+β,(-α )+α + (α + β )+ β + (- β ) = (-α )+α + (β +α )+ β + (- β )于是得α+β=β+α.10. 解:先求齐次方程组的基础解系ξ1=(3,3,2,0)T,ξ2=(-3,7,0,4)T,即为解空间V的一组基.所以,dim V=2.11. 解:考察齐次式k (x2+ x)+ k (x2-x) +k (x+1) = 01 2 3即(k+k )x2 + (k-k + k )x+k = 0 ,1 2 1 2 3 3得线性方程组k1 + k2 = 0k1 - k2+ k3=0k3 = 0由于系数行列式不等于零,那么只有k1 = k2= k3 = 0 时,上述齐次式才对∀x成立,所以x2+x,x2-x,x+1 线性无关,且任二次多项式ax2+ bx + c 都可惟一地用它们来表示(因为相应的非齐次方程组有惟一解),故为基.令2x2+ 7x+ 3 = (k1+k2 )x2+ (k1-k2+k3 )x+k3得k1=3,k2= -1,k3=3,即坐标为( 3, -1, 3 ) .312. 解:⑴因为 ( β1,β2,β3,β4)=(α1,α2,α3,α4)C,故C=(α1,α2,α3,α4)-1(β1,β2,β3,β4)1 0 0 0 -12 0 5 6 2 0 5 6= 0 1 0 0 1 3 3 6 1 3 3 6 0 0 1 0 -1 1 2 1 = -1 1 2 1.0 0 0 1 1 0 1 3 1 0 1 3⑵ 显然,向量α在基α1,α2,α3,α4下的坐标为X=(ξ1,ξ2,ξ3,ξ4)T, 设α在基β1,β2,β3,β4下的坐标为Y=(η1,η2,η3,η4)T,则ξ1 2 0 5 6 - 1 ξ1Y=C -1ξ2=1 3 3 6 ξ2ξ3 -1 1 2 1 ξ3ξ4 1 0 1 3 ξ44 1 -1 - 119 319ξ11 4 23= - 3 - ξ2 = B X27 9 271 2 ξ33 0 0 - 3 ξ4- 7 - 1 1 2627 3 279⑶ 如果X = Y,则有X= BX,即得齐次方程组(I- B)X=0 ,求其非零解为X = k (-1,-1,-1, 1 )T,k∈R ,即为所求.13. 解:(1)对k=1,2, ,n;l=k,k+1, ,n令F kl=(a ij)n⨯n,其中a kl=1,其余的a ij=0,则{F kl}为上三角矩阵空间的一组基,维数为12 n(n +1).(2)R+中任意非零元素都可作R+的基,dim R+=1.(3)I,A,A2为所述线性空间的一组基,其维数为3.414. 解: (1)由已知关系式求得⎧β1 = 4α1 + 8α2 + α3 - 2α4⎪ = -2α1 - 4α2 +α4⎪β2⎨ = α1 + 2α2⎪β3⎪= α2 + 2α3⎩β4于是,由基(I )到基(II )的过渡矩阵为⎡ 4 - 2 1 0⎤ ⎢ - 4 ⎥ C = ⎢ 8 2 1⎥⎢1 0 0⎥⎢ 2⎥⎣- 2 10 0⎦(2)α在基(II )下的坐标为(2,-1,1,1)T ,再由坐标变换公式计算α在基(I )下的坐标为C (2,-1,1,1)T =(11,23,4,-5)T .(3)不难计算得 det (1·I —C )=0,所以 1 是 C 的特征值.不妨取过渡矩阵 C 的对应于特征值 1 的一个特征向量为η,则有 C η=1 ·η,那么α= (β1 , β 2 , β3 , β 4 )η≠0,再由坐标变换公式知,α在基(I )下的坐标为ξ=C η=η,即存在非零α∈V 4 ,使得α在基(I )和基(II )下有相同的坐标.15. 解:不难看出,由简单基 E 11,E 12,E 21,E 22 改变为基(I )和基(II )的过渡矩阵分别为⎡2 0 - 2 1⎤⎡ 11 -1 -1⎤⎢ ⎥⎢⎥ C = ⎢1 1 13⎥ , C = ⎢2-1 2 -1⎥1⎢2 1⎥2⎢1 0 ⎥⎢1⎥⎢-1 1⎥⎣1 22 2⎦⎣ 0 1 1 1 ⎦则有(B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)C 2=(A1,A2,A3,A4)C1 1C25。
矩阵论课后习题答案
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
矩阵理论(科学出版社)习题详细解答
单缝衍射的光强分布及缝宽测定目的要求1. 观察单缝的夫琅和费衍射现象及其随单缝宽度变化的规律,加深对光的衍射理论的理解。
2. 学习光强分布的光电测量方法。
3. 利用衍射花样测定单缝的宽度。
实验原理夫琅和费衍射是平行光的衍射,在实验中可借助两个透镜来实现,如图1所示。
与光轴平行的衍射光会聚于屏上P 0处,是中央亮纹的中心,其光强设为I 0;与光轴成θ角的衍射光束会聚于处,可以证明,处的光强为图1(1)式中: a 为狭缝宽度,λ为单色光的波长。
当u=0时,衍射光强有最大值。
当u=k π(k 为整数)时,衍射光强有极小值,对应于屏上的暗纹。
由于θ值实际上很小,因此可近似地认为暗纹对应的衍射角为θ≈k λ/a 。
两相邻暗纹之间都有一个次极大,其光强分布曲线如图2所示。
仪器用具光具座、He-Ne 激光器、可调单狭缝(固定单缝)、光电池及测距支架、光点检流计、投影仪(或读数显微镜)图2实验内容1. 开启激光,调节光路至测量状态。
2. 测量夫琅和费单缝衍射光强分布,作光强分布曲线。
3. 用暗纹的衍射角算出单缝的宽度,并与投影仪(或读数显微镜)直接测量结果比较。
4. 调节可变单缝的宽度,观察衍射图样的变化。
预习思考题1. 用He-Ne 激光做光源的实验装置是否满足夫琅和费衍射条件?为什么?2. 当缝宽增加一倍时,衍射花样的光强和条纹宽度会怎样改变?如缝宽减半,又怎样改变? 习题 一1.(1)因 cos sin sin cos nx nx nx nx ⎡⎤⎢⎥-⎣⎦cos sin sin cos x x x x ⎡⎤⎢⎥-⎣⎦= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++⎡⎤⎢⎥-++⎣⎦,故由归纳法知cos sin sin cos n nx nx A nx nx ⎡⎤=⎢⎥-⎣⎦。
(2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k rA A A A ==-,即只需算出23,A A 即可。
河海大学研究生矩阵论习题答案
对 k R ,有
kf t 1 kf t dt k f t dt k f t 1
b b a a
对于 g t Ca, b,有
f t g t 1 f t g t dt f t dt g t dt
又已知
T
2
2
0 ,故 T , , 2 2 .
证 :( 1 ) 充 分 性 . 由 C C=I 及 坐 标 变 换 公 式 C 可 得
T
16 .
2 2
T C C T C T C T 2 ,即
M max hi .再由
i
则有
M max hi .对任给正数 ,取 M ,则当 max hi 时,
i
i
4
结论恒成立. 13. 证: (1)设 x1 , 面又有
x2 , , xn ,且 max xi xi 0 ,则
T B T
可 得
i j i j , 由
bii bij b ji b jj 2
,
即
bij 0i j, i, j 1,, n ,故有 B=I,也就是 CTC=I.)
(2) 取正交矩阵
1 2 1 C 2 0
n
4 . 证 法 提 示 : 与 上 题 类 似 . 图 形 在 第 一 象 限 的 部 分 由 x1 1,
x2 1 和
2 x1 x2 1 所围成. 3
5 . 证 : 考 虑 0, 1 ,
T
1, 0T , 则 当 p
《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.3
当 n 为奇数时,如果 A 是反对称阵,则 A AT 1n A A ,所以
A 0 ,故不存在奇数阶可逆反对称方阵.
5. 证: (1)因为 AT A ,设 B P T AP ,所以有
B T P T AP
T
P T AT P B
则 B 为对称阵. (2)由于 A 与 B 相合,知存在满秩矩阵 P ,使 B P T AP ,又因
的特征向量,u m 为相应的特征值, 因此 B 的 n 个线性无关的向量都是
A 的线性无关的向量. 从而,B 与 A 的特征向量完全一致.同理,C 与 A 的特征向量也完全一致,从而 C 与 B 的特征向量完全一致.并且,
设 C , 则有 v m C m A B m u m ,但 , 所以v m u m ,但 所以 v u .这样, B 与 C 有完全一致的特征向量和相 v与u 都是正实数, 应的特征值,因此 B 与 C 可用同样的矩阵 P,使 P 1 BP与P 1CP 是同样 的对角矩阵,即
习题 2.3
1. 证:因为 A H A, B H B ,又
( AB) H AB B H A H AB
即 BA=AB .
2. 证:设 A 为任一复方阵,令
A BC
①
其中 B 为 Hermite 矩阵,C 为反 Hermite 矩阵,于是,可得
AH B H C H B C
由①与②联立得 B
A AH A AH ,C . 2 2
3. 证:设 V n 的标准正交基为 1 , 2 , , n ,
A ( aij ) nxn ,则有
在该基下的矩阵为
( i ) a1i 1 a 2 i 2 a ni n ,
矩阵论课后参考答案(第一二三四
矩阵为 A
1 1
18 22
15 20
,
求
T
在 基 1 (1,2,1) , 2 (3,1,2),
1
21,2)下的矩阵。
解:由题可知1,2,3 与1,2,3 时空间 L(F 3) 的两组基,则存在一个
过渡矩阵 C 使得
3 -1 2
2 1 2
1 0 0
0 1 0
0 r 2(2)r1 1
0 r3(1)r10
1
0
3 5 -1
2 5 0
1 2 -1
0 1 0
0 0 1
1r2
5 (1)r 3
1 3 2 1 0
0
1 3 2 1 0 0
r2r30 1 0 1 0 1 r3(1)r20 1 0 1 0 1
2
1 0 0 0 0 1 0 0
0 0 0 0
0
0
0
0
,
1
0
0
0
,
0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1
(3)解:同上理,对 AT A 分析可知其为一个上下成负对称的矩阵,
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
0 0
所以V1 V2 {0} 。
2)明显V1 V2 Fn