(仅供参考)红外焦平面探测器普及知识

合集下载

6.4.3 量子阱红外探测器

6.4.3 量子阱红外探测器

6.4 红外焦平面探测器红外焦平面探测器◆焦平面的概念与基本结构◆肖特基势垒探测器◆量子阱与量子点探测器◆倒装互连技术6.4 红外焦平面探测器6.4.3 量子阱与量子点探测器量子阱与量子点探测器量子阱探测器量子阱红外探测器❖量子阱红外探测器(QWIP)是随着分子束外延技术及量子阱超晶格材料的发展,利用GaAs/GaAlAs量子阱子带间红外光电效应制备的高灵敏红外探测器;它具有InSb、HgCdTe同样的性能,可实现大面积、均匀性高,且与目前的GaAs工艺兼容;❖通过改变量子阱宽度和势垒高度对带隙宽度进行人工剪裁,可方便地获得6~20μm光谱范围的响应,通过在GaAs势阱层内增加InGaAs材料,短波长可扩展到3μm。

通过改善量子阱能带参量可以实现光谱响应大范围调节,在2~20μm 的范围内均可工作;有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)量子阱红外探测器❖当器件正偏时,电压增大,光电信号减少;零偏时,光电信号较大;反偏时,电压增大,光电信号增大量很少,达到饱和。

故量子阱探测器具有明显的整流特性;❖能带与掺杂分布的不对称性,使得整个N型区有类似于P-N结的特性,故具有向长波延伸的条件。

❖从1987年贝尔实验室研制出第一个GaAlAs/GaAs量子阱红外探测器以来,该技术得到了迅速发展,成为三十多年来红外探测器领域研究的新热点。

❖下图为GaAs/AlGaAs量子阱红外探测器子带吸收的能带示意图,量子阱导带内基态电子(或空穴)在红外辐射作用下,向高能带跃迁,并在外电场作用下做定向运动,形成与入射光强成正比的光电流。

量子阱的基本结构❖Levine等人利用该原理试制出了最初的量子阱红外探测器。

该量子阱红外探测器是采用分子束外延法交替生长GaAs阱和AlGaAs势垒50个周期构成的超晶格结构。

量子阱红外探测器量子阱探测器的基本工作模型量子阱红外探测器工作的基本模型❖束缚态-束缚态跃迁:量子阱中的两个子能带均为束缚态,在红外辐射的作用下,电子从基态被激发到第一激发态(光谱响应窄),处于受激态的电子在外加较大偏压电场的作用下,穿过薄势垒顶部产生隧道贯穿,并以热电子形式输运,形成光电流;❖束缚态-束缚态跃迁:量子阱中的两个子能带均为束缚态,在红外辐射的作用下,电子从基态被激发到第一激发态(光谱响应窄),处于受激态的电子在外加较大偏压电场的作用下,穿过薄势垒顶部产生隧道贯穿,并以热电子形式输运,形成光电流;❖束缚态-自由态跃迁:当势阱宽度进一步减小时,子能级的束缚态会在势阱中上升,形成高于势垒的自由态(或连续态)(光谱响应较宽),在红外辐射作用下,使电子直接从势阱进入自由态,在较小外加偏压作用下形成光电流;❖多量子阱跃迁:由两种不同半导体材料薄层交替生长形成多层结构(A/B/A/B…),两种跃迁方式均存在的多个量子阱探测器模型。

红外测温仪技术总结,红外测温仪技术知识

红外测温仪技术总结,红外测温仪技术知识

红外热成像测温仪技术总结1 红外成像测温仪红外热像仪探测器分为:非制冷640×480探测器和非制冷320×240探测器,能够提供清晰的红外图像。

1.1主要技术指标及功能特点1.1.1技术指标表1 红外成像测温仪技术指标1.1.2功能特点a)温度自动校正;b)拍照,SD卡存储(32GB)。

c)激光定位;d)显示器显示中心点温度测量值、全屏最高温度测量值、温度报警阈值、电池电量、色柱;e)实时追踪最高温点,具备过热现象自动判别,超出设置告警温度值即可发出蜂鸣器报警;f)报警温度阈值可调节(以1℃为单位);g)低电量报警(小于5%);1.2系统组成及工作原理测温型红外热像仪由成像部分、显示部分、按键控制部分三部分组成。

系统原理框图如图2所示。

图2 测温型红外热像仪原理框图测温型红外热像仪工作原理:外界景物的红外辐射经光学系统聚焦到红外焦平面探测器的光敏面上,探测器里的红外光电转换阵列完成将光信号转换成电信号,经A/D采样,将图像信息转换成数字信息。

这些数字信息经过图像非均匀性校正、坏点替换、图像滤波等算法处理后,在FPGA的时序控制下将图像显示到显示器上。

拍照,图像数据直接从处理器写入SD卡。

1.3分系统设计1.3.1红外成像部分(1)红外探测器测温型红外热像仪选用进口凝视红外焦平面非制冷非晶硅探测器。

目前,国内红外焦平面探测器的发展与国外差距还很大,相比而言,国外技术更成熟。

本系统采用的探测器为国外著名红外探测器厂商最新产品,购货渠道畅通,能够批量进口,易于购买,不仅能够支持该项目的顺利研制,还能够实现批量装备,是高性能要求的军事装备应用首选探测器。

测温型红外热像仪选用探测器主要技术指标如下:类型:微测辐射热计;探测器材料:非晶硅;探测元(像素)数目:320×240、640×480;像元尺寸:17μm;响应波段:8~14μm;a)红外光学设计红外光学部分采用了透射式光学系统,满足轻量化要求的同时通过光学被动补偿方式,使系统能够在-40℃~+80℃温度范围内良好成像。

红外焦平面探测器

红外焦平面探测器

红外焦平面探测器介绍红外焦平面探测器(Infrared Focal Plane Array Detector,以下简称IRFPA)是一种用于探测红外辐射的器件,可广泛应用于航天、军事和民用领域。

它能够实时、高效地探测并转换红外辐射能量为电信号,从而实现红外图像的获取和处理。

工作原理IRFPA的工作原理基于红外辐射与物体表面的相互作用。

当红外辐射照射在IRFPA上时,它会导致IRFPA内的感光元件产生电子-空穴对。

感光元件通常由半导体材料制成,如硒化铟(InSb)、硫化镉汞(CdHgTe)等。

这些电子-空穴对随后在感光元件中分离并转换为电信号。

IRFPA的关键组件是焦平面阵列(Focal Plane Array,以下简称FPA),它由大量排列成矩阵的感光元件组成。

每个感光元件都对应于焦平面上的一个像素,因而整个FPA可以同时探测多个红外像素。

这些像素的信号经过放大和处理后,可以生成红外图像。

型号和特性IRFPA的型号和特性各不相同,取决于其应用领域和需求。

以下是一些常见的IRFPA型号和相应的特性:1.分辨率:IRFPA的分辨率指的是其能够探测到的最小单位像素数量。

一般而言,分辨率越高,探测到的红外图像越清晰。

常见的分辨率有320x240、640x480等。

2.帧率:IRFPA的帧率是指其每秒能够获取和处理的红外图像数量。

较高的帧率可以捕捉到快速移动的物体,对于一些动态场景非常重要。

3.波段范围:不同的IRFPA可以探测不同波长范围的红外辐射,如近红外(NIR),短波红外(SWIR),中波红外(MWIR)和长波红外(LWIR)。

选择适当波段范围的IRFPA取决于具体的应用需求。

4.灵敏度:IRFPA的灵敏度是指其能够探测到的最小红外辐射强度。

较高的灵敏度意味着IRFPA可以探测到较微弱的红外辐射,对于一些低信噪比场景非常重要。

应用领域IRFPA在多个领域具有广泛的应用。

以下是一些常见的应用领域:1.热成像:IRFPA可以通过探测物体表面的红外辐射,用于热成像和温度分布检测。

非制冷红外焦平面探测器及其典型应用

非制冷红外焦平面探测器及其典型应用

LWIR
• 长波红外在地面大 气环境的传输最好 • 长波红外与室温目 标的红外辐射光谱 的匹配最好 • 战场环境烟雾环境 Байду номын сангаас应性好 • 非制冷长波红外成 像成本较低
4
红外成像技术优势
隐蔽性好 全天时
被动式目标成像与识别,隐 蔽性好 能真正做到24小时全天时监控, 不受白天黑夜影响 不受电磁影响,能远距离精 确跟踪热目标 可穿透烟雾、雾霾、云雾成像, 在恶劣天气条件下的成像效果 几乎不受影响。
国内红外成像市场发展
与全球红外成像市场相比,国内红外成像市场整体还不太成熟; 国内装备市场底子偏薄、成长空间可观; 测温工具、单目手持夜视个人装备等领域还有很大的增长空间; 随着红外成像在安防、汽车夜间辅助驾驶、无人机、手机等领域的应用,我国 民用红外成像有望呈现爆发式增长。
9
红外成像探测器技术
制冷光子型
原理:光子型探测 优势:成像距离远,成像清晰,响应时间快,可高帧频工作(400Hz); 劣势:系统功耗大,体积大,成本高,运行时间受制冷机寿命限制; 应用:红外雷达,光电吊舱,导引头等远距离观测与跟踪高端军用
非制冷热式
原理:热式探测原理 优势:SWaP-C 劣势:成像距离较近,不适合点目标,成像图形噪声高 应用:单兵武器、低成本导引头等军用及电力测温、安防,汽车,工业检 测等民用市场
非制冷红外成像技术流派
20世纪90 年代末,非制冷红外焦平面探测器的技术流派基本定型,下图是现今市场上仍保 持占有率的两类micro-bolometer技术(VOx和a-Si )及其承袭关系。
VOx
Honeywell 1990~1994 LORAL 1996 LOCKHEED MARTIN 2000 SCD NEC BAe System ROCKWELL 1996 BOEING 2001 DRS RAYTHEON Vision System 1992 1997 INDIGO 2004 2004 FLIR L-3 Communications ULIS AMBER HUGHES 1997

红外探测的原理和应用

红外探测的原理和应用

红外探测的原理和应用一、红外探测的原理红外探测是一种利用红外光谱区域的电磁辐射的技术,其原理基于物质在不同温度下会产生不同的红外辐射。

•红外光谱区域:红外光谱区域一般包括近红外光谱区(750-2500纳米)和远红外光谱区(2500纳米-1毫米)。

近红外光谱主要用于气体分析和食品质量检测等领域,而远红外光谱则主要用于红外加热、红外成像和红外探测等方面。

•红外辐射的特点:红外辐射有很强的穿透性,可以穿透一些物体,如云雾、玻璃、塑料等;红外辐射还具有热能性质,可以感知物体的温度。

•红外探测技术:主要有热电偶、焦平面阵列和半导体红外探测器等。

二、红外探测的应用红外探测技术在各个领域得到了广泛的应用,以下是一些常见的应用领域:1.军事安防:红外探测技术在军事安防领域起到了重要的作用。

利用红外摄像机,可以实现夜视、目标追踪和隐蔽目标的侦测等功能。

同时,红外辐射具有热能性质,能够探测到活动的敌方目标,提高军事安防的效果。

2.火灾报警:红外探测技术在火灾报警系统中发挥着重要的作用。

通过红外探测器检测房间内的温度变化和烟雾等火灾信号,及时发出警报并启动灭火措施,保障人员的生命和财产安全。

3.工业生产:红外探测技术在工业生产中被广泛应用。

例如,红外温度传感器可以测量物体的表面温度,用于监测工业生产中的温度变化和异常情况。

红外成像技术还被应用于无损检测、质量控制和设备检测中。

4.医疗诊断:红外探测技术在医疗诊断中有着重要的应用价值。

红外热像仪可以通过检测人体的红外辐射,获取人体表面的温度分布情况,辅助医生进行诊断和治疗。

此外,红外成像技术还可以用于无创测量体温和监测疾病的发展情况。

5.环境监测:红外探测技术在环境监测中也有广泛的应用。

例如,利用红外气体分析仪可以检测大气中的各种气体浓度和组成,用于环境污染监测和大气质量评估。

此外,红外辐射也可以用于监测地理环境的变化和自然资源的开发利用。

三、红外探测技术的发展趋势随着科技的进步和应用需求的增加,红外探测技术也在不断发展,具有以下几个趋势:1.多功能化:红外探测技术在各个领域的应用需求不断增加,对探测器的功能要求也越来越多样化。

功能材料器件HgCdTe红外焦平面探测器

功能材料器件HgCdTe红外焦平面探测器

碲镉汞红外焦平面探测器发展现状
第三代红外光电探测器的发展方向包括大面阵化、 双色甚至多色化、提高工作温度、降低功耗和成本 等。这些工作已经在许多国家得到开展,尤其是美 国、英国、法国和德国的顶尖公司已经取得了长足 的进步并实现了初步应用。
HgCdTe红外探测器前沿技术进展
HgCdTe
HOT
大 规 模 探 测 器 阵 列 技 术
红外辐射。如果检测它的存在,测 定它的强弱并将变为其他形式的能 量(多数情况是转变为电能进而转 化为图片或视频图像)以便应用, 就是红外探测器的主要任务。
红外探测器 Hg Cd Te
如果你以为我们讲的主要是 红外探测器本身你就错了!
201211605108
王太升
关于MCT异质结
Pn结,禁带宽度,晶格常数
(211)B面
优点
贵!
衬底
关于均匀性
外延层的均匀性对于长波红外和甚长波 红外MCT焦平面器件质量有着重要影响
均匀性
材料组分
外延层厚度
光学吸收 的均匀性
Hg1-xCdxTe
最大 光谱灵敏度
呈像
关于电学性质
迁移率 红外探测应用要求MCT材料的迁移率尽量高 噪声 信号上附加的无规则起伏。源于导体内自由电子等无规则热运动造成 表面钝化 可以控制隧道漏电和结漏电,防止合金组分随时间变化
201211605119
杨 茜
Thanks for listening
源于导体内自由电子等无规则热运动造成表面钝化可以控制隧道漏电和结漏电防止合金组分随时间变化大部分用于mct光导探测器的钝化工艺都会形成具有较高电导率的表面重积累层使得器件本征电阷减小器件性能降低关于电学性质可是hgcdte国内外目前的发展现状及其前景发展现状背景采用液相外延liquidphalseepitaxylpe法生长hgcdte的技术已经趋于成熟hgcdte可以实现产业化生产

16红外焦平面器件

16红外焦平面器件

四、红外焦平面器件红外焦平面器件(IRFPA)就是将CCD、CMOS技术引入红外波段所形成的新一代红外探测器,是现代红外成像系统的关键器件。

IRFPA建立在材料、探测器阵列、微电子、互连、封装等多项技术基础之上。

1. IRFPA的工作条件IRFPA通常工作于1~3μm、3~5μm和8~12μm的红外波段并多数探测300K背景中的目标。

典型的红外成像条件是在300K背景中探测温度变化为0.1K的目标。

用普朗克定律计算的各个红外波段300K背景的光谱辐射光子密度:随波长的变长,背景辐射的光子密度增加。

通常光子密度高于1013/cm2s的背景称为高背景条件,因此3~5μm 或8~12μm波段的室温背景为高背景条件。

上表同时列出了各个波段的辐射对比度,其定义为:背景温度变化1K所引起光子通量变化与整个光子通量的比值。

它随波长增长而减小。

IRFPA工作条件:高背景、低对比度。

2. IRFPA的分类按照结构可分为单片式和混合式按照光学系统扫描方式可分为扫描型和凝视型按照读出电路可分为CCD、MOSFET和CID等类型按照制冷方式可分为制冷型和非制冷型按照响应波段与材料可分为1~3μm波段(代表材料HgCdTe—碲镉汞)3~5μm波段(代表材料HgCdTe、InSb—锑化铟和PtSi—硅化铂)8~12μm 波段(代表材料HgCdTe)。

3. IRFPA的结构IRFPA由红外光敏部分和信号处理部分组成。

红外光敏部分——材料的红外光谱响应信号处理部分——有利于电荷的存储与转移目前没有能同时很好地满足二者要求的材料——IRFPA结构多样性(1)单片式IRFPA单片式IRFPA主要有三种类型:非本征硅单片式IRFPA主要缺点是:要求制冷,工作于8~14μm的器件要制冷到15~30K,工作于3~5μm波段的器件要制冷到40~65K;量子效率低,通常为5%~30%;由于掺杂浓度的不均匀,使器件的响应度均匀性较差。

本征单片式IRFPA将红外光敏部分与转移部分同作在一块窄禁带宽度的本征半导体材料上。

红外辐射与红外探测器演示文档

红外辐射与红外探测器演示文档
某些半导体表面受光照,产生电子空穴对,它 们在向体内扩散的过程中受外磁场的作用各自 偏向一边形成开路电压,称为光磁电效应
8.3* 红外探测器的性能参数及使用中应注意的事项
8.3.1 红外探测器的性能参数
电压响应、光谱响应、等效噪声功率、比探测率和时间常数等
8.3.2 红外探测器使用中应注意的问题
,T)dT4
8.4.2 红外测温的特点
①反应速度快 ②灵敏度高 ③属于非接解测温 ④准确度高。可小于0.1℃ ⑤可测摄氏负几十度~几千度的范围
8.4.3 热辐射传感器---应用实例 1. 热辐射高温计
具有响应快 热惰性小等优点
主要用于腐蚀性物体及运动物体的高温测量。测量范围在 400℃~3200℃.由于感温部分不与被测介质直接接触,因此误差 较大
①选用探测器时要注意它的工作温度 ②应注意调整好探测器的偏流、偏压,使 其工作在最佳工作状态
③辐射源调制频率应和探 测器的响应频率相匹配 ④探测器存放时要注意防 潮、防振和防腐蚀 ⑤了解探测器的性能指标、 应用范围、和使用条件
8.4 红外测温
8.4.1 红外测温原理
斯忒藩-玻耳
兹曼定律
M eb 0M e(b
中间导体定律:
涂黑金箔
P
RL mV
N
温差电堆:
mV
实体型:多用于测温 薄膜型:多用于标定各 种光源、测量各种辐射 量特 •时间常数较大,被测 辐射变化频率一般在 10HZ以下
3. 热释电型红外探测器
热释电效应:
(a) 恒温下
(b) 温度变化
(C) 温度变化时 的等效表现
热释 电器
RL
红外辐射与红外探测器
(优选)红外辐射与红外探测 器
8.1.2 红外辐射源

制冷型红外焦平面探测器原理

制冷型红外焦平面探测器原理

制冷型红外焦平面探测器原理制冷型红外焦平面探测器是一种用于红外光谱测量和红外成像的关键元件。

它可以将红外辐射转化为电信号,通过信号处理和放大,最终得到红外图像或光谱信息。

本文将从原理角度来介绍制冷型红外焦平面探测器的工作原理。

制冷型红外焦平面探测器的工作原理基于光电效应和热电效应。

当红外辐射照射到焦平面探测器上时,光电效应使得光子被吸收,激发探测器中的载流子。

然后,载流子在电场的作用下被分离,形成电荷。

这些电荷将被电极收集,产生一个电信号。

然而,由于热噪声的存在,红外探测器本身会产生一定的噪声信号,从而降低探测器的灵敏度。

为了提高探测器的性能,制冷型红外焦平面探测器采用了制冷技术,通常是通过热电制冷或制冷机制冷来降低探测器的工作温度。

降低温度可以减少热噪声,提高探测器的信号噪声比和灵敏度。

制冷型红外焦平面探测器通常由多个像素组成,每个像素都是一个微小的探测单元。

每个像素都包含一个红外探测器和相关的电子学元件。

当红外辐射通过透镜聚焦到焦平面探测器上时,每个像素都会产生一个电信号,这些电信号可以表示红外辐射的强度和分布情况。

为了进一步提高探测器的性能,制冷型红外焦平面探测器通常还包括一些辅助功能。

例如,探测器通常配备有滤波器,用于选择特定波长范围内的红外辐射。

滤波器可以通过光学设计来选择所需的波长范围,并将其他波长的辐射阻挡掉,从而提高探测器的选择性能。

探测器还包括信号处理电路和放大电路。

这些电路可以对探测器产生的微弱电信号进行放大和处理,以提高信号质量和稳定性。

信号处理电路可以对信号进行滤波、放大、调制等操作,以适应不同的应用需求。

制冷型红外焦平面探测器在很多领域都有广泛的应用。

例如,在军事领域,它可以用于夜视仪、导弹导航系统、无人机等设备中,提供夜间或低能见度环境下的图像信息。

在工业领域,它可以用于红外热成像仪,用于检测设备的故障和异常情况。

在医疗领域,它可以用于红外体温计、红外医学成像等应用,用于监测人体温度和诊断疾病。

焦平面探测器典型知识

焦平面探测器典型知识

焦平面探测器典型知识
红外焦平面阵列(IRFPA)技术已经成为当今红外成像技术发展的主要方向。

红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。

红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。

焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。

但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。

为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。

从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。

因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。

目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。

主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。

在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。

但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。

所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。

中远红外焦平面探测器

中远红外焦平面探测器
+u
光电导: GeLN2 (nnpp)
光电流:iuGeL N 2u(nnpp)
3.1.3 内光电效应: 光生伏特效应
原理:入射光子产生电子空穴对,内部电势垒的内建电 场将把电子-空穴对分开,从而在势垒两侧形成电荷堆 积,形成光生伏特效应。
结区
i
p

n
+
-
+
Ei
无光照 光照下
光生伏特
u
V
0
i0 短路光电流
气体繁流倍增

打拿极倍增
通道电子倍增
光电管
充气光电管 光电倍增管 像倍增管
(1)光电导效应
光导管或光敏电阻
内 (2)光生伏特效应
光 电 效
PN结和PIN结(零偏) PN结和PIN结(反偏)
应 雪崩
肖特基势垒
光电池 光电二极管 雪崩光电二极管 肖特基势垒光电二极管
p-n-p结和n-p-n结 异质结
光电三极管
通过铟丘互连的背照式混成HgCdTe焦平面列阵的结构图
The evolution of three generations of HgCdTe IRFPA
HgCdTe Photoconduction(PC)
长波HgCdTe光导型探 测器的特性参数: • 50-100Ω/cm2 • 105 V/W at 1 mA bias for a 50×50μm device. • D* about 80% of background limit. • Photon noise level of a few nV/Hz.
3.2.2 光谱响应度和响应时间
❖ 光谱响应度是光电探测器光电转换特性的量
度,定义为输出信号的光电流或电压与入射的辐 射光功率。

红外焦平面阵列

红外焦平面阵列

红外焦平面阵列红外测量技术2009-12-08 21:07:23 阅读110 评论0 字号:大中小订阅1、红外焦平面阵列原理焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。

2、红外焦平面阵列分类(1)根据制冷方式划分根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。

制冷型红外焦平面目前主要采用杜瓦瓶/快速起动节流致冷器集成体和杜瓦瓶/斯特林循环致冷器集成体[5]。

由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。

当前制冷型的探测器其探测率达到~1011cmHz1/2W-1,而非制冷型的探测器为~109cmHz1/2W-1,相差为两个数量级。

不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。

(2)依照光辐射与物质相互作用原理划分依此条件,红外探测器可分为光子探测器与热探测器两大类。

光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。

热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。

这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下[6]。

(3)按照结构形式划分红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。

因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种[7]。

红外探测器使用说明

红外探测器使用说明

红外探测器使用说明一、红外探测器的基本原理1.热敏探测器基本原理:热敏探测器是通过物体发出的红外线辐射使其内部热敏材料发生温度变化,从而改变物质电阻和电容等性能,并通过电路测量这些性能的变化来感知红外线信号。

2.光电二极管基本原理:光电二极管是通过物体反射的红外线信号对光电二极管光敏面上形成光照,从而产生电流或电压信号,通过测量电流或电压的大小来感应红外线信号。

二、红外探测器的安装与调试1.安装前准备:在安装前,首先需要确保所安装的位置不会有任何遮挡,以避免干扰和误报。

同时,还需根据红外探测器的检测范围和感应角度来确定安装位置。

2.接线调试:根据红外探测器的信号输出接口,将其与接收器或控制器等设备进行连接。

接线时需先断开电源,确保接线正确无误,然后再通电进行调试。

3.调试方法:接通电源后,根据红外探测器的使用说明书,设置好探测器的参数,如灵敏度、感应角度和监测范围等。

然后,将红外探测器放置于所需监测的区域,并观察是否正常感应并输出信号。

三、红外探测器的使用注意事项1.避免遮挡:在使用红外探测器时,需确保其周围没有物体遮挡,以免影响其正常感应和工作。

2.避免大范围温度变化:热敏探测器对周围的温度变化比较敏感,大范围的温度变化会导致误报。

因此,在使用过程中需避免大范围温度变化的环境,或者根据实际需求调整热敏探测器的灵敏度。

3.避免光污染:光电二极管对光线比较敏感,特别是背景光和强光的干扰会对其正常工作产生影响。

为了避免光污染,需避免使用红外探测器的区域有较强的光源和光线直射。

4.定期检查:定期检查红外探测器的工作状况,包括其是否有损坏、信号输出是否正常等。

如果发现异常情况,需要及时进行维修或更换。

四、红外探测器的应用领域1.安防领域:通过红外探测器可以检测到人体的红外辐射,用于安防报警系统,以实现对入侵者的监测和报警。

2.自动控制系统:红外探测器可以用于自动门、自动照明等设备中,通过感知人体的红外信号,实现设备的自动开启和关闭。

红外探测器知识

红外探测器知识

第三章 红外探测器3.1 红外探测器特性参数3.1.1 红外探测器分类红外探测器是一种辐射能转换器,主要用于将接收到的红外辐射能转换为便于测量或观察的电能、热能等其他形式的能量;根据能量转换方式,红外探测器可分为热探测器和光子探测器两大类;热探测器的工作机理是基于入射辐射的热效应引起探测器某一电特性的变化,而光子探测器是基于入射光子流与探测材料相互作用产生的光电效应,具体表现为探测器响应元自由载流子即电子和/或空穴数目的变化;由于这种变化是由入射光子数的变化引起的,光子探测器的响应正比于吸收的光子数;而热探测器的响应正比与所吸收的能量;热探测器的换能过程包括:热阻效应、热伏效应、热气动效应和热释电效应;光子探测器的换能过程包括:光生伏特效应、光电导效应、光电磁效应和光发射效应;各种光子探测器、热探测器的作用机理虽然各有不同,但其基本特性都可用等效噪声功率或探测率、响应率、光谱响应、响应时间等参数来描述;3.1.2 等效噪声功率和探测率我们将探测器输出信号等于探测器噪声时,入射到探测器上的辐射功率定义为等效噪声功率,单位为瓦;由于信噪比为1时功率测量不太方便,可以在高信号电平下测量,再根据下式计算:n s n s d V V P V V HA NEP //==其中 H :辐照度,单位2/cm W ;d A : 探测器光敏面面积,单位2cm ;s V : 信号电压基波的均方根值,单位V ;n V : 噪声电压均方根值,单位V ;由于探测器响应与辐射的调制频率有关,测量等效噪声功率时,黑体辐射源发出的辐射经调制盘调制后,照射到探测器光敏面上,辐射强度按固定频率作正弦变化;探测器输出信号滤除高次谐波后,用均方根电压表测量基波的有效值;必须指出:等效噪声功率可以反映探测器的探测能力,但不等于系统无法探测到强度弱于等效噪声功率的辐射信号;如果采取相关接收技术,即使入射功率小于等效噪声功率,由于信号是相关的,噪声是不相关的,也是可以将信号检测出来的,但是这种检测是以增加检测时间为代价的;另外,强度等于等效噪声功率的辐射信号,系统并不能可靠地探测到;在设计系统时通常要求最小可探测功率数倍于等效噪声功率,以保证探测系统有较高的探测概率和较低的虚警率;辐射测量系统由于有较高的测量精度要求,对弱信号也要求有一定的信噪比;等效噪声功率被用来度量探测器的探测能力,但是等效噪声功率最小的探测器的探测能力却是最好的,很多人不习惯这样的表示方法;Jones 建议用等效噪声功率的倒数表示探测能力,称为探测率,这样较好的探测器有较高的探测率;因此,探测率可表达为:NEP D 1探测器的探测率与测量条件有关,包括:-入射辐射波长;-探测器温度;-调制频率;-探测器偏流;-探测器面积;-测量探测器噪声电路的带宽;-光学视场外热背景;为了对不同测试条件下测得的探测率进行比较,应尽量将测试条件标准化;采取的做法是:-辐射波长、探测器温度由于探测率和波长之间,探测率和探测器温度之间,在理论上无明显关系,波长和制冷温度只能在测量条件中加以说明;-辐射调制频率解决探测率随调制频率变化的最简单的方法是将频率选得足够低,以避开探测器时间常数带来的限制; 或注明调制频率;-探测器偏流: 一般调到使探测率最大;-探测器面积和测量电路带宽广泛的理论和实验研究表明,有理由假定探测器输出的信噪比与探测器面积的平方根成正比,即认为探测率与探测器面积的平方根成反比;探测器输出噪声包含各种频率成分,显然,噪声电压是测量电路带宽的函数;由于探测器总噪声功率谱在中频段较为平坦,可认为测得的噪声电压只与测量电路带宽的平方根成正比,即探测率与测量电路带宽的平方根成反比;一次,可定义:NEP f A f A D D d d 2/12/1*)()(∆=∆= 单位:12/1-⋅⋅W Hz cm Jones*D 的物理意义可理解为1瓦辐射功率入射到光敏面积1厘米2的探测器上,并用带宽为1赫电路测量所得的信噪比;*D 是归一化的探测率,称为比探测率,读作D 星;用*D 来比较两个探测器的优劣,可避免探测器面积或测量带宽不同对测量结果的影响;比探测率和前面介绍的探测率定义上是有区别的,但由于探测率未对面积、带宽归一化,确实没有多大实用意义,一般文献报告中都不把*D 称之为“比探测率”,而是称为“探测率”,这只是一种约定俗成的做法;3.1.3 单色探测率和D 双星1)黑体探测率和单色探测率测量*D 时如采用黑体辐射源,测得的*D 称为黑体*D ,有时写作bb D *;为了进一步明确测量条件,黑体*D 后面括号中要注明黑体温度和调制频率;如)800,500(*K D bb 表示是对500K 黑体,调制频率为800Hz 所测得的*D 值;测量时如用单色辐射源,测得的探测率为单色探测率,写作λ*D ;2)D 双星背景辐射对红外探测器至关重要,为了减少光学视场外热背景如腔体无规则辐射在探测器上产生的噪声,往往在探测器外加一个冷屏;从探测器中心向冷屏孔的张角叫探测器视角;设置冷屏能有效地减少了背景光子通量,增加探测率;但是这并不意味探测器本身性能的提高,而是探测器视角的减小;而视角减小将影响光学系统的聚光能力;可定义D 双星,对探测器视角进行归一化处理;*2/1**D D ⎪⎭⎫ ⎝⎛Ω=π 单位:12/1-⋅⋅W Hz cm式中:Ω为探测器通过冷屏套所观察到的立体角,π是半球立体角;未加冷屏时,探测器在整个半球接收光子,π=Ω,**D 等于*D ;D 双星实际上是将测得的探测率折算为半球背景下的探测率,这样可真实反映探测器本身的探测性能;D 双星对红外探测器研制者有指导意义,在工程中不常使用;制造商提供的红外探测器的探测率通常是指含冷屏的探测器组件的探测率;使用者只须注意探测器的视角是否会限制光学系统的孔径角,以及冷屏的屏蔽效率;3.1.4 背景噪声对探测率的限制光子探测器和热探测器比探测率的最终极限将受背景噪声的限制;对于光电导型探测器,*D 的理论极大值为:2/1182/1*1052.22⎪⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=b b Q Q hc D ηληλλ式中:h 为普朗克常数,c 为光速,λ为波长微米,η为量子效率,b Q 为入射到探测器上的半球背景光子辐射发射量;对于光伏探测器,由于没有复合噪声,上式应乘2,即2/118*1056.3⎪⎪⎭⎫ ⎝⎛⨯=b Q D ηλλ光子探测器已有不少接近背景限对于热探测器,背景辐射的起伏将引起探测器温度的起伏,并且探测器本身辐射也将引起统计性温度起伏;如果信号辐射引起的温度变化低于这两种温度起伏,就探测不到信号辐射;温度起伏也是一种噪声,受温度噪声限制的热探测器的等效噪声功率为:式中:G 为响应元与周围环境的热导;在300K 时,如响应元面积1mm 2,带宽1Hz, *D 极限值为:目前,热敏电阻探测器由于受1/f 噪声和电阻热噪声的限制,其探测率与极限值尚差两个数量级;但是对热释电探测器来说,由于它不是电阻性器件而是可看作电容性器件,不受热噪声限制,电流噪声也较小,因此它的探测率与极限值相差已不到一个数量级;3.1.5 响应率响应率等于单位辐射功率入射到探测器上产生的信号输出;响应率一般以电压形式表示;对以电流方式输出的探测器,如输出短路电流的光伏探测器,也可用电流形式表示;电压响应率 PV HA V R s d s V == 单位为W V /; 电流响应率 P I HA I R s d s i == 单位为W A /;因为测量响应率时是不管噪声大小的,可不注明只与噪声有关的电路带宽;响应率与探测器的响应速度有关,光子探测器的频率响应特性如同一个低通滤波器;在低频段响应较为平坦,超过转角频率后响应明显下降;一般均在低频下测量响应率,以消除调制频率的影响;表面上看,只要探测率足够高,探测器输出有足够的信噪比,信号较弱是可以用电路放大的方法弥补的;实际上响应率过低,就必须提高前置放大器的放大倍率,高倍率的前置放大器会引入更多噪声,如选用探测率较低但响应率高的探测器,系统的探测性能可能更好一些;因此,对系统设计者来说,探测器的响应率和探测率是同样值得关注的;3.1.6光谱响应探测器的光谱响应是指探测器受不同波长的光照射时,其R 、*D 随波长变化的情况;设照射的是波长为λ的单色光,测得的R 、*D 可用λR 、*λD 表示,称为单色响应率和单色比探测率,或称为光谱响应率和光谱比探测率;如果在某一波长p λ处,响应率、探测器达到峰值,则p λ称为峰值波长,而λR 、*λD 分别称为峰值响应率和峰值比探测率;此时的*D 可记做),(*f D p λ,注明的是峰值波长和调制频率,而黑体比探测率),(*f T D bb 注明黑体温度和调制频率;如以横坐标表示波长,纵坐标为光谱响应率,则光谱响应曲线表示每单位波长间隔内恒定辐射功率产生的信号电压;有时纵坐标也可表示为对峰值响应归一化的相对响应;光子探测器和热探测器的光谱响应曲线是不同的,理想情况如图所示;热探测器的响应只与吸收的辐射功率有关,而与波长无关,因为其温度的变化只取决于吸收的能量;对于光子探测器,仅当入射光子的能量大于某一极小值c h ν时才能产生光电效应;也就是说,探测器仅对波长小于c λ,或者频率大于c ν的光子才有响应; 光子探测器的光谱响应正比于入射的光子数,由于光子能量与波长λ成正比,在单位波长间隔内辐射功率不变的前提下,入射光子数同样与波长成正比;因此,光子探测器的响应响应随波长λ线性上升,然后到某一截止波长c λ突然下降为零;理想情况下,光子探测器的光谱比探测率*λD 可写成:当 c λλ≤ **c cD D λλλλ= 当 c λλ> 0*=λD 光谱响应率波长λc理想情况下,截止波长c λ即峰值波长p λ;实际曲线稍有偏离;例如光子探测器实际光谱响应在峰值波长附近迅速下降,一般将响应下降到峰值响应的50%处的波长称为截止波长c λ;系统的工作波段通常是根据目标辐射光谱特性和应用需求而设定的,则选用的探测器就应该在此波段中有较高的光谱响应;因为光子探测器响应截止的斜率很陡,不少探测器的窗口并不镀成带通滤光片,而是镀成前截止滤光片,可起到抑制背景的效果;3.1.7 响应时间当一定功率的辐射突然照射到探测器上时,探测器输出信号要经过一定时间才能上升到与这一辐射功率相对应的稳定值;当辐射突然去除时,输出信号也要经过一定时间才能下降到辐照之前的值;这种上升或下降所需的时间叫探测器的响应时间,或时间常数; 响应时间直接反映探测器的频率响应特性,其低通频响特性可表示为:2/12220)41(τπf R R f +=式中f R 为调制频率为f 时的响应率,0R 为调制频率为零时的响应率,τ是探测器响应时间;当f 远小于πτ2/1,响应率就与频率无关,f 远大于πτ2/1时,响应率和频率成反比; 系统设计时,应保证探测器在系统带宽范围内响应率与频率无关;由于光子探测器的时间常数可达数十纳秒至微秒,所以在一个很宽的频率范围内,频率响应是平坦的;热探测器的时间常数较大,如热敏电阻为数毫秒至数十毫秒,因此频率响应平坦的范围仅几十周而已;在设计光机扫描型系统时,探测器的时间常数应当选择得比探测器在瞬时视场上的驻留时间为短,否则探测器的响应速度将跟不上扫描速度;当对突发的辐射信号进行检测时,则应根据入射辐射的时频特性,选择响应速度较快的探测器;如激光功率计在检测连续波激光时,探头的探测器可以用响应较慢的热电堆,检测脉冲激光时则必须用响应速度较快的热释电探测器,如果激光脉宽很窄,需要用光子探测器检测;3.2 光子探测器3.2.1 光电效应概述光子探测器是最有用的红外探测器,它的工作机理是光子与探测器材料直接作用,产生内光电效应;因此,光子探测器的探测率一般比热探测器要大1至2个数量级,其响应时间为微秒或纳秒级;光子探测器的光谱响应特性与热探测器完全不同,通常需要制冷至较低温度才能正常工作;按照普朗克的量子理论,辐射能量是以微粒形式存在的,这种微粒称为光子或量子;一个光子的能量是当入射光子与金属中的电子碰撞时,则将能量传递给电子;如果电子获得光子全部能量,则光子不复存在;如果电子获得的能量大到足以使其穿过表面的势垒,就能从表面逸出;这一效应称为外光电效应或光电子发射效应;电子逸出所需做的功与材料特性有关;由于光子能量随频率而变,故存在一个长波限,或称为截止波长;超过截止波长的光子的能量均低于逸出功,不足以产生自表面逸出的自由电子;因此,光发射探测器的响应只能延伸到近红外的一个小范围;波长大于微米的光子的能量虽然不足产生电子发射,但存在内光电效应;光子传递的能量使电子从非导电状态变为导电状态,从而产生了载流子;载流子的类型取决于材料的特性,这些材料几乎都是半导体;如果材料是本征的,即纯净的半导体,一个光子产生一个电子空穴对,它们分别是正、负电荷的携带者;如果材料是非本征,即掺杂的半导体,光子则产生单一符号的载流子,或为正,或为负,不会同时产生两种载流子;如果在探测器上加电场,则流过探测器的电流将随载流子数量的变化而变化,称为光电导效应;如果光子在p-n结附近产生空穴-电子对,结间的电场就使两类载流子分开,而产生光电压,称为光生伏打效应;光生伏打型的探测器不需要外加偏压,因为p-n已提供了偏压;当电子-空穴对在半导体表面附近形成时,它们力图向深处扩展,以重新建立电中性;如果在这一过程中加上强磁场,就使两种载流子分开而产生光电压,称为光电磁效应; 3.2.2 固体能带理论固体能带理论是表示固体中电子能量分布方式的一种简便方法,扼要介绍一下这一理论,可有助于理解探测器内部产生的光电效应;在简单的波尔原子模型中,绕原子核旋转的电子被限制在分立的能级上,它们各有各的轨道直径;除非原子被激发,电子都占据着较低的能级;固体的原子靠得很近,由于量子力学的结果,单个原子的分立能级扩展成近于连续的能带,这些能带被电子的禁带所隔离;最低的能带是完全充满的,称为阶带;下一个较高的能带,不管是占据或未占据有电子,都称为导带;只有导带中的电子对材料的电导率才有贡献;导电体、绝缘体和半导体有不同的能带结构;导电体的明显标志是导带没有被电子全部占据;绝缘体的电子刚好占据了阶带中的全部能级,导带是空的,禁带很宽,阶电子不可能获得足够的能量升到导带中去;从电特性看,半导体的导电率介于绝缘体和金属之间;纯净的本征半导体的禁带相对窄一些,仅有几分之一电子伏特,而绝缘体的禁带是3电子伏特或更大些;因此,即使在室温下,半导体的一些阶电子也能获得足够的能量,跃过禁带而到达导带;这些电子原来占据的位置成了正电荷,称为空穴;存在电场或磁场时,空穴像电子一样流过材料,然而两者流动的方向相反;在纯净半导体中,一个电子被激发到导带,则产生电子空穴对载流子,两者贡献各自的电导率;本征半导体材料有锗单晶、硅单晶以及按化学计算比例构成的化合物;典型的光伏型本征探测器有 Si, Ge, GaAs, InSb, InGaAs, 和HgCdTe MCT 等,光伏型本征探测器有PbS 、PbSe 和MCT;截止波长再长的探测器,要求材料的禁带宽度比本征半导体还要小;减小禁带宽度的一般方法,是在纯净半导体中加入少量的其它杂质,称为掺杂,所得材料称为非本征半导体;在非本征材料中,只有一种载流子提供导电率,n 型材料的载流子是电子,而p 型的是空穴;许多红外探测器都用锗、硅作为非本征材料的主体材料,可表示为SiX 、GeX;锗、硅原子有4个阶电子,它们和4个周围的子构成共价键;如果把3个价电子的杂质原子掺到锗中,则产生一个过剩的空穴;由于杂质能级恰好靠近主体材料价带的顶部,所以,电子从价带跃迁到杂质空穴,只需要很小的能量;留在价带中的空穴成为载流子,材料则是p 型的;与此类似,如果掺入有5个或更多价电子的杂质,掺杂后成为n 型材料;n 型、p 型材料原则上都可用来制作红外探测器,通常用的还是p 型材料,掺入的杂质有錋、砷、镓、锌等;3.2.3 光导探测器光电导探测器的机理是探测器吸收了入射的红外光子,产生自由载流子,进而改变了敏感元件的电导率;可以对光导探测器加一个恒定的偏流,检测电导率的变化;敏感元件的电阻可表示为: d d A l R σ=式中 l 为长度,d A 为敏感元面积,σ为电导率;光导探测器响应率正比于光照后电导率的相对变化,而后者又可表示为:式中:η为量子效率,τ为自由载流子寿命;μ为迁移率,e是电子电荷量,d为探测器厚度;从式中可看出,高响应率要求探测器有较高的量子效率,自由载流子寿命长,迁移率高,厚度应最小;自由载流子寿命取决于复合过程,在一定程度上可由材料配方和杂质含量来控制;自由载流子寿命是一个极其重要的参数,除影响响应率外,还影响探测器的时间常数;高响应率还要求探测器在无光子辐照时有较低的电导率,即将非光子效应产生的载流子数降低到最小;对长波响应的探测器材料,必须有小的禁带宽度,但禁带宽度小,在室温下,无光照就会产生大量热激发载流子,只能通过致冷探测器来解决;一般来讲,如不致冷的话,大多数光电导探测器的响应波段不会超过3微米;响应波段在3到8微米的,要求中等致冷77K;响应超过8微米的,要求致冷到绝对温度几度;当光导探测器面积一定时,高响应率需要高的量子效率,以便进可能利用所有入射光子,可在敏感元后面设反射器或敏感元表面镀增透膜;光导器件前放的典型电路如上图;光导探测器的输出阻抗较低,要求毫安级的恒流偏置,实际做法是用恒压源经一个串联的负载电阻产生所需的偏流;负载电阻阻值应远大于探测器内阻,电压源要求低纹波,避免引入噪声;探测器输出通过电容耦合到前置放大器,由于前放输入通常为毫伏级的弱信号,前放放大倍数高达数千倍,前放应有较低的噪音系数,设计中一般要求前放的等效输入电压噪声为探测器的1/10,即认为此时可忽略放大器本身噪声的影响;前放输入阻抗与探测器输出是否匹配对放大器的噪音系数影响很大,是设计中必须考虑的因素;3.2.4 光伏探测器光伏探测器利用光生-伏打效应;在光伏过程中,半导体内部或半导体表面存在一个p-n 结;入射光子产生电子空穴对,然后被结上的电场分开,在探测器输出开路情况下可形成光电压;如将探测器输出短路,可产生短路电流;光伏探测器受到辐照后,其伏安特性曲线特性将会下移;设信号的辐射通量为s φ,则光电流为:s e I φη= 式中:η为量子效率,e 为电子电荷量;使用时可选择合适的工作点;一般说来,光伏探测器工作于短路状态时,即零偏压状态,能产生最佳信噪比;有时也对光伏探测器加适当的反向偏置;加反向配置能增加耗尽层的厚度,从而减小时间常数,探测器有较好的高频特性;探测器开路状态工作时,后接放大器应有较高的输入阻抗,可对光伏器件输出开路电压V O 进行电压放大;如光伏探测器工作于短路状态,输出短路电流I SC ,后接放大器的输入阻抗应很低,可采用如图所示的电流-电压放大电路;光伏探测器在理论上能达到的最大探测率比光电导探测器大40%;另外,光伏探测器能零偏置工作,由于是高阻抗器件,即使加反向偏置,偏置功耗很低;与同样为高阻抗的CMOS 读出电路也容易匹配;因此,红外焦平面探测器至今均是光伏型的;光伏器件即可用于辐射探测,也可用作能量转换;如太阳电池或光电池就是在不加偏置电压条件下工作的,其工作点在伏安曲线的第四象限,工作机理也是光生-伏打效应,只是器件结构更注重能量的转换效率而已;3.2.5光电磁探测器光电磁探测器由本征半导体材料薄片和稀土永久磁铁组成,入射光子产生的电子空穴对被外加磁场所分开,它不需要电偏置;这类探测器不需致冷,可响应到7微米;主要特点是时间常数很小,可小于1ns;由于光电磁探测器的探测率比光导和光伏型的低得多,一般很少使用;3.2.6 光发射探测器光发射探测器通常指能产生外光电效应的器件,这类探测器在可见、短波红外有很高的灵敏度,响应波长可达;光电倍增管就是一种利用光电发射效应的探测器,可用于弱光光照度10-2~10-6Lx、微弱光光照度小于 10-6Lx的检测,具有高响应速度,高灵敏度等特点;光电倍增管由光电阴极、阳极和8~19级倍增级组成;入射光子为光电阴极材料表面所吸收后,有自由电子从表面逸出;发射的电子加速打到另一个电极上,在电极上每一个电子会产生许多二次电子;这些电子又依次加速打到第三电极,并多次重复这一过程,得到很高的内部放大增益;硅化铂PtSi探测器也是一种光发射探测器,与光电倍增管不同,金属铂吸收光子后,将载流子发射到半导体材料中;3.2.7 量子阱探测器量子阱红外光子探测器QWIP是由非常薄的GaAs和Alx Ga1-xAs 晶体层交叠而成的,在内部形成多个量子阱;采用分子束外延技术可将GaAs、Alx Ga1-xAs晶体层的厚度控制到几分之一的分子层的精度; GaAs材料的带隙为电子伏特,通常不能制造波长大于微米的探测器;但量子阱内电子可处于基态或初激发态,即处于两种子能带,子能带之间的带隙较小;在光子激发下,电子由基态跃迁到初激发态;器件的结构参数可保证受激载流子能从势阱顶部逸出;并在电场的作用下,被收集为光电流;QWIP响应的峰值波长是由量子阱的基态和激发态的能级差决定的,它的光谱响应与本征。

红外探测器概述完整版PPT资料

红外探测器概述完整版PPT资料

高莱管
工作原理:
当辐射通过红外窗口到吸收膜上时,膜吸收辐 射并传给气室的气体,气体温度升高,压力增大, 柔镜膨胀。为了测出它的移动量,另用一光源将投 射到柔镜背面的反射膜上。在没有辐照时,气室内 气压稳定,柔镜处于正常状态,由柔镜背面反射的 光因被光栅遮挡照射不到光电管上。当有辐照时, 辐射透过窗口照射到吸收膜,吸收膜将吸收的能量 传给气室,气室温度升高,气压增大,柔镜膜片变 形,从而引起反射光线的移动,通过光栅到达光电 管的光强发生变化,由此可检测红外辐射的强弱。
完整的红外探测器的构成
一个完整的红外探测器包括红外敏感元件、 红外辐射入射窗口、外壳、电极引出线以 及按需要而加的光阑、冷屏、场镜、光锥、 浸没透镜和滤光片等,在低温工作的探测 器还包括杜瓦瓶,有的还包括前置放大器。 按探测器工作机理区分,可将红外探测器 分为热探测器和光子探测器两大类。
工作原理:热探测器吸收红外辐射后产生 温升,然后伴随发生某些物理性能的变化。 测量这些物理性能的变化就可以测量出它 吸收的能量或功率。
热敏电阻器种类繁多,一般按阻值温度 系数可分为负电阻温度系数和正电阻温度 系数热敏电阻器;按其阻值随温度变化的 大小可分为缓变和突变型;按其受热方式 可分为直热式和旁热式;按其工作温度范 围可分为常温、高温和超低温热敏电阻ቤተ መጻሕፍቲ ባይዱ; 按其结构分类有棒状、圆片、方片、垫圈 状、球状、线管状、薄膜以及厚膜等热敏 电阻器。
常见的类型:常利用的物理性能变化有下 列四种,利用其中一种就可以制备一种类 型的热探测器。
1. 金属或半导体热敏电阻测辐射热器
热敏物质吸收红外辐射后,温度升高,阻 值发生变化。阻值变化的大小与吸收的红 外辐射能量成正比。利用物质吸收红外辐 射后电阻发生变化而制成的红外探测器叫 做热敏电阻。热敏电阻常用来测量热辐射, 所以又常称为热敏电阻测辐射热器。常见 的热敏电阻及其应用形式十分广泛。

6.4.1 焦平面的基本概念与结构类型

6.4.1 焦平面的基本概念与结构类型

第六章红外热成像器件与技术6.4 红外焦平面探测器◆焦平面的概念与基本结构◆肖特基势垒探测器◆量子阱与量子点探测器◆倒装互连技术红外焦平面探测器6.4 红外焦平面探测器6.4.1 焦平面的基本概念与结构类型焦平面的概念和结构类型红外焦平面阵列探测器由红外探测器和具有扫描功能的信号读出器组合而成的红外焦平面阵列,是凝视型红外热成像系统的核心。

红外焦平面阵列包括光敏元件和信号处理两个部分,可采用不同的光子探测器、信号电荷读出器及多路传输。

具有里程碑意义的几项技术:半导体精密光刻技术:使探测器技术由单元向多元线列探测器迅速发展,即后来称为第一代探测器。

Si集成电路技术:Si读出电路与光敏元大面阵耦合,诞生了所谓第二代的大规模红外焦平面列阵(IRFPA)探测器,更进一步有Z平面和灵巧型智能探测器等新品种。

先进的薄层材料生长技术:分子束外延(MBE)、金属有机化学气相淀积(MOCVD)和液相外延(LPE)等技术,可重复、精密控制生长大面积高度均匀材料,使制备大规模红外焦平面列阵成为可能,也是量子阱探测器出现的前提。

制冷技术:高性能探测器的低温要求,驱动微型制冷机的开发,制冷技术又促进了探测器的研制和应用。

红外焦平面阵列探测器有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)红外焦平面阵列探测器-单片式❖CCD材料本身就对红外敏感,故集探测、转移功能于一体;❖红外探测器与CCD做在同一基底上,基底通常为Si,而探测器部分常用非本征材料,基本结构为金属-绝缘物-半导体。

❖典型情况分:本征窄带半导体IR-CCD非本征半导体IR-CCD肖特基势垒IR-CCD红外焦平面阵列探测器-混合式❖主要特点:把探测器和CCD移位寄存器(或CMOS)分开,CCD(或CMOS)仍用普通硅制成,工艺相对成熟,而对几个重要的红外波段,都已经发展了性能优良的本征红外探测器。

因此,将两者耦合起来组成混合焦平面技术,能获得高量子效率高性能的红外FPA。

(仅供参考)红外焦平面探测器普及知识

(仅供参考)红外焦平面探测器普及知识

红外焦平面探测器普及知识红外焦平面阵列(IR FPA)技术已经成为当今红外成像技术发展的主要方向。

红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。

红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。

焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。

但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。

为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。

从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。

因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。

目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。

主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。

在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。

但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。

所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。

国内外现状和发展趋势自然界的一切物体,只要其温度高于绝对零度,总是在不断地辐射能量。

红外热成像技术就是把这种红外热辐射转换为可见光,利用景物本身各部分温度辐射与发射率的差异获得图像细节,将红外图像转化为可见图像。

利用这项技术研制成的装置称为红外成像系统或热像仪。

用热像仪摄取景物的热图像来搜索、捕获和跟踪目标,具有隐蔽性好、抗干扰、易识别伪装、获取信息丰富等优点。

红外焦平面探测器原理-概述说明以及解释

红外焦平面探测器原理-概述说明以及解释

红外焦平面探测器原理-概述说明以及解释1.引言1.1 概述红外焦平面探测器是一种具有广泛应用价值的光电探测器,它能够对红外辐射进行高效、高灵敏度的检测和测量。

红外焦平面探测器的原理是基于材料的红外辐射响应特性以及焦平面阵列的工作原理。

红外焦平面探测器在许多领域中具有重要的应用,包括军事、安防、医疗、航空航天等。

它能够实现夜视、目标探测、温度测量等功能,在战争、反恐、火灾救援等工作中发挥着不可替代的作用。

红外焦平面探测器的工作原理是利用材料与红外辐射的相互作用,将红外辐射转化成电信号。

通过光学系统将红外辐射聚焦到焦平面阵列上,每个像素都能够独立地检测和测量红外辐射信号。

这些信号经过放大和处理后,可以得到目标的红外辐射分布情况和强度。

红外焦平面探测器的核心部件是焦平面阵列,它由众多微小的探测单元组成。

这些探测单元通常采用半导体材料,如硅基或砷化镓等。

它们具有很高的响应度和灵敏度,能够在较低的红外辐射强度下实现可靠的探测和测量。

随着红外焦平面探测技术的不断发展,红外焦平面探测器的性能和应用领域也在不断扩展。

新的材料和工艺的应用使得红外焦平面探测器具有更高的灵敏度、更快的响应速度和更广的波段范围。

未来,红外焦平面探测器有望在军事侦察、航空航天探测、医疗诊断等领域取得更多的突破和应用。

1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文主要围绕红外焦平面探测器的原理展开论述,共分为以下几个部分:第二部分:红外焦平面探测器的基本原理这一部分将介绍红外焦平面探测器的基本概念及其组成结构。

首先会对红外辐射的特性进行简要描述,为后续理解红外焦平面探测器的工作原理打下基础。

然后,将详细介绍红外焦平面探测器的组成结构,包括光学系统、红外感光器件等部分,以帮助读者了解其工作原理的关键要素。

第三部分:红外焦平面探测器的工作原理这一部分将深入探讨红外焦平面探测器的工作原理。

首先会对红外焦平面探测器的工作过程进行整体概述,包括信号采集、信号处理等环节。

红外成像行业基础知识

红外成像行业基础知识

红外成像行业基础知识一、红外成像简介(1)红外线的概念红外线是太阳光线中众多不可见光线中的一种,是波长介乎微波与可见光之间的电磁波,波长在0.76至1,000微米之间。

它是自然界中存在最为广泛的辐射,所有温度高于绝对零度(-273℃)的物质都不断地辐射红外线,红外线能量的大小与物体表面的温度和材料特性直接相关,温度越高,红外线能量就越大。

(2)红外热像仪简介红外热像仪是用来探测目标物体的红外辐射,将目标物体的温度分布图像转换成视频图像的产品。

简单来说,红外图像转换成可见图像分三步进行:第一步是利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,信号的大小可以反映出红外辐射的强弱;第二步是利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况;第三步是通过图像处理软件对上述放大后的电信号进行处理,得到电子视频信号,在屏幕上显示出来,得到可见图像。

(3)红外热像仪的核心部件红外热像仪的核心部件是用来探测、识别和感知红外辐射的红外探测器,探测器水平直接决定了最终形成的可见图像的清晰度和灵敏度。

红外探测器的设计、生产及研发涉及到材料、集成电路设计、制冷和封装等多个学科,技术难度很大。

目前全球仅有美国、法国、以色列、中国等少数国家能够掌握非制冷红外探测器核心技术。

目前市场上大部分红外探测器都是焦平面阵列,其特点是由M×N个热敏单元(即像元)排成阵列,用来接收红外辐射。

每个热敏单元从结构上主要由CMOS读出电路及MEMS传感器两部分组成,上层的MEMS传感器通常使用氧化钒或多晶硅等热敏材料制成,用于吸收红外辐射能量并将温度变化转换成电阻的变化,CMOS读出电路将微小的电阻变化以电信号的方式输出。

CMOS读出电路和MEMS传感器为多层结构,精密复杂,其设计和生产过程难度很高,是红外探测器的核心步骤。

封装也是制作探测器的重要步骤。

目前行业内封装技术可以分为金属、陶瓷及晶圆级封装三类。

红外探测器简介

红外探测器简介

红外探测器设计研发部-平一、红外探测器市场以及应用领域红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。

其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟;远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。

近红外,由于其包含氢氧键、碳氢键、碳氧键等功能键的特征吸收线。

大气中的水气、二氧化碳、大气辉光等也集中在这个波段。

特有的光谱特性使得短波红外探测器可以在全球气候监测、国土资源监测、天文观测、空间遥感和国防等领域发挥重大作用。

红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。

随着红外探测技术的飞速发展,红外探测器在军事、民用等诸多领域都有着日益广泛的应用。

作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。

小型红外探测器是受价格驱动的商品市场,而中型和大型阵列探测器则是受成本和性能驱动的市场,并且为新产品提供了差异化的空间。

但是在每种红外探测器技术(如热电/热电偶/微测辐射热计)之间存在着巨大的障碍。

由于这些技术都是基于不同的制造工艺,如果没有企业合并或收购,很难从一种技术转换到另外一种技术。

红外探测器已进入居民日常安防中,其中主动式红外探测器遇到树叶、雨、小动物、雪、沙尘、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。

主动红外探测器技术主要采用一发一收,属于线形防,现在已经从最初的单光束发展到多光束,而且还可以双发双收,最大限度地降低误报率,从而增强该产品的稳定性,可靠性。

据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163. 5亿美元,复合年均增长率为7. 71%。

红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外焦平面探测器普及知识
红外焦平面阵列(IR FPA)技术已经成为当今红外成像技术发展的主要方向。

红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。

红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。

焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。

但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。

为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。

从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。

因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。

目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。

主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。

在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。

但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。

所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。

国内外现状和发展趋势
自然界的一切物体,只要其温度高于绝对零度,总是在不断地辐射能量。

红外热成像技术就是把这种红外热辐射转换为可见光,利用景物本身各部分温度辐射与发射率的差异获得图像细节,将红外图像转化为可见图像。

利用这项技术研制成的装置称为红外成像系统或热像仪。

用热像仪摄取景物的热图像来搜索、捕获和跟踪目标,具有隐蔽性好、抗干扰、易识别伪装、获取信息丰富等优点。

因此,红外热成像技术在海上救援、天文探测、遥感、医学等各领域得到广泛应用。

红外热成像系统可以分为制冷和非制冷两种类型,制冷型有第一代和第二代之分,非制冷型可分为热释电摄像管和热电探测器阵列。

第一代热成像系统主要由红外探测器、光机扫描器、信号处理电路和视频显示器组成,其中红外探测器是系统的核心器件,一般是分离式探测器。

这种
热像仪实际上是利用单个探测器通过光机扫描扫过景物得到电信号, 再经过信号处理显示成可见的图像。

第二代热成像系统采用了位于光学系统焦平面上,带有信号处理能力的面阵探测器,即红外焦平面阵列(IRFPA)探测器。

红外焦平面阵列是探测器制造技术和大规模集成电路结合的产物,兼具辐射敏感、电荷存储和多路传输等功能。

红外焦平面阵列探测器的出现,是红外成像系统史上的一个划时代的进步,用红外焦平面阵列探测器构成的红外成像系统较传统的光机扫描红外成像系统具有结构简单、工作稳定可靠、灵敏度高、噪声等效温差性能好等优点。

随着红外焦平面阵列制造工艺的不断完善,最终将会成为热像仪中占主导地位的产品。

目前国内外红外焦平面阵列(IRFPA)的非均匀性校正方法可以分为两大类:第一类为基于红外参考辐射源标定的校正算法,该类方法假定探测元的响应特性是非时变的(在一段时间内),通过事先利用定标辐射源(通常为黑体辐射源)对IRFPA 各探测元的响应进行标定,来实现非均匀性校正,主要包括两点校正法,多点校正法,分段线性校正法和基于多项式拟合的算法。

第二类为基于场景的自适应校正算法,该类方法利用序列图像来估计IRFPA 的校正系数或者直接估计校正结果。

主要有时域高通滤波法、人工神经网络法、恒定统计平均法等。

基于参考源的校正算法是目前已经实用化的技术,但该类算法都是建立在探测单元响应特性为定常的假设条件下,而实际其响应特性是随时间和环境变化的。

因此,在实际应用中,需要对系统进行周期性的重复定标以消除参数漂移的影响,这就相应地增加了系统的复杂性,降低了系统的可靠性和响应速度。

基于场景的校正算法不但省略了参考辐射源,使系统得到了简化,提高了系统的稳定性,而且可以有效地消除参数特性漂移的影响,实现高精度、大动态范围的自适应非均匀性校正。

但是由于受到当前技术水平的限制,这类算法目前无法满足实时实现的要求,因此在实际系统中应用较少。

尽管如此,这类算法却是今后非均匀性校正(NUC)算法的发展方向。

两点校正法
两点校正法原理简单,计算量小,容易实现,是焦平面阵列系统中最广泛使用的一种非均匀性校正方法。

根据两点校正法,假设对红外焦平面探测器的辐射强度为φ,输出值为Y,增益因子和偏移因子分别为ij G 和ij O ,则有:
()ij ij ij ij Y G X O φ=+ (2.3)
图2.1是具有不同增益因子和不同偏移因子的两个像元的输入输出曲线,其中横坐标为红外辐射
能量,纵坐标为光电响应电平。

从图中可以看出曲线的斜率反映了增益因子的非均匀性,截距反映了偏移量的非均匀性。

图 2.1 两点校正法
两点法非均匀性校正的过程就是要使图中输入输出响应曲线A,B和标准曲线S重合。

因此,先将A、B旋转成,A B ''和S平行,就相当于完成对增益的校正。

然后再将,A B ''平移到和S重合,这相当于完成对偏移的校正。

两点法的温度定标是指在光路中插入一个均匀辐射的黑体,通过红外焦平面探测器各阵列元对高温H T 和低温L T 下均匀黑体辐射的响应计算ij G 和ij O ,从而实现非均匀性校正。

设高温H T 和低温L T 下所有阵列元的响应分别为H V 和L V 。

11
11()()()()
H ij ij ij L ij ij ij
M N ij L i j L M N ij H i j H V G X H O V G X L O X
V M N X
V M N
φφ=====+⎧⎨=+⎩=⨯=⨯∑∑∑∑ (2.4) 其中()ij X H 和()ij X L 分别为像元(,)i j 在高温和低温均匀辐射下的响应,M,N分别是焦平面阵列元的行数和列数。

由(2.4)式求出校正增益和偏移量为:
()()()()()()H L ij ij ij H ij
L ij ij ij ij V V G X H X L V X L V X H O X L X H -⎧=⎪-⎪⎨-⎪=⎪-⎩。

相关文档
最新文档