MATLAB实现拉格朗日插值精编版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机报告
题目:插值法
学号:201014924
姓名:靳会有
一、调用MATLAB内带函数插值
1、MATLAB内带插值函数列举如下:
2、取其中的一维数据内插函数()为例,程序如下:其调用格式为:
yi=interp1(x, y, xi)
yi=interp1(x, y, xi, method)
举例如下:
x=0:10:100
y=[40 44 46 52 65 76 80 82 88 92 110];
xi=0:1:100
yi=interp1(x,y,xi,'spline')
3、其他内带函数调用格式为:
Interpft函数:
y=interpft(x,n)
y=interpft(x,n,dim)
interp2函数:
ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)
ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:
VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)
VI=interp3(V,XI,YI,ZI) VI=interp3(…, method) Interpn函数:
VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …)
VI=interpn(V, ntimes)
VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method) Spline函数:
yi=spline(x,y,xi)
pp=spline(x,y)
meshgrid函数:
[X,Y]=meshgrid(x,y)
[X,Y]=meshgrid(x)
[X,Y,Z]=meshgrid(x,y,z)
Ndgrid函数:
[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)
[X1, X2, X3, …]=ndgrid(x)
Griddata函数:
ZI=griddata(x, y, z, XI, YI)
[XI, YI, ZI]=griddata(x, y, z, xi, yi)
[…]=griddata(… method)
二、自编函数插值
1、拉格朗日插值法:
建立M 文件:
function f = Language(x,y,x0)
syms t l;
if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return; %检错
end
h=sym(0);
for (i=1:n)
l=sym(y(i));
for(j=1:i-1)
l=l*(t-x(j))/(x(i)-x(j));
end;
for(j=i+1:n)
l=l*(t-x(j))/(x(i)-x(j));
end;
h=h+l;
end
simplify(h);
if(nargin == 3)
f = subs (h,'t',x0); %计算插值点的函数值
else
f=collect(h);
f = vpa(f,6); %将插值多项式的系数化成6位精度的小数
end
在MATLAB中输入:
x=[18 31 66 68 70 72 70;]
y=[23 33 52 51 43 40 46];
f=Language(x,y)
plot(x,y)
结果为:
f =Inf + (-t)*Inf - 54329.8*t^2 + 1503.75*t^3 - 22.2065*t^4 + 0.16789*t^5 -
0.000512106*t^6
图形如下:
MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:
function y=lagrange(x0,y0,x);
n=length(x0);
m=length(x);
for i=1:m
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end
画图程序如下:
x=[-5:1:5];
y=1./(1+x.^2);
x0=[-5:0.001:5];
y0=lagrange(x,y,x0);
y1=1./(1+x0.^2);
plot(x0,y0,'r')
hold on
plot(x0,y1,'g')
注:画出的图形为n =10的图形得到图形如下:
牛顿K 次插值多项式
一、实验目的:
1、掌握牛顿插值法的基本思路和步骤。
2、 培养编程与上机调试能力。
二、牛顿插值法基本思路与计算步骤:
给定插值点序列())(,i i x f x ,,,1,0,n i 。构造牛顿插值多项式)(u N n 。输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶均差,而各阶均差可用均差公式来计算。
为 的 一阶均差。
为
的 k 阶均差。
均差表:
n=10的图像