MATLAB实现拉格朗日插值精编版
拉格朗日插值龙格现象的matlab实现
![拉格朗日插值龙格现象的matlab实现](https://img.taocdn.com/s3/m/1ed3b01aac02de80d4d8d15abe23482fb4da02b2.png)
拉格朗日插值法在实践中的应 用
在数值分析中的应用
单击此处添加标题
插值法:拉格朗日插值法是数值分析中常用的插值方法之一,具有简单易 行、计算量小等优点。
单击此处添加标题
数据拟合:拉格朗日插值法可以用于数据拟合,通过对已知数据进行插值, 得到未知数据的近似值。
单击此处添加标题
数值微积分:拉格朗日插值法在数值微积分中也有广泛应用,例如在求解 函数的导数、积分等运算时,可以利用拉格朗日插值法进行近似计算。
龙格现象
龙格现象的定义
定义:当插值多项式的阶数过高时, 插值结果可能变得不可预测或出现 剧烈振荡
解决方法:在实际应用中,应避免 使用过高的插值多项式阶数,而应 选择合适的阶数以保证插值结果的 稳定性和准确性
添加标题
添加标题
添加标题
添加标题
原因:由于高阶插值多项式对数据 点的敏感性增强,导致插值结果不 稳定
拉格朗日插值龙格现象的 Matlab实现
汇报人:XX
单击输入目录标题 拉格朗日插值法 龙格现象 拉格朗日插值法在Matlab中的实现 拉格朗日插值法的龙格现象分析 拉格朗日插值法在实践中的应用
添加章节标题
拉格朗日插值法
插值法的定义
插值法是一种数学方法,通过已知的离散数据点,构造一个多项式函数,使得该函数在 数据点处的取值等于已知的数据点值。
算法收敛性:在某些情况下,龙格现象可能导致算法收敛速度减慢,增加计算时间和计算成本。
实际应用限制:由于龙格现象的存在,某些数值方法在实际应用中可能受到限制,无法处理某些 复杂问题。
算法改进需求:为了克服龙格现象的影响,需要研究和发展新的数值方法和算法,提高数值计算 的稳定性和精度。
拉格朗日插值法在Matlab中的 实现
用MATLAB实现拉格朗日插值和分段线性插值
![用MATLAB实现拉格朗日插值和分段线性插值](https://img.taocdn.com/s3/m/20b8e99cf242336c1fb95e7a.png)
用MATLAB实现拉格朗日插值和分段线性插值之迟辟智美创作1、实验内容:用MATLAB实现拉格朗日插值和分段线性插值.2、实验目的:1)学会使用MATLAB软件;2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;3、实验原理:利用拉格朗日插值方法进行多项式插值,并将图形显式出来.4、实验步伐及运行结果(1)实现lagrange插值1)界说函数: f = 1/(x^2+1) 将其保管在f.m 文件中,具体法式如下:function y = f1(x)y = 1./(x.^2+1);2)界说拉格朗日插值函数:将其保管在lagrange.m 文件中,具体实现法式编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间长度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j);endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)建立测试法式,保管在文件中,实现画图:x=-5:0.001:5;y=(1+x.^2).^-1;p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figurepl ot(x,y,‘r',plot_x,f1)输入n=6,呈现下面的图形:通过上图可以看到当n=6是没有很好的模拟.于是重新运行text.M并选择n=11由此可见n=11时的图像是可以很好的实现模拟(2)分段线性插值:建立div_linear.m文件.具体编程如下/*分段线性插值函数:div_linear.m 文件*/function y = div_linear(x0,y0,x,n)%for j = 1:length(x)for i = 1:n-1if (x >= x0(i)) && (x <= x0(i+1))y = (x - x0(i+1))/(x0(i) - x0(i+1))*y0(i) + ( x - x0(i))/(x0(i+1) - x0(i))*y0(i+1);elsecontinue;endend%end测试法式(text2.m):n = input(‘输入n =:’);x0 = linspace( -5,5,n);for x = -5:0.01:5y = div_linear(x0,f(x0),x,n);hold on;plot(x,y,'r');plot(x,f(x),'b');end2)运行测试法式,这是会呈现:输入n=:2)输入n=6,并按Enter键,呈现:4)关失落图形界面后,重新运行法式,输入n=11,并按enter键后呈现:5)再次关失落图形界面,输入n=100,并按enter键,呈现:此时.图形将于原函数图形基本吻合,说明分割区间越多,图像接近真实的图像.(3)用lagrange插值观察y = |sin(k*π*x)|的误差分析:1)编写函数文件,保管在f2.m 中x=0:0.01:1;k= input('输入k:')n= input('输入n:');y=abs(sin(k*pi*x));p=polyfit(x,y,n-1);py=vpa(poly2sym(p),8);plot_x=0:0.01:1;f1=polyval(p,plot_x);plot(x,y,plot_x,f1);2)运行该法式:输入k=:1输入n=:2呈现如下图形界面:关失落图形界面后重新运行f2.m,输入k=:1,n=:3呈现如下界面:再次关失落图形界面,输入k=:1,n=:6 后呈现:此时图形基本吻合.类推,输入k=2, n=3后呈现:k =2, n =11,呈现如下图形:k =2,n =15,这时呈现:k =2,n =19,呈现:当k=2,n=21时,图形如下:此时基本吻合.5、实验总结:通过本次课程设计,我初步掌握了MATLAB运用,加深了对各种线性插值的理解;培养了自力工作能力和缔造力;综合运用专业及基础知识,解决实际数学问题的能力;在本次课程设计中,在老师的精心指导下,收益匪浅.同时对数学的研究有了更深入的认识.。
用MATLAB实现拉格朗日插值和分段线性插值
![用MATLAB实现拉格朗日插值和分段线性插值](https://img.taocdn.com/s3/m/2474b51af61fb7360a4c65a6.png)
用MATLAB实现拉格朗日插值和分段线性插值之杨若古兰创作1、实验内容:用MATLAB实现拉格朗日插值和分段线性插值.2、实验目的:1)学会使用MATLAB软件;2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;3、实验道理:利用拉格朗日插值方法进行多项式插值,并将图形显式出来.4、实验步调及运转结果(1)实现lagrange插值1)定义函数:f = 1/(x^2+1) 将其保管在f.m 文件中,具体程序如下:function y = f1(x)y = 1./(x.^2+1);2)定义拉格朗日插值函数:将其保管在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间长度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j);endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)建立测试程序,保管在text.m文件中,实现画图:x=-5:0.001:5;y=(1+x.^2).^-1;p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figureplot(x,y,‘r',plot_x,f1)输入n=6,出现上面的图形:通过上图可以看到当n=6是没有很好的模拟.因而从头运转text.M并选择n=11因而可知n=11时的图像是可以很好的实现模拟(2)分段线性插值:建立div_linear.m文件.具体编程如下/*分段线性插值函数:div_linear.m 文件*/function y = div_linear(x0,y0,x,n)%for j = 1:length(x)for i = 1:n-1if (x >= x0(i)) && (x <= x0(i+1))y = (x - x0(i+1))/(x0(i) - x0(i+1))*y0(i) + ( x - x0(i))/(x0(i+1) - x0(i))*y0(i+1);elsecontinue;endend%end测试程序(text2.m):n = input(‘输入n =:’);x0 = linspace( -5,5,n);for x = -5:0.01:5y = div_linear(x0,f(x0),x,n);hold on;plot(x,y,'r');plot(x,f(x),'b');end2)运转测试程序,这是会出现:输入n=:2)输入n=6,并按Enter键,出现:4)关掉图形界面后,从头运转程序,输入n=11,并按enter键后出现:5)再次关掉图形界面,输入n=100,并按enter键,出现:此时.图形将于原函数图形基本吻合,说明分割区间越多,图像接近真实的图像.(3)用lagrange插值观察y = |sin(k*π*x)|的误差分析:1)编写函数文件,保管在f2.m 中x=0:0.01:1;k= input('输入k:')n= input('输入n:');y=abs(sin(k*pi*x));p=polyfit(x,y,n-1);py=vpa(poly2sym(p),8);plot_x=0:0.01:1;f1=polyval(p,plot_x);plot(x,y,plot_x,f1);2)运转该程序:输入k=:1输入n=:2出现如下图形界面:关掉图形界面后从头运转f2.m,输入k=:1,n=:3出现如下界面:再次关掉图形界面,输入k=:1,n=:6 后出现:此时图形基本吻合.类推,输入k=2,n=3后出现:k =2, n =11,出现如下图形:k =2,n =15,这时候出现:k =2,n =19,出现:当k=2,n=21时,图形如下:此时基本吻合.5、实验总结:通过本次课程设计,我初步把握了MATLAB应用,加深了对于各种线性插值的理解;培养了独立工作能力和创造力;综合应用专业及基础常识,解决实际数学成绩的能力;在本次课程设计中,在老师的精心指点下,收益匪浅.同时对数学的研讨有了更深入的认识.。
matlab拉格朗日插值函数代码
![matlab拉格朗日插值函数代码](https://img.taocdn.com/s3/m/07872049a36925c52cc58bd63186bceb19e8ed3c.png)
matlab拉格朗日插值函数代码拉格朗日插值法是一种常用的函数逼近方法,可以用来对给定的一组离散数据进行求值,使得所求函数通过这些离散数据点。
在MATLAB中,可以通过编写函数来实现拉格朗日插值。
先介绍拉格朗日插值的基本原理。
设已知离散点(x0,y0),(x1,y1),...,(xn,yn),要求通过这些点的插值项L(x)作为函数y = f(x)的近似。
插值项L(x)可以表示为:L(x) = y0 * L0(x) + y1 * L1(x) + ... + yn * Ln(x)其中,Lk(x)是基本多项式,表示为:Lk(x) = (x - x0) * (x - x1) * ... * (x - xk-1) * (x - xk+1) ... * (x - xn) / (xk - x0) * (xk - x1) * ... * (xk - xk-1) * (xk - xk+1) ... * (xk - xn)可以看到,Lk(x)的分子为关于x的n次多项式,在点x = xk处取到值1,在其余各点处取值为0。
每个Lk(x)都可以视为基于xk的插值函数,这些插值函数可以线性组合得到整个插值项L(x)。
在MATLAB中,可以编写一个基于拉格朗日插值法的函数,输入为已知的离散数据点,输出为插值函数在给定点处的值。
具体步骤如下。
1. 定义输入参数。
需要输入已知的离散数据点,以及给定的点的位置。
function result = lagrange_interpolation(data, x)其中,data为matrix型,第一列为x值,第二列为y值;x为scalar型,表示给定点的位置。
2. 计算插值项L(x)。
对于每个k,计算其相应的基本多项式Lk(x),并将所有基本多项式与相应的y值线性组合得到插值项L(x)。
n = size(data,1);L = ones(n, 1);for k=1:nfor j=1:nif j ~=kL(k) = L(k) * (x - data(j,1)) / (data(k,1) - data(j,1));endendendresult = sum(data(:,2) .* L);3. 输出结果。
例题matlab拉格朗日插值
![例题matlab拉格朗日插值](https://img.taocdn.com/s3/m/0f8ab74fa517866fb84ae45c3b3567ec102ddcb3.png)
例题matlab拉格朗日插值
拉格朗日插值是一种常用的数值插值方法,可以用于近似给定数据点的函数。
在MATLAB中,可以使用interp1函数来实现拉格朗日插值。
以下是一个使用拉格朗日插值的例子:
假设有一组数据点,x为自变量,y为因变量,如下:
x = [1, 3, 4, 6];
y = [4, 2, 5, 1];
要在x=2和x=5之间进行插值,可以使用interp1函数来进行插值计算。
代码如下:
x_interp = [2, 5]; % 需要插值的x值
y_interp = interp1(x, y, x_interp, 'linear', 'extrap'); % 使用拉格朗日插值进行插值计算,'linear'表示线性插值方法,'extrap'表示在区间外进行外插值
运行上述代码后,可以得到插值的结果y_interp,即在x=2和x=5处的插值结果。
注意,interp1函数还有其他插值方法可选,如二次插值、三次插值等,可以根据具体的需求进行选择。
希望对你有帮助!。
拉格朗日插值和牛顿插值matlab
![拉格朗日插值和牛顿插值matlab](https://img.taocdn.com/s3/m/3980e07b24c52cc58bd63186bceb19e8b9f6ec41.png)
拉格朗⽇插值和⽜顿插值matlab1. 已知函数在下列各点的值为0.20.40.60.8 1.00.980.920.810.640.38⽤插值法对数据进⾏拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值。
程序:x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];[f,f0]=Lagrange(x,y,x0)function [f,f0] = Lagrange(x,y,x0)%求已知数据点的Lagrange插值多项式f,并计算插值多项式f在数据点x0的函数值f0syms t;n = length(x);f = 0.0;for i = 1:nl = y(i);for j = 1:i-1l = l*(t-x(j))/(x(i)-x(j));end;for j = i+1:nl = l*(t-x(j))/(x(i)-x(j));end;f = f + l;simplify(f);if(i==n)f0 = subs(f,'t',x0);f = collect(f);f = vpa(f,6);endend结果:>> Untitled3f =- 0.520833*t^4 + 0.833333*t^3 - 1.10417*t^2 + 0.191667*t + 0.98f0 =[ 49/50, 60137/62500, 56377/62500, 42497/62500, 19/50, 15017/62500]⽜顿:%y为对应x的值,A为差商表,C为多项式系数,L为多项式%X为给定节点,Y为节点值,x为待求节点function[y,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);endy(t) = polyval(C,z);endL = poly2sym(C);x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];m=1;[y,A,C,L]=newton(x,y,x0,m)结果:y =0.9800 0.9622 0.9020 0.6800 0.3800 0.2403A =0.9800 0 0 0 00.9200 -0.3000 0 0 00.8100 -0.5500 -0.6250 0 00.6400 -0.8500 -0.7500 -0.2083 00.3800 -1.3000 -1.1250 -0.6250 -0.5208C =-0.5208 0.8333 -1.1042 0.1917 0.9800L =- (25*x^4)/48 + (5*x^3)/6 - (53*x^2)/48 + (23*x)/120 + 49/502. 在区间上分别取,⽤两组等距节点对Runge函数作多项式插值(Lagrange插值和Newton插值均可),要求对每个值,分别画出插值多项式和函数的曲线。
用matlab编写拉格朗日插值算法的程序
![用matlab编写拉格朗日插值算法的程序](https://img.taocdn.com/s3/m/6913ae9b55270722192ef7a6.png)
用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序 ]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。
代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果% x -2.15 -1.00 0.01 1.02 2.03 3.25% y 17.03 7.24 1.05 2.03 17.06 23.05function main()clc;x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: f syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
拉格朗日插值法matlab
![拉格朗日插值法matlab](https://img.taocdn.com/s3/m/5ecc158ca32d7375a51780ad.png)
2.五次拉格朗日
clc
x=[-3.15-1 0.01 1.02 2.03 3.25];
y=[37.037.24 1.05 2.03 17.06 23.05];二次拉格朗日插值的误差为:R
L0=poly([x(2) x(3) x(4) x(5)
x(5)
x(5)
x(5)
x(4)
x(4) x(6)])/((x(1)-x(2))*(x(1)-x(3))*(x(1)-x(4))*(x(1)-x(5))*(x(1)-x(6)));
L1=poly([x(1) x(3) x(4) x(6)])/((x(2)-x(1))*(x(2)-x(3))*(x(2)-x(4))*(x(2)- x(5))*(x(2)-x(6))); L2=poly([x(1) x(2) x(4) x(6)])/((x(3)-x(1))*(x(3)- x(2))*(x(3)-x(4))*(x(3)-x(5))*(x(3)-x(6))); L3=poly([x(1) x(2) x(3) x(6)])/((x(4)-x(1))*(x(4)-x(2))*(x(4)-x(3))*(x(4)-x(5))*(x(4)-x(6)));
拉格朗日插值法
实验题目 拉格朗日插值法
一、实验目的及要求
利用Matlab学习拉格朗日插值法
二、研究、解答以下问题
问题:1、已知一‘⑪4;CUM辺汕,_'仏环0.爪以1字,「丄幻0. 510H26,
分别用线性插值法和二次拉格朗日插值法分别计算f(0.54),并且说明哪个结果误差更小。
2、给出节点,「:LOU.;「到,L〔)•皿,
b = -0.6153
误差:
function [R]=wucha(M,x,X) n=length(X);
matlab实现拉格朗日函数,拉格朗日插值多项式
![matlab实现拉格朗日函数,拉格朗日插值多项式](https://img.taocdn.com/s3/m/37bee2e2f80f76c66137ee06eff9aef8941e482d.png)
matlab实 现 拉 格 朗 日 函 数 , 拉 格 朗 日 插 值 多 项 式
%拉格朗日插值多项式 利用矩阵求解 x=1:0.2:3;%已知数据点x坐标向量:x y=sin(x);%已知数据点x坐标向量:y x1=1.1:0.2:3.1;%插值点的x坐标:x1 L=zeros(11,11);%另L矩阵为0
for i=1:11 A=ones(10,1);%另A矩阵为10行1列的矩阵 x2=x; x2(i)=[]; x2';%10行一列 B=ones(1,11);%另B矩阵为1行11列的矩阵 A*x1;%10行11列 (x2')*B;%10行11列 A*x1-(x2')*B;%11行11列 ones(10,11); x(i);%提取x的第i个元素 ones(10,11)*x(i);%10行11列的矩阵 prod(A*x1-(x2')*B);%基函数的分子 ones(10,11)*(x(i))-(x2')*B;%基函数的分母 C=prod(A*x1-(x2')*B)./prod(ones(10,11)*(x(i))-(x2')*B);%对x2进行转置%C矩阵是一个1行11列的矩阵 L(i,:)=C; %将A的第一行元素全部变为10 %将得到的矩阵赋值基函数的1,2,3。。。。11行
end L;%11行11列 y;%1行11列 y1=y*L
结.9636 0.9975 0.9917 0.9463 0.8632 0.7457
8 至 11 列
0.5985 0.4274 0.2392 0.0416
用拉格朗日插值法求解函数值 matlab
![用拉格朗日插值法求解函数值 matlab](https://img.taocdn.com/s3/m/5ef4637742323968011ca300a6c30c225901f018.png)
**使用拉格朗日插值法求解函数值的MATLAB实现**拉格朗日插值法是一种常用的插值方法,通过已知的若干点构造一个多项式来近似一个未知的函数。
下面我们将详细介绍如何在MATLAB中使用拉格朗日插值法来求解函数值。
**1. 拉格朗日插值法的基本原理**给定n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值多项式L(x)可以表示为:L(x) = Σ[yi * li(x)] (i从0到n)其中,li(x) 是拉格朗日基函数,定义为:li(x) = Π[(x - xj) / (xi - xj)] (j从0到n,且j≠i)**2. MATLAB实现**以下是一个简单的MATLAB脚本,用于计算给定点的拉格朗日插值多项式及其值。
```matlab% 假设我们有一些点的数据:xi, yi(其中i = 0,1,2,...,n)xi = [1, 2, 3, 4]; % 自变量数据点yi = [1, 4, 9, 16]; % 因变量数据点% 要计算插值的点x = 2.5;n = length(xi); % 点的数量L = 0; % 初始化插值多项式% 计算拉格朗日插值多项式在点x处的值for i = 1:nli = 1; % 初始化基函数for j = 1:nif i ~= jli = li * (x - xi(j)) / (xi(i) - xi(j)); % 计算基函数endendL = L + yi(i) * li; % 更新插值多项式enddisp(['拉格朗日插值结果:', num2str(L)]); % 显示结果```在此脚本中,我们首先定义了已知的数据点`xi`和`yi`,并选择一个特定的`x`来计算对应的函数近似值。
然后,我们使用两个嵌套的循环来计算拉格朗日插值多项式在所选点`x`处的值。
外部循环遍历每个数据点,而内部循环计算相应的基函数。
最后,我们显示计算得到的插值结果。
拉格朗日插值matlab程序例题
![拉格朗日插值matlab程序例题](https://img.taocdn.com/s3/m/e394dd43a7c30c22590102020740be1e650ecc9d.png)
拉格朗日插值是一种常用的数据拟合方法,它可以通过已知数据点来估计出未知数据点的值。
在数学和工程领域中,拉格朗日插值经常被用来进行数据的近似和预测。
在本文中,我们将深入探讨拉格朗日插值的原理和应用,并以Matlab程序例题来展示其实际运用。
1. 拉格朗日插值的原理拉格朗日插值是利用已知数据点来构造一个多项式,通过这个多项式来拟合数据并进行预测。
它的原理基于拉格朗日多项式的概念,即通过已知的n个点来构造一个n-1次的拉格朗日多项式,利用这个多项式来估计其他点的数值。
2. 拉格朗日插值的公式假设有n个已知的数据点(x1, y1), (x2, y2), …, (xn, yn),则拉格朗日插值多项式可以表示为:L(x) = Σ(yi * li(x)), i=1 to n其中li(x)是拉格朗日基函数,定义为:li(x) = Π((x - xj) / (xi - xj)), j=1 to n, j≠i利用这个公式,我们可以得到拉格朗日插值多项式,进而进行数据的拟合和预测。
3. 拉格朗日插值的Matlab程序实现下面我们将以一个具体的例题来展示如何使用Matlab来实现拉格朗日插值。
假设有如下数据点:y = [10, 5, 8, 3, 6];我们希望利用这些数据点来构造拉格朗日插值多项式,并使用这个多项式来估计x=3.5处的数值。
我们可以编写Matlab程序来实现拉格朗日插值。
代码如下:```matlabfunction result = lagrange_interpolation(x, y, xx)n = length(x);result = 0;for i = 1:ntemp = y(i);for j = 1:nif i ~= jtemp = temp * (xx - x(j)) / (x(i) - x(j));endendresult = result + temp;endend```我们可以调用这个函数来进行插值计算:```matlaby = [10, 5, 8, 3, 6];xx = 3.5;result = lagrange_interpolation(x, y, xx)disp(result);```通过这段程序,我们可以得到x=3.5处的插值结果为6.75。
matlab编写拉格朗日插值法案例
![matlab编写拉格朗日插值法案例](https://img.taocdn.com/s3/m/229ebee93086bceb19e8b8f67c1cfad6195fe9cb.png)
matlab编写拉格朗日插值法案例拉格朗日插值法是一种常用的插值方法,可以通过已知的离散数据点,构造一个多项式函数来逼近这些数据点。
这种方法的最大优点是能够通过任意多个数据点来构造插值函数,因此适用于各种数据分布情况。
下面将列举10个使用Matlab编写拉格朗日插值法的案例,展示该方法在不同领域的应用。
1. 温度插值:假设我们有几个气象站的测温数据,但是某个地点的测温数据缺失。
可以使用拉格朗日插值法来估计该地点的温度值,从而填补数据缺失的空白。
2. 人口预测:根据已有的人口数据,可以使用拉格朗日插值法来预测未来某个时间点的人口数量。
这对城市规划和资源分配具有重要意义。
3. 股票价格预测:根据过去的股票价格数据,可以使用拉格朗日插值法来预测未来某个时间点的股票价格。
这有助于投资者做出合理的投资决策。
4. 图像处理:在图像处理中,可以使用拉格朗日插值法来放大或缩小图像。
通过对图像中的像素点进行插值,可以得到更高分辨率的图像。
5. 数字信号处理:在数字信号处理中,可以使用拉格朗日插值法来重构缺失的信号样本。
这有助于恢复被噪声污染或丢失的信号。
6. 机器学习:在机器学习中,拉格朗日插值法可以用于处理缺失数据。
通过对已有数据进行插值,可以构造更完整的数据集,提高模型的准确性。
7. 地理信息系统:在地理信息系统中,可以使用拉格朗日插值法来生成等高线图。
通过对不同高度的离散数据点进行插值,可以得到连续的等高线分布。
8. 数值积分:在数值积分中,可以使用拉格朗日插值法来近似计算定积分。
通过将被积函数进行插值,可以将积分转化为对插值多项式的求和。
9. 电力系统分析:在电力系统分析中,可以使用拉格朗日插值法来估计电力负荷曲线。
通过对已知的电力负荷数据进行插值,可以预测未来的负荷变化趋势。
10. 信号滤波:在信号滤波中,可以使用拉格朗日插值法来对信号进行平滑处理。
通过对信号进行插值,可以去除噪声和异常值,得到更干净的信号。
用MATLAB实现拉格朗日插值和分段线性插值之欧阳体创编
![用MATLAB实现拉格朗日插值和分段线性插值之欧阳体创编](https://img.taocdn.com/s3/m/ff0cdb73daef5ef7bb0d3cda.png)
用MATLAB实现拉格朗日插值和分段线性插值1、实验内容:用MATLAB实现拉格朗日插值和分段线性插值。
2、实验目的:1)学会使用MATLAB软件;2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;3、实验原理:利用拉格朗日插值方法进行多项式插值,并将图形显式出来。
4、实验步骤及运行结果(1)实现lagrange插值1)定义函数:f = 1/(x^2+1) 将其保存在f.m 文件中,具体程序如下:function y = f1(x)y = 1./(x.^2+1);2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间长度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j);endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)建立测试程序,保存在text.m文件中,实现画图:x=-5:0.001:5;y=(1+x.^2).^-1;p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figureplot(x,y,‘r',plot_x,f1)输入n=6,出现下面的图形:通过上图可以看到当n=6是没有很好的模拟。
于是重新运行text.M并选择n=11由此可见n=11时的图像是可以很好的实现模拟(2)分段线性插值:建立div_linear.m文件。
具体编程如下/*分段线性插值函数:div_linear.m 文件*/function y = div_linear(x0,y0,x,n)%for j = 1:length(x)for i = 1:n-1if (x >= x0(i)) && (x <= x0(i+1))y = (x - x0(i+1))/(x0(i) - x0(i+1))*y0(i) + ( x - x0(i))/(x0(i+1)- x0(i))*y0(i+1);elsecontinue;endend%end测试程序(text2.m):n = input(‘输入n =:’);x0 = linspace( -5,5,n);for x = -5:0.01:5y = div_linear(x0,f(x0),x,n);hold on;plot(x,y,'r');plot(x,f(x),'b');end2)运行测试程序,这是会出现:输入n=:2)输入n=6,并按Enter键,出现:4)关掉图形界面后,重新运行程序,输入n=11,并按enter键后出现:5)再次关掉图形界面,输入n=100,并按enter键,出现:此时。
matlab 拉格朗日插值法
![matlab 拉格朗日插值法](https://img.taocdn.com/s3/m/b5c7f6986bec0975f465e296.png)
matlab 拉格朗日插值法function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: fsyms t;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endf=0.0;for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;f=f+1;simplify(f);if(i==n)if(nargin == 3)f = subs (f,'t',x0); %计算插值点的函数值elsef=collect(f);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数 endendend在matlab中输入x=[18 31 66 68 70 72 70;]y=[23 33 52 51 43 40 46];f=Language(x,y)plot(x,y)x =18 31 66 68 70 72 70出现错误??? Function 'collect' is not defined for values of class 'double'.Error in ==> Language at 32f=collect(f);怎么解决,谢谢了,急!!!问题补充:还是不行,??? Error using ==> sym.mapleat offset 12, `)` unexpectedError in ==> sym.collect at 34r = maple('collect',s,x);Error in ==> Language at 32f=collect(f);最佳答案function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: fsyms t;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endf=0.0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%改为 f=sym(0);for(i=1:n)l=y(i); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%改为 l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;f=f+1;simplify(f);if(i==n)if(nargin == 3)f = subs (f,'t',x0); %计算插值点的函数值elsef=collect(f);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数 endendend-------------------------------------------------------下面的这个应该可以:function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: fsyms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机报告
题目:插值法
学号:201014924
姓名:靳会有
一、调用MATLAB内带函数插值
1、MATLAB内带插值函数列举如下:
2、取其中的一维数据内插函数()为例,程序如下:其调用格式为:
yi=interp1(x, y, xi)
yi=interp1(x, y, xi, method)
举例如下:
x=0:10:100
y=[40 44 46 52 65 76 80 82 88 92 110];
xi=0:1:100
yi=interp1(x,y,xi,'spline')
3、其他内带函数调用格式为:
Interpft函数:
y=interpft(x,n)
y=interpft(x,n,dim)
interp2函数:
ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)
ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:
VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)
VI=interp3(V,XI,YI,ZI) VI=interp3(…, method) Interpn函数:
VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …)
VI=interpn(V, ntimes)
VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method) Spline函数:
yi=spline(x,y,xi)
pp=spline(x,y)
meshgrid函数:
[X,Y]=meshgrid(x,y)
[X,Y]=meshgrid(x)
[X,Y,Z]=meshgrid(x,y,z)
Ndgrid函数:
[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)
[X1, X2, X3, …]=ndgrid(x)
Griddata函数:
ZI=griddata(x, y, z, XI, YI)
[XI, YI, ZI]=griddata(x, y, z, xi, yi)
[…]=griddata(… method)
二、自编函数插值
1、拉格朗日插值法:
建立M 文件:
function f = Language(x,y,x0)
syms t l;
if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return; %检错
end
h=sym(0);
for (i=1:n)
l=sym(y(i));
for(j=1:i-1)
l=l*(t-x(j))/(x(i)-x(j));
end;
for(j=i+1:n)
l=l*(t-x(j))/(x(i)-x(j));
end;
h=h+l;
end
simplify(h);
if(nargin == 3)
f = subs (h,'t',x0); %计算插值点的函数值
else
f=collect(h);
f = vpa(f,6); %将插值多项式的系数化成6位精度的小数
end
在MATLAB中输入:
x=[18 31 66 68 70 72 70;]
y=[23 33 52 51 43 40 46];
f=Language(x,y)
plot(x,y)
结果为:
f =Inf + (-t)*Inf - 54329.8*t^2 + 1503.75*t^3 - 22.2065*t^4 + 0.16789*t^5 -
0.000512106*t^6
图形如下:
MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:
function y=lagrange(x0,y0,x);
n=length(x0);
m=length(x);
for i=1:m
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end
画图程序如下:
x=[-5:1:5];
y=1./(1+x.^2);
x0=[-5:0.001:5];
y0=lagrange(x,y,x0);
y1=1./(1+x0.^2);
plot(x0,y0,'r')
hold on
plot(x0,y1,'g')
注:画出的图形为n =10的图形得到图形如下:
牛顿K 次插值多项式
一、实验目的:
1、掌握牛顿插值法的基本思路和步骤。
2、 培养编程与上机调试能力。
二、牛顿插值法基本思路与计算步骤:
给定插值点序列())(,i i x f x ,,,1,0,n i 。
构造牛顿插值多项式)(u N n 。
输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶均差,而各阶均差可用均差公式来计算。
为 的 一阶均差。
为
的 k 阶均差。
均差表:
n=10的图像
1. 输入n 值及())(,i i x f x ,
,,1,0,n i =;要计算的函数点x 。
2. 对给定的,x 由
[][][]
00010101201101
()()(),()(),,()
()
(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x -=+-+--++---
计算
()
n N x 的值。
3.输出()
n N x。
程序清单:
function[c, d]=newpoly(x, y) %牛顿插值的MA TLAB 实现
%这里 x 为n 个节点的横坐标所组成的向量,y 为纵坐标所组成的向量。
%c 为所求的牛顿插值多项式的系数构成的向量。
n=length(x);%取x 的个数。
d=zeros(n, n);%构造nXn 的空数组。
d(: , 1)=y'; for j=2 : n for k=j : n
d(k, j)=(d(k, j-1) - d(k-1, j-1)) / (x(k)-x(k-j+1)); end end
c =d(n, n);
for k=(n-1) : - 1 : 1
c =conv(c, poly(x(k)));% conv 求积,poly(x)将该多项式的系数赋给向量。
m=length(c);
c(m)=c(m)+d(k, k); end
五、测试数据与结果:
测试数据:(第三章习题第三题第2题)
01234Y0=-0.916291, y1=-0.693147, y2=-0.510826, y3=-0.357765, y4=-0.223144
建立一个主程序np.m
clc
clear
newpoly([0.4,0.5,0.6,0.7,0.8],[ -0.916291, -0.693147, -0.510826, -0.357765, -0.223144]) 计算结果如下:
ans =
-0.3096 2.6083 -5.4861 5.6921 -2.4744
由此看出所求的牛顿多项式为:
P(x)= -0.3096x4+2.6083x3-5.4861x2+5.6921x-2.4744
P(0.53)= -0.6347。