数学实验概率论及数理统计分册习题Word版
数学实验概率论与数理统计分册习题1-推荐下载
数学实验概率论与数理统计分册习题第1章古典概率2.碰运气能否通过英语四级考试大学英语四级考试是全面检验大学生英语水平的一种综合考试,具有一定难度。
这种考试包括听力、语法结构、阅读理解、写作等。
除写作占15分外,其余85道为单项选择题,每道题附有A、B、C、D四个选项。
这种考试方法使个别学生产生碰运气和侥幸心理,那么,靠运气能通过英语四级考试吗?解:假设学生作文得满分,即15分,85道选择题每道题都靠蒙,即每道题做对的概率为1/4,得60分则通过考试。
则该同学通过考试的概率为:P=4540 45851344C⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>> nchoosek(85,40)*(1/4)^45*(3/4)^40ans =2.3448e-008即:82.344810-⨯由此可见,即使该同学作文满分,靠运气通过考试的概率也是如此的低,所以可以认为靠运气不能通过英语四级考试。
3.在区域H={(x,y)| (x,y)∈Q,x2+y2≤1},Q={(x,y) |0≤x≤1,0≤y≤1}上考虑计算二重积分(利用Monte-carlo法):⎰⎰++=HdxdyyxyxI) sin(解:积分区域如右图所示:>> n = 10000; % 模拟次数x = rand(n,1); % 点的x坐标y = rand(n,1); % 点的y坐标m = sum(sin(x+y)./(x+y) & x.^2 + y.^2 <= 1); Vn = m/n % 落到所求面积内的点的频率,即概率的模拟值Vn =0.7891第2章 随机变量及其分布4.公共汽车车门的高度是按成年男子与车门碰头的机会在0.01以下的标准来设计的。
根据统计资料,成年男子的身高X 服从均值为168厘米,方差为7厘米的正态分布,那么车门的高度应该至少设计为多少厘米?解:>> norminv(0.99, 168, 7)ans =184.2844则车门的高度应该至少设计为184.3厘米5.某研究中心有同类型仪器300台,各仪器工作相互独立,而且发生故障的概率均为0.01,通常一台仪器的故障由一人即可排除。
(完整word版)概率论和数理统计考试试题和答案解析.doc
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
概率论和数理统计课后习题答案解析
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59, 求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以 P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0, 是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1 问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答: F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9, 问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c}, 必有1-P{X≤c}=P{X≤c}, 即 P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9, 即 P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282, 所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1, 即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05, 求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645, 从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1, 且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0, 所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3) dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0, 即 K2-K-2≥0,亦即(k-2)(K+1)≥0, 解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时, FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求: (2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且 P{X≥0,Y≥0}=37, P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得 P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y}, 故 P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为 f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1, 有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1, 有 F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1, 有 F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式 F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1, 即 fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有 P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a}, 故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x 22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V, 可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0, 显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即 fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故 FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以 FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0, ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则 F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z} =1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0, F2(z)={1-e-βz,z≥00,z<0,故 F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试明: P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则 P{a<min{X,Y}≤b}=FZ(b)-FZ(a),。
概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版
概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。
表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品)
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计练习册(内附答案)
概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
数学实验 概率论与数理统计分册习 题
P{ X n − a < 0.1} ≥ 0.95
是少要称多少次?分别用切比雪夫不等式和独立同分布的中心极限定理求解. 3. 设个零件的重量都是随机变量,他们相互独立且服从相同的分布,其数学期 望为 0.5kg,均方差为 0.1kg,问 5000 只零件的总重量超过 2510kg 的概率是多 少? 4. 学校图书馆阅览室共有 880 个座位,学校共有 12000 名学生。已知每天晚上 每个学生到阅览室去自习的概率为 8%。 (1)求阅览室晚上座位不够用的概率; (2)若要以 80%的概率保证晚上去阅览室自习的学生都有座位,阅览室还需要增 添多少个座位? 5. 有一批钢材,其中 80%的长度不小于 3m,现从钢材中随机抽出 100 根,试 用中心极限定理求小于 3m 的钢材不超过 30 根的概率。 6. 一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重 50kg, 标准差为 5kg,若用最大载重量为 5t 的汽车承运,试利用中心极限定理说明每 辆车最多可以装多少箱,才能保证不超载的概率大于 0.977。 7.对同一目标进行 300 次独立射击,设每次射击时的命中率均为 0.44,试求 300 次射击最可能命中几次?其相应的概率是多少?试用 matlab 进行模拟,观察试 验与理论结果的差异。
2) 3 个球中最大的标号为 5 的概率。 3.抽签实验
有十张外观相同的扑克牌, 其中有一张是大王, 让十人按顺序每人随机抽 取一张, 讨论谁先抽出大王。甲方认为: 先抽的人比后抽的人机会大。乙方认为: 不论先后, 他们抽到大王的机会是一样的。究竟他们谁说的对,试用 Matlab 进 行模拟判断。
{ 16. 设 43; y 2 ≤ r 2 } (r > 0) 上 服 从 均 匀 分 布 , 求
(完整版)概率论与数理统计练习题
概率论与数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
3、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
5. 设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。
6. 已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (Y )= 3/4 。
7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。
设Z =X -Y +3,则Z ~ N(2, 13) 。
8. 设A ,B 为随机事件,且P (A)=0.7,P (A -B)=0.3,则=⋃)(B A P 0.6 。
9. 设随机变量X ~ N (1, 4),已知Φ(0.5)=0.6915,Φ(1.5)=0.9332,则{}=<2X P 0.6247 。
10. 随机变量X 的概率密度函数1221)(-+-=x xe xf π,则E (X )= 1 。
11. 已知随机向量(X ,Y )的联合密度函数⎩⎨⎧≤≤≤≤=其他,010,20,),(y x xy y x f ,则E (X )= 4/3 。
12. 设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 0.4 。
13. 设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 2 。
概率论与数理统计练习题(含答案)
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论与数理统计练习册待完整版
4
学院
班级
姓名
学号
(三)条件概率
1、设 A, B 为随机事件, P A 0.5 , P B 0.6 , P B A 0.8 . 则 P B A .
2、假设一批产品中一、二、三等品各占 60%,30%、10%,从中任取一件,结 果不是三等品,求取到的是一等品的概率.
X P
-1 0.3
1 0.5
2 0.2
求 X 的分布函数 F ( x ) ,并画出 F ( x ) 的图形.
武汉工程大学邮电与信息工程学院
数理教研室 2011 年 1 月
2
学院
班级
姓名
学号
第一部分 概率论
第一章
随机事件及其概率
(一)随机事件及其运算
1、将一枚均匀的硬币抛两次,事件 A, B , C 分别表示“第一次出现正面” , “两 次出现同一面” , “至少有一次出现正面”. 写出样本空间及事件 A, B, C 中的 样本点.
7、一种用来检验 50 岁以上的人是否患有关节炎的检验法,对于确实患有关节炎 的病人, 有 85%给出了正确的结果;而对于已知未患关节炎的人有 4%会认为他 患关节炎,已知人群中有 10%的人患有关节炎,问一名被检验者经检验,认为 它没有关节炎,而他却患有关节炎的概率.
6
学院
班级
姓名
学号
(四)相互独立事件、 独立试验概型
2、在掷两颗骰子的试验中,事件 A, B , C , D 分别表示“点数之和为偶数” , “点 数之和小于 5” , “点数相等” , “至少有一颗骰子的点数为 3”. 试写出样 本空间及事件 AB , A B , A C , BC , A B C D 中的样本点.
概率论与数理统计练习册及答案
概率论与数理统计练习册及答案第一章概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为()A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示()A .必然事件B .A 与B 恰有一个发生C .不可能事件D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是().A.P(AB)=P(A)P(B)B.P(A-B)=P(A)-P(B)C.)()(B A P B A P -=D.P(A+B)=P(A)+P(B)4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). A.P(A -B)=P(A)-P(AB) B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是().A .0)(≥AB P B.1)(≤AB P C.P(A+B)=P(A)+P(B) D.P(A-B)≤P(A)6.若φ≠AB ,则( ). A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ?则下面答案错误的是( ).A. ()B P A P ≤)(B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生8.下列关于概率的不等式,不正确的是( ).A. )}(),(min{)(B P A P AB P ≤B..1)(,<Ω≠A P A 则若C.1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( ).A.若诸i A 两两互斥,则∑∑===ni in i iA P A P 11)()(B.若诸i A 相互独立,则11()1(1())nniii i P A P A ===--∑∏C.若诸i A 相互独立,则11()()n ni i i i P A P A ===∏D.)|()|()|()()(1231211-=Λ=n n ni iA A P A A P A AP A P A P10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ). A.21 B.ba +1 C.ba a + D.ba b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( )A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约12.将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ).A.!!N nB. nNn ! C. nn N N n C !?D.Nn 13.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( ).A.rr P 3651365-B. rr r C 365!365?C. 365!1r -D. rr 365!1-14.设100件产品中有5件是不合格品,今从中随机抽取2件,设=1A {第一次抽的是不合格品},=2A {第二次抽的是不合格品},则下列叙述中错误的是( ). A.05.0)(1=A PB.)(2A P 的值不依赖于抽取方式(有放回及不放回)C.)()(21A P A P = D .)(21A A P 不依赖于抽取方式15.设A,B,C 是三个相互独立的事件,且,1)(0<<="" 事件中,不独立的是(="" 则下列给定的四对="">B. B A -与CC. C AC 与D. C AB 与16.10张奖券中含有3张中奖的奖券,现有三人每人购买1张,则恰有一个中奖的概率为( ). A.4021B.407 C. 3.0 D. 3.07.02310??C17.当事件A 与B 同时发生时,事件C 也随之发生,则( ). A.1)()()(-+≤B P A P C P B.1)()()(-+≥B P A P C P C.P(C)=P(AB)D.()()P C P AB =18.设,1)()|(,1)(0,1)(0=+<<<D. A 与B 独立19.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的是( ). A.P(A|B)=0B.(|)()P A B P A =C.()()()P AB P A P B =D.P(B|A)>020.已知P(A)=P ,P(B)=q 且φ=AB ,则A 与B 恰有一个发生的概率为( ). A.q p +B. q p +-1C. q p -+1D. pq q p 2-+21.设在一次试验中事件A 发生的概率为P ,现重复进行n 次独立试验则事件A 至多发生一次的概率为( ). A.np -1B.npC. np )1(1--D. 1n n p np p --+-22.一袋中有两个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率为8180,则袋中白球数是( ). A.2B.4C.6D.823.同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为( ). A.0.5B.0.25C.0.125D.0.37524.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).A.1B.21C.52 D. 32 25.已知11()()(),()0,()(),416P A P B P C P AB P AC P BC ======则事件A,B,C 全不发生的概率为( ). A.81 B.83 C.887 26.甲,乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( ). A. 0.5B. 0.8C. 0.55D. 0.627.接上题,若现已知目标被击中,则它是甲射中的概率为( ). A.43 B.65 C.32 D.116 28.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ). A.12053 B.199 C.12067 D.1910 29.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为(). A.5 B.4519 C.157 D.3019 30.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ). A.21 B.31 C.75 D.71 31.今有100枚贰分硬币,其中有一枚为“残币”中华人民共和国其两面都印成了国徽.现从这100枚硬币中随机取出一枚后,将它连续抛掷10次,结果全是“国徽”面朝上,则这枚硬币恰为那枚“残币”的概率为().A.1001B. 10099C.1010212+D.10102992+32.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残品的概率分别是0.8,0.1,0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机察看1只,若无残次品,则买下该箱玻璃杯,否则退回,如果顾客确实买下该箱,则此箱中确实没有残次品的概率为( ). A.0.94B.0.14C.160/197D.420418419C C C + 二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω.2.某商场出售电器设备,以事件A 表示“出售74 Cm 长虹电视机”,以事件B 表示“出售74 Cm 康佳电视机”,则只出售一种品牌的电视机可以表示为;至少出售一种品牌的电视机可以表示为;两种品牌的电视机都出售可以表示为 . 3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为;随机事件A ,B ,C 不多于一个发生 . 4.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .5.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )=6.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (AB )= .7.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (AB )= .8.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则CB A ,,全不发生的概率为 .9.已知A 、B 两事件满足条件P (AB )=P (AB ),且P (A )=p,则P (B )= . 10.设A 、B 是任意两个随机事件,则{()()()()}P A B A B A B A B ++++= . 11.设两两相互独立的三事件A 、B 和C满足条件:φ=ABC ,21)()()(<==C p B p A p ,且已知 169)(=C B A p ,则______)(=A p . 12.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .13.袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .14.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 .15.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .16.设10件产品有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是 .17.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 .18.假设一批产品中一、二、三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率是 .19.一种零件的加工由三道工序组成,第一道工序的废品率为1p ,第二道工序的废品率为2p ,第三道工序的废品率为3p ,则该零件的成品率为 .20.做一系列独立试验,每次试验成功的概率为p ,则在第n 次成功之前恰有m 次失败的概率是 .第二章随机变量及其分布一、选择题1.设A,B 为随机事件,,0)(=AB P 则( ).A..φ=ABB.AB 未必是不可能事件C.A 与B 对立D.P(A)=0或P(B)=02.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( ). A.2-eB.251e-C.241e-D.221e-. 3.设X 服从]5,1[上的均匀分布,则( ). A.4}{ab b X a P -=≤≤ B.43}63{=<<="">D.21}31{=≤<-X P4.设),4,(~μN X 则( ). A.)1,0(~4N X μ- B.21}0{=≤X P C.)1(1}2{Φ-=>-μX PD.0≥μ5.设随机变量X 的密度函数为<<=其他,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则(). A .由于X 是连续型随机变量,则其函数Y 也必是连续型的 B .Y 是随机变量,但既不是连续型的,也不是离散型的 C .649}2{==y PD.)21,3(~B Y6.设=≥=≥}1{,95}1{),,3(~),,2(~Y P X P p B Y p B X 则若( ). A.2719 B.91C.31D.2787.设随机变量X 的概率密度函数为(),23X f x Y X =-+则的密度函数为( ).A.13()22X y f --- B.13()22X y f -- C.13()22X y f +--D.13()22X y f +- 8.连续型随机变量X 的密度函数)(x f 必满足条件( ).A.1)(0≤≤x fB.)(x f 为偶函数C.)(x f 单调不减D.()1f x dx +∞-∞=?9.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则( ).A.{0}{0}P X P X ≤=≥B.)(1)(x F x F --=C.{1}{1}P X P X ≤=≥D.)()(x f x f -=10.设)5,(~),4,(~22μμN Y N X ,记},5{},4{21+≥=-≤=μμY P P X P P 则( ). A.21P P =B.21P P <C.21P P >D.1P ,2P 大小无法确定11.设),,(~2σμN X 则随着σ的增大,}|{|σμ<-X P 将( ). A.单调增大B.单调减少C.保持不变.D.增减不定12.设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( ).A.?-=-adx x f a F 0)(1)(B.?-=-adx x f a F 0)(21)(C.)()(a F a F =-D.1)(2)(-=-a F a F13.设X的密度函数为01()0,x f x ≤≤=??其他,则1{}4P X >为( ).A.78B.14C.141-D.32 14.设~(1,4),(0.5)0.6915,(1.5)0.9332,{||2}X N P X Φ=Φ=>则为( ). A.0.2417B.0.3753C.0.3830D.0.866415.设X 服从参数为91的指数分布,则=<<}93{X P ( ). A.)93()99(F F -B.)11(913ee - C.ee 113-D.-939dx ex16.设X 服从参数λ的指数分布,则下列叙述中错误的是( ).A.?≤>-=-0,00,1)(x x e x F x λB.对任意的x e x XP x λ-=>>}{,0有C.对任意的}{}|{,0,0t X P s X t s X P t s >=>+>>>有D.λ为任意实数17.设),,(~2σμN X 则下列叙述中错误的是( ).A.)1,0(~2N X σμ-B.)()(σμ-Φ=x x FC.{(,)}()()a b P X a b μμσσ--∈=Φ-Φ D.)0(,1)(2}|{|>-Φ=≤-k k k X P σμ18.设随机变量X 服从(1,6)上的均匀分布,则方程012=++Xx x 有实根的概率是( ). A.0.7B.0.8C.0.6D.0.519.设=<=<<}0{,3.0}42{),,2(~2X P X P N X 则σ().A .0.2 B.0.3 C.0.6D.0.820.设随机变量X服从正态分布2(,)N μσ,则随σ的增大,概率{||}P X μσ-<(). A.单调增大B.单调减少C.保持不变D.增减不定二、填空题1.随机变量X 的分布函数)(x F 是事件的概率. 2.已知随机变量X 只能取-1,0,1,2四个数值,其相应的概率依次是cc c c 161,81,41,21,则=c3.当a 的值为时, ,2,1,)32()(===k a k X p k 才能成为随机变量X 的分布列.4.一实习生用一台机器接连独立地制造3个相同的零件,第i 个零件不合格的概率)3,2,1(11=+=i i p i ,以X 表示3个零件中合格品的个数,则________)2(==X p . 5.已知X的概率分布为-4.06.011,则X 的分布函数=)(x F .6.随机变量X 服从参数为λ的泊松分布,则X 的分布列为 . 7.设随机变量X 的概率密度为∈∈=其它,0]6,3[,92]1,0[,31)(x x x f ,若k 使得{}32=≥k X p则k 的取值范围是 . 8.设离散型随机变量X 的分布函数为:≥+<≤-<≤--<=2,21,3211,1,0)(x b a x a x a x x F且21)2(==X p ,则_______,________a b ==. 9.设]5,1[~U X ,当5121<<<<=".</p" p="" x="" 时,)(21x="">10.设随机变量),(~2σμN X ,则X 的分布密度=)(x f .若σμ-=X Y ,则Y 的分布密度=)(y f .11.设)4,3(~N X ,则}{=<<-72X p .12.若随机变量),2(~2σN X ,且30.0)42(=≤<="" 13.设)2,3(~2n="" c="" p="" x="" ≥="<,则=c" ,则_________)0(="≤X" ,若)()(c="">14.设某批电子元件的寿命),(~2σμN X ,若160=μ,欲使80.0)200120(=≤15.若随机变量X 的分布列为-5.05.011,则12+=X Y 的分布列为 .16.设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}= .17.设随机变量X服从(0,2)上的均匀分布,则随机变量Y=2X 在(0,4)内的概率密度为()Y f y = .18.设随机变量X服从正态分布2(,)(0)N μσσ>,且二次方程240y y X ++=无实根的概率为1/2,则μ= .第三章多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( ). A.(X,Y)B.XYC.X+YD.X -Y2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则().A.X =YB.0}{==Y X PC.21}{==Y X P D.1}{==Y X P 3.设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则ba ,的值可取为( ). A.52,53-==b a B.32,32==b a C.23,21=-=b a D.23,21-==b a 4.设随机变量i X 的分布为12101~(1,2){0}1,111424i X i X X -??===且P 则12{}P X X ==( ).A.0B.41 C.21 D.15.下列叙述中错误的是( ). A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布6.设随机变量(X,Y) 的联合分布为: 则b a ,应满足( ). A .1=+b aB. 13a b +=C.32=+b aD.23,21-==b a 7.接上题,若X ,Y 相互独立,则(). A.91,92==b a B.92,91==b a C.31,31==b a D.31,32=-=b a 8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( ). A.1{,},,1,2,636P X i Y j i j ==== B.361}{==Y X P C.21}{=≠Y X PD.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下面错误的是( ).A.1}0{=≥X PB.{0}0P X ≤=C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为1 10.接上题,设G 为一平面区域,则下列结论中错误的是( ). A.{(,)}(,)G P X Y G f x y dxdy ∈=??B.2{(,)}6GP X Y G x ydxdy ∈=C.1200{}6x P X Y dx x ydy ≥=D.??≥=≥yx dxdy y x f Y X P ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y Df x y ≠∈?=?其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( ).A.{,)(,)GP X Y G f x y dxdy ∈=B.??-=≤-Gdxdy y x f X Y P ),(1}02{C.??=≥-Gdxdy y x h X Y P ),(}02{D.??=≥DG dxdy y x h X Y P ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以G S 与D S 分别表示区域G 和D 的面积,则下列叙述中错误的是( ). A.{(,)}DGS P X Y D S ∈=B.0}),{(=?G Y X PC.GDG S S D Y X P -=?1}),{(D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X 分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ).A.211X X Y +=B.},m ax {212X X Y =C.213X X Y +=D.},mi n{211X X Y =14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0>≤=>≤=YX Y X V Y X Y X U 则==}{V U P ( ).A.0B.41C.21D.43 15.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( ). A.),(~211σμN XB ),(~221σμN X C.若0=ρ,则X,Y 独立D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( ).A.))(,(~22121σσμμ+++N Y XB.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,2 2Y X Z +=则Z 服从的分布是().A .N (0,2)分布B.单位圆上的均匀分布C.参数为1的瑞利分布 D.N (0,1)分布18.设随机变量4321,,,X X X X 独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{D P ().A.0.1344B.0.7312C.0.8656D.0.383019.已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N20.已知sin(),0,,(,)~(,)40,C x y x y X Y f x y π?+≤≤?=其他则C 的值为( ).A.21B.22C.12-D.12+21.设≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( ) A.7265 B.727 C.721 D.727122.为使≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( ).A.0B.6C.10D.1623.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Yh 所确定的随机变量( ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( ). A.21 B.31 C.41 D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则Y X +( ). A.服从泊松分布 B.仍是离散型随机变量 C.为二维随机向量 D.取值为0的概率为026.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( ). A.Z 也服从]1,0[上的均匀分布B.0}{==Y X P C.Z 服从]2,0[上的均匀分布 D.)1,0(~N Z 27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( ).A.)1(414--e B.414e - C.43414+-e D.2128.设≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( ).A. 0.4B.0.5C.0.6D.0.829.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( ).A.1-e B.2-e C.11--e D.21--e 30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae-+++-+-=,则A 为( ).A.3π B.π3C.π2D.2π31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( ). A.481 B.21C.121D.24132.设12,,,n X X X 相独立且都服从),(2σμN ,则( ).A.12n X X X === B.2121()~(,)n X X X N nnσμ+++C.)34,32(~3221+++σμN X D.),0(~222121σσ--N X X 33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈?=??其它,D 为一平面区域,记G,D 的面积为,,D G S S ,则{(,)}P x y D ∈=( ). A.GDS S B.G G D S S C.??D dxdy y x f ),( D.??Ddxdy y x g ),(二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率:(1);____________________),(=<≤≤c Y b X a p (2);____________________),(=<2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是 .3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则Y X ,相互独立当且仅当=ρ . 5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布???? ??2.08.010,则∑==31i i X X 服从分布 .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= .8.设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<="" p="">9.假设一设备开机后无故障工作的时间X服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y的分布函数 .10.设两个随机变量X与Y独立同分布,且P(X=-1)=P(Y=-1)=1/2,P(X=1)=P (Y=1)=1/2,则P(X=Y)= ;P (X+Y=0)= ;P(XY=1)= .第四章随机变量的数字特征一、选择题1.X 为随机变量,()1,()3E X D X =-=,则2[3()20]E X +=().A. 18B.9C.30D. 32 2. 设二维随机向量(X,Y)的概率密度函数为(),0,0(,)0,x y e x y f x y -+?<<+∞<<+∞=?其它,则()E XY =( ). A. 0 B.1/2 C.2 D. 1 3. (X,Y )是二维随机向量,与0),(=Y X Cov 不等价的是( ).A. EY EX XY E ?=)(B. DY DX Y X D +=+)(C. DY DX Y X D +=-)(D. X 与Y 独立 4. X,Y 独立,且方差均存在,则=-)32(Y X D ( ).A.DY DX 32-B. DY DX 94-C. DY DX 94+D. DY DX 32+5. 若X,Y 独立,则( ). A. DY DX Y X D 9)3(-=- B. DY DX XYD ?=)(C. 0]}][{[=--EY Y EX X ED. 1}{=+=b aX Y P6.若0),(=Y X Cov ,则下列结论中正确的是( ). A. X,Y 独立B. ()D XY DX DY =?C. DY DX Y X D +=+)(D. DY DX Y X D -=-)(7.X,Y 为两个随机变量,且,0)])([(=--EY Y EX X E 则X,Y( ).</p。
概率论与数理统计(经管类)第七章课后习题答案word
习题1.设总体X服从指数分布试求的极大似然估计.若某电子元件的使用寿命服从该指数分布,现随机抽取18个电子元件,测得寿命数据如下(单位:小时):16, 19, 50, 68, 100, 130, 140, 270, 280, 340, 410, 450, 520, 620, 190, 210, 800, 1100.求的估计值.解:令得2.设总体X的概率密度为试求(1)解:(1)(2)解得3.设总体X服从参数为(可参考例7-8)解:由矩法,应有解得习题1.证明样本均值证:2.证明样本的k阶矩证:3.设总体(1)(2)(3)都是的无偏估计,并求出每一估计量的方差,问哪个方差最小?证:故的方差最小.4.设总体(1)证明(2)求(1)证:又(2)似然函数因习题1.土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强度.现从中抽取容量为6的样本测得样本观测值并算的解:2.设轮胎的寿命X服从正态分布,为估计某种轮胎的平均寿命,随机地抽取12只轮胎试用,测得它们的寿命(单位:万千米)如下:试求平均寿命(例7-21,)解:平均寿命3.两台车床生产同一种型号的滚珠,已知两车床生产的滚珠直径X,Y分别服从现由甲,乙两车床的产品中分别抽出25个和15个,测得求两总体方差比的置信度的置信区间.解:此处的置信度的置信区间为:4.某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位:毫米)如下:设滚珠直径服从正态分布,若(1)已知滚珠直径的标准差毫米;(2)未知标准差求直径均值解: (1)直径均值(2)5.设灯泡厂生产的一大批灯泡的寿命X服从正态分布令随机地抽取16个灯泡进行寿命试验,测得寿命数据如下(单位:小时):1502 1480 1485 1511 1514 1527 1603 1480 1532 1508 1490 1470 1520 1505 1485 1540求该批灯泡平均寿命解:6.求上题灯泡寿命方差解:7.某厂生产一批金属材料,其抗弯强度服从正态分布.现从这批金属材料中随机抽取11个试件,测得它们的抗弯强度为(单位:公斤):注意这里是求的置信求(1)平均抗弯强度(2)抗弯强度标准差解: (1)(2)故8.设两个正态总体中分别取容量为10和12的样本,两样本互相独立.经算得解:9.为了估计磷肥对农作物增产的作用,现选20块条件大致相同的土地.10块不施磷肥,另外10块施磷肥,得亩产量(单位:公斤)如下:不施磷肥的560 590 560 570 580 570 600 550 570 550 施磷肥的620 570 650 600 630 580 570 600 600 580 设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均亩产之差作区间估计().解:10.有两位化验员A,B独立地对某种聚合的含氮量用同样的方法分别进行10次和11次测定,测定的方差分别为.设A,B两位化验员测定值服从正态分布,其总体方差分别为.求方差比的置信度的置信区间.解:的置信度的置信区间为:自测题7一、填空题设总体是未知参数的无偏估计.解:是未知参数的无偏估计则二、一台自动车床加工零件长度X(单位:厘米)服从正态分布.从该车床加工的零件中随机抽取4个,测得长度分别为:12.6,13.4,12.8,13.2.试求: (1)样本方差;(2)总体方差的置信度为95%的置信区间.(附:解: (1)(2)三、设总体(1)已知(2)已知,样本容量n至少应取多大?(附)解: (1)(2)故区间长度为四、某大学从来自A,B两市的新生中分别随机抽取5名与6名新生,测其身高(单位:厘米)后,算的.假设两市新生身高分别服从正态分布:,的置信度为的置信区间.(附:解:。
(完整版)概率论与数理统计试题及答案.doc
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
概率论与数理统计习题册.doc
第六章样本及抽样分布一、选择题1.设X1 , X 2 ,L , X n是来自总体X的简单随机样本, 则X1, X2,L , X n必然满足 ( )A. 独立但分布不同 ;B. 分布相同但不相互独立 ; C 独立同分布 ; D. 不能确定2.下列关于“统计量”的描述中,不正确的是().A.统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3 下列关于统计学“四大分布”的判断中,错误的是() .1~ F (n2 ,n1)A.若 F ~ F ( n1 , n2 ), 则FB.若 T ~ t( n),则 T 2 ~ F (1,n)C .若X ~ N ( 0,1),则X2~ x2(1)n) 2( X iD .在正态总体下i 1 2(n 1)2 ~ x4.设X i , S i2表示来自总体N ( i , i2 ) 的容量为 n i的样本均值和样本方差(i 1,2) ,且两总体相互独立,则下列不正确的是() .A. 22S12~ F (n1 1,n2 1) B.( X 1 X2) (1 2)2 2 2 2 ~ N (0,1) 1S2 1 2n1 n2C. X 1 1~ t(n1 ) D.(n 1)S2 2(n2 1) S1 / n1 2 2 2~ x21nX )25.设X1, X 2,L , X n是来自总体的样本, 则1 i ( X i 是( ).n 1A. 样本矩B. 二阶原点矩C. 二阶中心矩D. 统计量6 X1,X2,L , X n是来自正态总体N (0,1) 的样本, X , S2分别为样本均值与样本方差, 则( ).n X~ t( nA. X ~ N (0,1)B. nX ~ N (0,1)C. X i2 ~ x2 (n)D. 1)i 1 S9 9X i2 285, 则样本方差 S27. 给定一组样本观测值X1, X 2,L , X9且得X i 45,i 1 i 1的观测值为 ( ).A. 7.5B.60C. 20D.65 3 28 设X服从t (n)分布 , P{|X| } a ,则 P{ X } 为( ).A. 1a B. 2a C. 1 a D. 1 1 a2 2 29 设x1, x2,L , x n是来自正态总体N (0, 22 ) 的简单随机样本,若Y a( X 1 2X 2 ) 2 b( X 3 X 4 X 5)2 c( X 6 X 7 X 8 X 9 )2服从 x 2分布,则a, b, c 的值分别为() .A. 1,1,1B.8 12 161,1,1 C. 1,1,1 D. 1,1,120 12 16 3 3 3 2 3 410 设随机变量X和Y相互独立 , 且都服从正态分布N(0,32),设 X1,X2, , X9和9X iY1,Y2, ,Y9分别是来自两总体的简单随机样本,则统计量U i 1 服从分布是92Y ii 1( ).A. t(9)B. t (8)C. N (0,81)D. N (0,9)二、填空题1.在数理统计中,称为样本.2.我们通常所说的样本称为简单随机样本,它具有的两个特点是.3.设随机变量 X1,X2, , X n相互独立且服从相同的分布, EX , DX 2 ,令X 1 nX i ,则 EX ; DX . ni 14. (X1,X2, , X10) 是来自总体X ~ N(0,0.32) 的一个样本,则102P X i 1.44 .i 15.已知样本 X 1 , X 2 , , X 16 取自正态分布总体 N ( 2,1) ,X 为样本均值, 已知 P{ X} 0.5,则.10. 6 设总体 X ~ N(,2) , X 是样本均值, S n 2是样本方差, n 为样本容量,则常用的随2机变量 (n1)S n 服从分布 .2第七章 参数估计一、选择题1.设总体 X~N(, 2), X 1,, X n 为抽取样本,则 1 n ( X iX ) 2 是().n i 1( A) 的无偏估计 ( B)2的无偏估计(C )的矩估计(D )2的矩估计2 设 X 在 [0 , a] 上服从均匀分布, a 0 是未知参数,对于容量为 n 的样本 X 1 , , X n , a的最大似然估计为( )(A ) max{X 1,X 2,, X n }1n(B )X in i 1(C ) max{X 1,X 2, , X n } min{ X 1 , X 2 ,, X n }(D ) 11 n X i ;n i 13 设总体分布为 N ( , 2) ,,2为未知参数,则2的最大似然估计量为( ) .(A ) 1n( X i X ) 2( B ) 1n( X i X )2n i 1n 1 i 1(C ) 1n( X i) 2( D ) 11 i n( X i)2n i 1n 14 设总体分布为 N ( , 2) ,已知,则2的最大似然估计量为() .(A ) S2( B )n 1S 2n(C ) 1n( X i) 2( D ) 11 i n( X i)2n i 1n 15 X 1, X 2, X 3 设为来自总体 X 的样本,下列关于 E( X ) 的无偏估计中, 最有效的为().(A )1(X 1 X 2 )(B ) 1(X 1X 2 X 3 )23(C ) 1(X 1X 2 X 3 )(D ) 2X 12X 2 1 X 3)43336 设 X 1,X 2,, X n (n 2)是正态分布 N( ,2)的一个样本,若统计量n1K( X i 1 X i ) 2 为2的无偏估计,则K 的值应该为()i 1(A )1( B )11( C )1 2 (D )12n2n2nn 17. 设 为总体 X 的未知参数, 1 , 2 是统计量,1,2为 的置信度为 1 a(0a 1) 的置信区间,则下式中不能恒成的是() .A. P{ 12}1 aB.P{2}P{1}aC. P{2}1aD.P{2}P{1}a28设X~N( , 2)且2未知,若样本容量为 n ,且分位数均指定为“上侧分位数”时,则的 95%的置信区间为( )A. ( Xu0.025)B. ( XS t 0 .05(n1))nnC. ( XSD.( X St 0 .025 ( n1))t 0.025 (n))nn9 设 X ~ N ( ,2), ,2均未知,当样本容量为n 时,2的 95%)的置信区间为(A.(( n 1)S 2, (n 1)S 2B. ( (n 1)S 2 ( n 1)S 221) 2)2 (n , 2(n )x 0.975 ( n x 0.025 (n 1)x 0.025 1) x 0.975 1)(( n 1)S 2( n 1)S 2( XSt 0. 025 (n1)) C. 2, 2) D.nt 0. 025 (n 1) t 0.975 ( n 1)二、填空题1. 点估计常用的两种方法是:和.2. 若 X 是离散型随机变量,分布律是 P{ X x} P(x; ) ,( 是待估计参数) ,则似然函数是,X 是连续型随机变量,概率密度是f (x; ) ,则似然函数是.3. 设总体 X 的概率分布列为:X 012 3P p 2 2 p(1 -p ) p2 1- 2p 其中 p (0 p 1/ 2)是未知参数. 利用总体 X 的如下样本值:1 ,3,0,2,3,3,1,3则 p 的矩估计值为__ ___ ,极大似然估计值为.4. 设总体 X 的一个样本如下:,,,,则该样本的数学期望E(X ) 和方差 D(X ) 的矩估计值分别_ ___.5. 设总体 X 的密度函数为: f ( x) ( 1)x 0 x 10 其他,设 X 1 , , X n是X的样本,则的矩估计量为,最大似然估计量为.6. 假设总体 X ~ N( , 2),且 X 1 n X i , X1,X2, , X n 为总体 X 的一个样本,n i 1则 X 是的无偏估计 .7 设总体 X~N( , 2) , X1, X2, , X n为总体X的一个样本,则常数k=, 使nk X i X 为的无偏估计量 .i 18 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为S 40 .设电子管寿命分布未知,以置信度为0.95 ,则整批电子管平均寿命的置信区间为(给定 Z0. 05 1.645 , Z0.025 1.96 ).9设总体X~N( , 2), , 2 为未知参数,则的置信度为 1-的置信区间为.10某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为20.04 ,从某天生产的产品中随机抽取9 个,测得直径平均值为15 毫米,给定0.05则滚珠的平均直径的区间估计为. ( Z0.05 1.645 , Z 0.025 1.96)11.某车间生产滚珠,从某天生产的产品中抽取6 个,测得直径为:已知原来直径服从N ( ,0.06) ,则该天生产的滚珠直径的置信区间为,(0.05,Z0.05 1.645 , Z0.025 1.96).12.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12 个子样算得S 0.2 ,则的置信区间为(, 2 (11) 19.68 ,2 (11) 4.57 ).0.1 12 2第八章假设检验一、选择题1.关于检验的拒绝域W,置信水平, 及所谓的“小概率事件” , 下列叙述错误的是().A.的值即是对究竟多大概率才算“小”概率的量化描述B .事件 {( X1 , X 2 , , X n ) W |H0为真} 即为一个小概率事件C.设 W是样本空间的某个子集,指的是事件{( X1 , X 2 ,L , X n ) | H 0为真 }D.确定恰当的W是任何检验的本质问题2. 设总体 X~N( , 2 ), 2未知 , 通过样本X1, X2, , X n检验假设 H 0 : 0,要采用检验估计量 ( ).X 0B. X 0C.XD.XA.n S / n/ S/ n / n 3. 样本 X1, X 2, , X n来自总体 N ( ,122) ,检验 H 0 : 100 ,采用统计量( ).A. XB.X 100C.X 100D.X12 / n 12 / n S / n 1 S / n4设总体X ~ N( , 2 ), 2 未知 ,通过样本X1,X2, , X n检验假设 H 0 : 0,此问题拒绝域形式为.A. { X100 C} B. {X100 C } C. {X100 C} D. { X C}S / 10 S / n S / 105.设X1, X2, , X n为来自总体N ( ,32 ) 的样本,对于H 0 : 100 检验的拒绝域可以形如() .. { X C} { X 100 C} X 100C} { X 100 C}A B. C. {n D.S /6 、样本来自正态总体N( , 2 ) , 未知 ,要检验H0: 2 100 , 则采用统计量为( ).A. (n 1)S2B.(n 1) S2C.Xn D.nS 22 100 100 1007、设总体分布为N ( , 2),若已知,则要检验H0: 2 100 ,应采用统计量 ( ).n 2 n 2A. XB. (n 1)S2C. i 1 ( X i )D.i 1( Xi X ) S / n 2 100 100二、填空题1.为了校正试用的普通天平 , 把在该天平上称量为 100 克的 10 个试样在计量标准天平上进行称量 , 得如下结果 :, , , 101,2,,假设在天平上称量的结果服从正态分布, 为检验普通天平与标准天平有无显著差异, H0 为.2.设样本X1, X2, , X25来自总体 N( ,9), 未知.对于检验 H 0 : 0,H1: 0,取拒绝域形如X 0 k ,若取a 0.05,则 k 值为.第六章样本及抽样分布答案一、选择题1. ( C )2. ( C ) 注:统计量是指不含有任何未知参数的样本的函数3. ( D )对于答案 D, 由于 X i~ N (0,1), 1,2, , n ,且相互独立,根据 2 分布的定义有i Ln ) 2( X i2i 1(n)2~ x4.(C)注:X 11~ t (n 1 1) 才是正确的 .S 1 / n 15.(D)6C) 注: X ~ N(0,1),X ~ t(n 1)才是正确的 nS nP X 12 1 2PX 12 1 12PX1225 12512(5)1299222X i XX 9 Xi 2859 257.(A)S 2 i 11i 19 17.5 988.(A) 9.(B)解:由题意可知X 1 2X 2 ~ N(0,20) , X 3X 4 X 5 ~ N (0,12) ,X 6 X 7 X 8X 9 ~ N (0,16) ,且相互独立,因此222X 1 2X 2X 3 X 4 X 5X 6 X 7X 8 X 9 ~ 23,201216即 a1, b1, c120121610(A)999解:X i ~ N (0,9 2 )X i 9 ~ N 0,1 , Y i 2 9 ~29i 1i 1i 19X i 9由 t 分布的定义有i 1~t 992Y i 81i 1二、填空题1.与总体同分布,且相互独立的一组随机变量 2. 代表性和独立性 23.,n4. 0.16.2( n 1)第七章 参数估计一、选择题1. 答案: D.222?21 n2?1 n[ 解 ] 因为E(X )A 2X i,E (X) ,E(X )X i ,E( X ) A 1n i 1n i 1所以, ? 2?2?2( X )1n2.E( X) E( X i X )n i 12. 答案: A.[ 解 ] 因为似然函数 11 ,当 amax X i 时, L(a) 最大,L(a)(max X i ) n a nii所以, a 的最大似然估计为max{ X 1 , X 2 , , X n } .3答案A.n[ 解] 似然函数 L( ,2)i 11 exp 12 ( xi) 2 ,22由ln L 0, 2 ln L 0 ,得2A 2 .4. 答案 C.[ 解]在上面第 5题中用取代 X 即可.5答案 B.6. 答案 C. 7 答案 D. 8. 答案 D.9. 答案 B.二、填空题:1. 矩估计和最大似然估计;2.p(x i ; ) ,f ( x i ; );i i.31 , ; 4816/82,令 E(X)[ 解 ] ( 1) p 的矩估计值 X X i 3 4 pX ,i 1得 p的矩估计为p (3 X ) / 4 1/ 4 .?( 2)似然函数为8x i ) P( X 0)[ P( X 1)] 2P( X 2)[ P( X 3)] 4L( p)P( Xi 14 p(1 p) 2 (1 2 p)4ln L( p) ln 46ln p 2 ln(1 p) 4 ln(1 2 p)令 [ ln L ( p)]6 1 2 1 8 0 ,12 p 2 14 p 3 0pp2 pp (7 13) /12 . 由 0 p1/ 2 ,故 p (713) /12 舍去所以 p的极大似然估计值为 p (713) /120.2828 .?4、 ,;?? 2iX i 222[ 解 ]由矩估计有:),又因为 D(X) E( X ) [E(X)],E(X ) X,E(Xn?X 1.7 1.75 1.71.65 1.75 1.71所以 E(X)5?1n2( X iX )0.00138 .且D(X)n i 1n2X 1, n ln X i5、?? i 1 ;1 X n ln Xii 1[ 解 ] ( 1)的矩估计为:11 2 11E(X ) x ( 1) x d x x2 0 2样本的一阶原点矩为:1 nx i Xn i 1所以有:1 X ? 2X 12 1 X( 2)的最大似然估计为:n nL ( X 1 , , X n; ) ( 1) X i ( 1) n ( X i )i 1 i 1nln L n ln( 1) ln X ii 1d ln L n nln X i 0d 1 i 1n得:? n ln X ii 1.nln X ii 16、;[ 解] E(X) 1 nE( X i ) n .nn i 17、;2n(n1)[ 解] 注意到X1, X2, , X n的相互独立性,X i1X1 X2 (n 1) X i X n Xnn 1E( X i X ) 0, D ( X i 2X )n所以, X i X ~ N (0, n1 2),nz21n 1 22E(| X i X |) | z | e n dzn 12nz21 n 12 2 n 12 z e 2 dzn0 n 1 22nn nkn 2n 1因为: E k | X i X | k E | X i X |i 1 i 1 2 n所以, k2n( n 1).8、. [ , ] ;[ 解 ] 这是分布未知,样本容量较大,均值的区间估计,所以有:X 1000, S 40, 0.05 , Z 0.025 1.96 的 95%的置信区间是:[ X SZ0.025 , X S Z0.025 ] [ 992.16,1007.84] . n n9、(X St (n 1), XSt (n 1)) ;n 2 n 2[ 解 ] 这是 2 为未知的情形,所以X ~ t(n 1) .S / n10、 [ , ] ;[ 解 ] 这是方差已知均值的区间估计,所以区间为:[ x Z , xn Z ]n 2 2 由题意得: x 15 2 0.04 0.05 n 9 ,代入计算可得:[15 0.2 1.96,15 0.2 1.96] ,化间得:[14.869,15.131] .9 911、 [ ,];[ 解 ]这是方差已知,均值的区间估计,所以有:置信区间为: [ Xn Z , XnZ ]2 2由题得: X 1 (14.6 15.1 14.9 14.8 15.2 15.1) 14.95 60.05 Z0.025 1.96 n 6代入即得: [14.95 0.06 1.96,14.95 0.06 1.96]6 6所以为: [14.754,15.146]12、.[,];[ 解 ] 由2(n 1)S 2 2 得:1 22 22 (n 1) S2, 2(n 1)S22 2212所以的置信区间为: [ (n 1) S2,(n 1)S22 (11) 2] ,(11)212将 n 12 , S 0.2 代入得[ 0.15 , 0.31 ]. 第八章假设检验一、选择题、、、、、、、二、填空题1.1002.。
概率论与数理统计习题解答全稿(-)(DOC)
习题一1.设C B A ,,为随机试验的三个随机事件,试将下列事件用C B A ,,表示出来.(1)仅仅A 发生;(2)所有三个事件都发生;(3)A 与B 均发生,C 不发生;(4)至少有一个事件发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)没有一个事件发生;(9)不多于两个事件发生.解:(1)C B A ;(2)ABC ;(3)C AB ;(4)C B A ;(5)AC BC AB ;(6)C B A C B A C B A ;(7)C AB C B A BC A ;(8)C B A ;(9)ABC .2.写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子的点数之和;(2)将一枚硬币抛三次,观察出现正反面的各种可能结果;(3)对一目标进行射击,且到击中5次为止,记录射击的次数;(4)将一单位长的线段分为三段,观察各段的长度;(5)从分别标有号码1,2, ,10的10个球中任意取两球,记录球的号码.解:(1){3,4,5, ,18};(2){}TTT THT TTH THH HTT HTH HHT HHH ,,,,,,,;(3) {5,6,7, };(4) }{1,0,0,0:),,(=++>>>z y x z y x z y x ;(5)}{n m n m n m ≠≤≤≤≤,101,101:),(.3.将12个球随机地放入20个盒子,试求每个盒子中的球不多于1个的概率.解:设)(A P 表式所求的概率,则:12122020!12.)(C A P =≈0.01473. 4.将10本书任意地放在书架上,其中有一套4卷成套的书,求下列事件的概率:(1)成套的书放在一起;(2)成套的书按卷次顺序排好放在一起.解: (1)设)(A P 表示所求的概率,则:)(A P =301!10!4!7=⋅. (2)设)(B P 表示所求的概率,则:)(B P =7201!10!7=. 5.一辆公共汽车出发前载有5名乘客,每一位乘客独立的在七个站中的任一个站离开,试求下列事件的概率:(1)第七站恰好有两位乘客离去;(2)没有两位及两位以上乘客在同一站离去. 解:5名乘客在七个站中的任意一个站离开的结果总数57=n .(1)第七站恰好有两位乘客离去,其方法数3256⋅=C m ,故设)(A P 为所求概率,则:1285.076)(5325=⋅=C A P . (2)设=B {没有两位及两位以上乘客在同一站离去},则:1499.07!5)(557=⋅=C B P . 6.有一个随机数发生器,每一次等可能的产生9,,2,1,0 十个数字,由这些数字随机编成的n 位数码(各数字允许重复),从全部n 位数码中任意选取一个,其最大数字不超过k (9≤k )的概率.解:设)(A P 表式所求的概率,则由全部n 位数码的总数为n10,得:n nk A P 10)1()(+=. 7.一元件盒中有50个元件,期中25件一等品,15件二等品,10件次品,从中任取10件,求:(1)恰有两件一等品,两件二等品的概率;(2)恰有两件一等品的概率;(3)没有次品的概率.解:(1)设)(A P 为所求概率,则:41050610215225104397.6)(-⨯=⋅⋅=C C C C A P . (2)设)(B P 为所求概率,则:03158.0)(1050825225=⋅=C C C B P . (3)设)(C P 为所求概率,则:0825.0)(10501040==C C C P . 8.有10个人分别佩戴者标号从1号到10号的纪念章,任意选出3人,记下其纪念章的号码,试求:(1)最小的号码为5的概率;(2)最大的号码为5的概率.解:从10人中任意选3人纪念章号码的总数为310C n =,(1)最小号码为5,则余下2个在6—10中选,即25C m =,设)(A P 为所求概率,则: 083.0)(31025==C C A P . (2)同理设)(B P 为所求概率,则:05.0)(31024==C C A P . 9.设事件B A ,及B A 的概率分别为q p ,和r ,试求:)(),(),(),(B A P B A P B A P AB P . 解:r q p B A P B P A P AB P -+=-+=)()()()( ;p r A P A B P A B P B A P -=-=-=)()()()( (单调性); q r B P B A P B A P B A P -=-=-=)()()()( (单调性);r B A P B A P B A P -=-==1)(1)()( .10.一批产品共100件,其中5件不合格.若抽检的5件产品中有产品不合格,则认为整批产品不合格,试问该批产品被拒绝接收的概率是多少?解:(法一)设i A ={抽检的5件产品中第i 件不合格},i =1,2,3,4,5则所求概率为:∑===5151)()(i i i i A P A P )()()()()(54321A P A P A P A P A P ++++= 2304.0510055510019545510029535510039525510049515≈++++=C C C C C C C C C C C C C C . (法二) 2304.01)(1)(5100595051≈-=-==C C A P A P i i . 11.设A 和B 是试验E 的两个事件,且21)(,31)(==B P A P ,在下述各种情况下计算概率)(A B P :(1)B A ⊂;(2)A 和B 互不相容;(3)81)(=AB P . 解:(1)613121)()()()(=-=-=-=A P B P A B P A B P .(2)21)()(==B P A B P . (3)838121)()()()(=-=-=-=AB P B P A B P A B P . 12.现有两种报警系统A 与B ,每种系统单独使用时,系统A 有效的概率为0.92,系统有效的概率为0.93 .装置在一起后,至少有一个系统有效的概率则为0.988,试求装置后:(1)两个系统均有效的概率;(2)两个系统中仅有一个有效的概率.解:(1)所求概率为)(AB P ,得:)()()()(B A P B P A P AB P -+=862.0988.093.092.0=-+=;(2)所求概率为)(B A B A P ,得:)(B A B A P )()(B A P B A P +=)()()()(AB P B P AB P A P -+-=126.0862.0293.092.0=⨯-+=.13.10把钥匙上有3把能打开门,今任取2把,求能打开门的概率.解:(法一)从10把钥匙中任取2把的试验结果总数45210==C n ,能打开门意味着取到的二两把钥匙至少有一把能打开门,其取法数24171323=+=C C C m ,故设)(A P 为所求概率,则:158)(210231713=+=C C C C A P .(法二)记A 为“能打开门”,则=A “两把钥匙皆开不了门”,于是158452111)(1)(21027=-=-=-=C C A P A P . 14.一个盒子中有24个灯泡,其中有4个次品,若甲从盒中随机取走10个,乙取走余下的14个,求4个次品灯泡被一人全部取走的概率.解:设=A {次品灯泡全部被甲取走},=B {次品灯泡全部被乙取走},则B A ,互不相容,所求概率为:)()()(B P A P B A P += 1140.0424414424410=+=C C C C . 15.设将5个球随意地放入3个盒子中,求每个盒子内至少有一个球的概率.解:5个球随意地放入3个盒子中事件总数53=n ,3个盒子中一个或两个盒子中有球数为332533153p C p C m ++=,设所求概率为)(A P ,则:8150331)(533253315=++-=p C p C A P . 16.已知1A 和2A 同时发生,则A 必发生,证明:1)()()(21-+≥A P A P A P . 证明:由已知,A A A ⊂21,再由单调性,)()(21A P A A P ≤,则)()()()()(212121A A P A P A P A A P A P -+=≥,1)(021≤≤A A P .1)()()()()()()(21212121-+≥-+=≥∴A P A P A A P A P A P A A P A P .17.掷一枚均匀硬币直到出现三次正面才停止,问正好在第六次停止的情况下,第五次也是正面的概率是多少?解:设=A {第五次出现正面},=B {第六次停止},则:52)21()21()()()|(256146===C C B P AB P B A P . 18.证明:0)()|(>>A P B A P ,则)()|(B P A B P >. 证明:)()|()()()()|(B P B A P AB P A P AB P A B P =>=,即证. 19.设事件B A ,互不相容,且0)(>B P ,试证:)(1)()|(B P A P B A P -=. 证明:)(1)()()()|(B P A P B P B A P B A P -=互不相容. 20.将两颗均匀骰子同时掷一次,已知两个骰子的点数之和是奇数,求两个骰子的点数之和小于8的概率.解:此事件的样本空间由36个样本点组成,设=A {两个骰子的点数之和小于8},=B {两个骰子的点数之和是奇数},则3618)(=B P ,3612)(=AB P ,于是: 322131)()()|(===B P AB P B A P . 21.设10件产品中有4件是次品,从中任取两件,试求在所取得的产品中发现有一件是次品后,另一件也是次品的概率.解:设=A {所取得两件中至少有一件是次品},=B {所取得两件产品都是次品},B AB A B =∴⊂, .而321)(1)(21026=-=-=C C A P A P ,152)(21024==C C B P ,所求概率为:5132152)()()()()|(====A P B P A P AB P A B P . 22. 10件产品有6件是正品,4件次品,对它们逐一进行检查,问下列事件的概率是多少?(1)最先两次抽到的都是正品;(2)第一、三次抽到正品,第二、四次抽到次品;(3)在第五次检查时发现最后一个次品.解:设i A ={第i 次抽到的是正品},i =1,2,3,4,5,6.则 (1)3195106)|()()(12121=⋅=⋅=A A P A P A A P ; (2) )(4321A A A A P )|()|()|()(3214213121A A A A P A A A P A A P A P =141738594106=⋅⋅⋅=; (3) 设=B {第五次检查时发现最后一个次品},则2104)(151********=*=C C C C C B P . 23.某人忘记电话号码的最后一个数字,他仅记得最末一位数字是偶数.现在他试着拨最后一个号码,求他拨号不超过三次而接通电话的概率.解:设=A {接通电话},=i B {拨号i 次},i =1,2,3.i B 构成样本空间的一个划分,由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=532110321522121=⨯+⨯+⨯=. 24.某型号的显像管主要由三个厂家供货,甲、乙、丙三个厂家的产品分别占总产品和的25%、50%、25%,甲、乙、丙三个厂的产品在规定时间内能正常工作的概率分别是0.1、0.2、0.4,求一个随机选取的显像管能在规定时间内正常工作的概率.解:设A ={能在规定时间内正常工作},i B ={选取第i 个厂家的产品},i =1,2,3.则由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=225.04.025.02.05.01.025.0=⨯+⨯+⨯=.25.两批同类产品各自有12件和10件,在每一批产品中有一件次品,无意中将第一批的一件产品混入第二批,现从第二批中取出一件,求第二批中取出次品的概率.解:设=B {第二批中取出次品},=A {第一批的次品混入第二批},A A ,构成样本空间的一个有限划分,由全概率公式:0985.01111211112121)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P . 26.在一个盒子中装有15个乒乓球,其中有9个新球,在第一次比赛时任意取出三个球,比赛后仍放回原盒中,第二次比赛时,同样任意的取出三个球,求第二次取出三个新球的概率.解:设B={第二次取出3个新球}.可以看出,直接确定B 的概率)(B P 是困难的,原因是,第一次比赛之后,12个乒乓球中的新、旧球的分布情况不清楚,而一旦新旧球的分布情况明确了,那么相应的概率也容易求得.为此,设i A ={第一次取到的3个球中有i 个新球}, i =0,1,2,3.容易判断3210,,,A A A A 构成一个划分.由于3,2,1,0,)(315369==-i C C C A P i i i ,又3,2,1,0,)|(31539==-i C C A B P i i . 由全概率公式,得:)|()()(30i i i A B P A P B P ∑==∑=--=3023*******)(i i i i C C C C 0893.02070251680756075601680≈+++=. 27.仓库中存有从甲厂购进的产品30箱,从乙厂购进的同类产品25箱,甲厂的每箱装12个,废品率为0.04,乙厂的每箱装10个,废品率0.05,求:(1)任取一箱,从此箱中任取一个为废品的概率;(2)将所有产品开箱后混放,任取一个为废品的概率.解:(1)设=B {取出的是废品},=A {从甲厂取出},A A ,构成一个划分,则)|()()|()()(A B P A P A B P A P B P +=0441.005.010251230102504.0102512301230=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2) 0441.010********.0102504.01230=⨯+⨯⨯⨯+⨯⨯ 28.已知一批产品中96%是合格品,用某种检验方法辨认出合格品为合格品的概率是0.98,而误认废品是合格品的概率是0.05,求检查合格的一件产品确系合格的概率.解: 设A ={检查合格产品},B ={确系合格}.由已知,05.0)|(,98.0)|(,96.0)(===B A P B A P B P , 由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 9979.005.004.098.096.098.096.0≈⨯+⨯⨯=. 29.已知5%的男人和0.25%的女人是色盲者,现随机挑选一人,此人恰为色盲者,问此人 是男人的概率为多少(假设男人女人各占总人数的一半).解:设=A {色盲者},=B {男人}, B B ,构成样本空间的一个划分,且05.0)|(=B A P , 0025.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P = )|()()|()()|()(B A P B P B A P B P B A P B P +=9524.00025.02105.02105.021=⨯+⨯⨯=. 30.设某种病菌在人口中的带菌率为0.03,由于检验手段不完善,带菌者呈阳性反应的概 率为0.99,而不带菌者呈阳性反应的概率为0.05,若某人检查结果是呈阳性反应,他是带菌者的概率是多少?解:设=A {结果呈阳性},=B {是带菌者},则B B ,构成样本空间的一个划分,且 99.0)|(=B A P ,05.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 3798.005.097.099.003.099.003.0=⨯+⨯⨯=. 31.证明:如果)|()|(B A P B A P =,则事件A 和B 相互独立. 证明:由已知和条件概率公式,有)()()()(B P B A P B P AB P =,即)()()()(AB P B P B A P B P =, 即)())(1()()(AB P B P AB A P B P -=-,又A AB ⊂,上式得:)()](1[)]()()[(AB P B P AB P A P B P -=-,有)()()(B P A P AB P =,即A 和B 相互独立.32.设一个n 位二进制数是由n 各“0”或“1”数字组成,每一位出现错误数字的概率是p ,各位数字出现错误与否是独立的,问组成一个不正确的这类二进制数的概率是多少? 解:每一位出现正确数字的概率是p -1,由已知,各位数字出现正确与否也是独立的,于是所求概率nP A P )1(1)(--=.33.设事件C B A ,,相互独立,且21)(,31)(,41)(===C P B P A P ,试求: (1)三个事件都不发生的概率;(2)三个事件中至少有一个事件发生的概率;(3)三个事件中恰有一个事件发生的概率;(4)至多有两个事件发生的概率.解:(1)41)211)(311)(411()()()()(=---==C P B P A P C B A P ; (2)43411)(1)(=-=-=C B A P C B A P ; (3))(C B A C B A C B A P )()()(C B A P C B A P C B A P ++=2411213243213143213241=⋅⋅+⋅⋅+⋅⋅=; (4))()()(1)(1C P B P A P ABC P -=-24232131411=⋅⋅-=. 34.甲袋中有3只白球,7只红球,15只黑球;乙袋中有10只白球,6只红球,9只黑球.从两袋中各取一球,试求两球颜色相同的概率.解:设C B A ,,表示两球同为白色、红色和黑色,C B A ,,互不相容,则所求概率为:)()()()(C P B P A P C B A P ++= 3312.025925152562572510253=⨯+⨯+⨯=. 35.两部机床独立的工作,每部机床不需要工人照管的概率分别为0.9和0.85,试求:(1)两部均不需照管的概率; (2)恰有一部需要照管的概率;(3)两部同时需要照管的概率.解:设=A {甲机床不需要工人照管},=B {乙机床不需要工人照管},则9.0)(=A P ,85.0)(=B P ,(1)765.085.09.0)()()(=⨯==B P A P AB P (2))()()()()()()(B P A P B P A P B A P B A P B A B A P +=+=22.085.01.015.09.0=⨯+⨯= (3) 015.015.01.0)()()(=⨯==B P A P B A P .36.求下列系统(图1.6)能正常工作的概率,其框图的字母代表组件,字母相同,下标不同的均为同一类组件,知识装配在不同的位置,A 类组件正常工作的概率为a γ,B 类组件正常工作的概率为b γ,C 类为c γ.解:(1)所求概率为)]()()()[()()()]([BC P C P B P A P C B P A P C B A P -+==c b a c a b a γγγγγγγ-+=.(2)所求概率为)()()()()(5421635241635241A A A A P A A P A A P A A P A A A A A A P -++= )()()(65432165326431A A A A A A P A A A A P A A A A P +--,又654321,,,,,A A A A A A 相互独立,则)33(33)(422642635241a a a a a a A A A A A A P γγγγγγ+-=+-= .(3)所求概率为 )()()()]())([(22112211n n n n B A P B A P B A P B A B A B A P =)]()()([)]()()()][()()([22221111n n n n B A P B P A P B A P B P A P B A P B P A P -+-+-+= n b a b a )(γγγγ-+=.习题二1、一批晶体管中有9个合格品和3个不合格品,从中任取一个安装在电子设备上,如果取出不合格品不再放回,求在取得合格品以前已取出的不合格品数的概率.解:设在取得合格品以前已取出的不合格品数为随机变量X ,则X 的所有可能取值为:0,1,2,3。
(完整版)概率论与数理统计练习题附答案详解
第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。
《概率论和数理统计》第三版-课后习题及答案解析.
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
(完整word版)概率论与数理统计练习题练习题及参考答案
《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布;2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;3.(√)设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 4.若事件A 与B 互斥,则A 与B 一定相互独立; 5.对于任意两个事件B A 、,必有=B A B A ;6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 7.(√)B A 、为两个事件,则A B A AB = ; 8.(√)已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ;9.(√)设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量;10.(√)回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。
二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示为C AB 2.设随机变量X 服从二项分布),(p n B ,则=EXDXp -1: 3.⎪⎩⎪⎨⎧≤≤-=,,,0,1)(其他b x a a b x f 是 均匀 分布的密度函数;4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =分布函数; 5.设随机变量X 的概率分布为则=a )()(Y D X D +; 6.设随机变量X 的概率分布为则12+X 的概率分布为222)(21σμπσ--x e7.若随机变量X 与Y 相互独立,2)(,)(==Y E a X E ,则=)(XY E )()(y f x f Y X ⋅8.设1θ 与2θ 是未知参数θ的两个 0.99 估计,且对任意的θ满足)()(21θθ D D <,则称1θ 比2θ有效;9.设n X X X ,,,21 是从正态总体),(2σμN 抽得的简单随机样本,已知202σσ=,现检验假设0μμ=:H ,则当222121)()(n n Y D X D σσ+=+时,0)(σμ-X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平α(10<<α),则犯第一类错误的概率是 α.三、计算题1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验概率论与数理统计分册习题第1章古典概率2.碰运气能否通过英语四级考试大学英语四级考试是全面检验大学生英语水平的一种综合考试,具有一定难度。
这种考试包括听力、语法结构、阅读理解、写作等。
除写作占15分外,其余85道为单项选择题,每道题附有A、B、C、D 四个选项。
这种考试方法使个别学生产生碰运气和侥幸心理,那么,靠运气能通过英语四级考试吗?解:假设学生作文得满分,即15分,85道选择题每道题都靠蒙,即每道题做对的概率为1/4,得60分则通过考试。
则该同学通过考试的概率为:P=4540 45851344C⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>> nchoosek(85,40)*(1/4)^45*(3/4)^40ans =2.3448e-008即:82.344810-⨯由此可见,即使该同学作文满分,靠运气通过考试的概率也是如此的低,所以可以认为靠运气不能通过英语四级考试。
3.在区域H={(x,y)| (x,y)∈Q,x2+y2≤1},Q={(x,y)|0≤x≤1,0≤y≤1}上考虑计算二重积分(利用Monte-carlo法):⎰⎰++=HdxdyyxyxI) sin(解:积分区域如右图所示:>> n = 10000; % 模拟次数x = rand(n,1); % 点的x坐标y = rand(n,1); % 点的y坐标m = sum(sin(x+y)./(x+y) & x.^2 + y.^2 <= 1);Vn = m/n % 落到所求面积内的点的频率,即概率的模拟值Vn =0.78911第2章 随机变量及其分布4.公共汽车车门的高度是按成年男子与车门碰头的机会在0.01以下的标准来设计的。
根据统计资料,成年男子的身高X 服从均值为168厘米,方差为7厘米的正态分布,那么车门的高度应该至少设计为多少厘米? 解:>> norminv(0.99, 168, 7) ans =184.2844则车门的高度应该至少设计为184.3厘米5.某研究中心有同类型仪器300台,各仪器工作相互独立,而且发生故障的概率均为0.01,通常一台仪器的故障由一人即可排除。
试问:(1)为保证当仪器发生故障时,不能及时排除的概率小于0.01,至少要配多少个维修工人?(2)若一人包修20台仪器,仪器发生故障时不能及时排除的概率是多少?(3)若由3人共同负责维修80台仪器,仪器发生故障时不能及时排除的概率是多少?解: (1) 设X 表示300台仪器中发生故障的台数,则X B (300,0.01),设b 为需要配备的维修工人数,则应有P{X > b}≤0.01,即{}{}k 300k300P X b 1P X b 1C 0.010.99k ->=-≤=-⨯,由于n=300较大,p=0.01较小,根据泊松定理,可以用λ=np=3的泊松分布近似计算。
用Matlab 计算:>> poissinv(0.99,3)ans =8所以为达到要求至少需配备8名维修工人。
(2)设Y 表示20台仪器中发生故障的台数,则Y ~B (20,0.01)。
若在同一时刻发生故障的仪器数Y≥2,则一个工人不能维修,此概率为{}{}{}2011920p1P Y 21P Y 0P Y 110.990.010.99C =≥=-=-==--⨯⨯,用Matlab 计算:>> 1-0.99^20-nchoosek(20,1)*0.01*0.99^19ans =0.0169则仪器发生故障时不能及时排除的概率是0.0169。
(3)设Z 表示80台仪器中发生故障的台数,则Z~B (80,0.01)。
若在同一时刻发生故障的仪器数Z≥4,则由三个工人共同负责保修时不能及时维修,此概率为{}{}{}{}{}8017922783377808080p2P Z 41P Z 0P Z 1P Z 2P Z 310.990.010.990.010.990.010.99C C C =≥=-=-=-=-==--⨯⨯-⨯⨯-⨯⨯用Matlab 计算: >>1-0.99^80-nchoosek(80,1)*0.01*0.99^79-nchoosek(80,2)*0.01^2*0.99^78-nchoosek(80,3)*0.01^3*0.99^77ans =0.0087则仪器发生故障时不能及时排除的概率是0.0087。
6.某糖果生产厂将产品包装成500克一袋出售,在众多因素的影响下包装封口后一袋的重量是随机变量,设其服从正态分布N(m ,b 2),其中b 已知,m 可以在包装时调整,出厂检验时精确地称量每袋重量,多余500克的仍按500克一袋出售,因而厂家吃亏;不足500克的降价处理,或打开封口返工,或直接报废,这样厂方损失更大,问如何调整m 的值使得厂方损失最小? 解:假设b=1 【实验方案】1.设定x 为产品包装后的重量,依题意x 为一随机变量,且服从正态分布N(m ,b 2),概率密度函数为:222)(21)(b m x ebx f --=π,(-∞<x<+∞),b>0为已知,m 待定。
当成品重量M 给定后,记:P =P(x≥M)=()M f x dx ∞⎰ P ’=P( x<M) =()Mf x dx -∞⎰ 故而有 : P +P’=1由以上分析,可将上式的第一项作为目标函数J(m):J(m)=)(m P m,P(m)表示概率P =P(x≥M)是m 的函数 分析题意可知,厂方损失Y 由两部分组成: (1)x≥L 时,多余部分,重量为(x -L ); (2)x<L 时,整袋报废,重量为x ; Y =()()()MM x M f x dx xf x dx ∞-∞-+⎰⎰=m -MP2.上式中的Y 即为没生产一袋糖果所损失的平均重量,所以生产N 袋糖果,得到N P 袋成品,损失总重量为(mN -MN P ),因此每得到一袋成品所损失糖果的平均重量J 1为:J 1=mN MPN mM PN P-=-3.求函数J(m)的最小值点即可。
4.问题的简化:设F(x)为正态分布N(m ,b 2)的分布函数,Φ(x)为标准正态分布的分布函数,则,J(m)=)(m P m =1()m F M -=1()mM m b--Φ令c =b m ,d =Mb,z =d -c 则上式可简化为: J(z)=1()M bzz --Φ 【实验过程】1.生成目标函数:在Matlab 的Medit 建立文件Jmin .m : function J=Jmin(m)J=m/(1-normcdf( (500-m),0,1)); 2.画目标函数的图形:在Matlab 的Medit 窗口建立文件figer .m : for m=5000:0.001:510 J=Jmin(m); plot(m,J) hold on end运行结果为:从目标函数的图形可以看出,函数在500到505内取得最小值,而且当自变量向500逼近时,函数图像值急剧上升,自变量从503开始以后,函数图像接近于一条直线。
3.目标函数的最小值和最小值点的计算:在Matlab的Medit建立文件minwaste.m:min=600;minm=0;for m=500:0.001:530J=Jmin(m);if J<=minmin=J;minm=m;endendwasteaverage=min-500;minm,min,wasteaverage运行后运行结果为:minm =503.2570min =503.5405wasteaverage =3.5405即当m=503.2570时,目标函数值最小,最小值为503.5405,此时,生产一袋成品所损失糖果的平均重量J1 =3.5405。
第3章随机变量的数字特征1.设有标着1,2,…,9号码的9只球放在一个盒子中,从其中有放回地取出4只球,重复取100次,求所得号码之和X的数学期望及其方差。
解:在MATLAB命令窗口输入:>> n = 100;sele = [];for ii = 1:nsort = randperm(9);sele(:,ii) = sort(1:4);endsigma = sum(sele);Ex = mean(sigma), Dx = var(sigma)输出结果为:Ex =19.7000Dx =15.50512.假定国际市场上每年对我国某种出口商品需求量ξ是随机变量(单位:吨),它服从[2000, 4000]上的均匀分布。
如果售出一吨,可获利3万元,而积压一吨,需支付保管费及其它各种损失费用1万元,问应怎样决策才能使收益最大?解:每年生产该商品x吨,收益为y,故y与需求量ξ有关,也于生产量x有关,即:3()3()()x x y x x ξξξξ⎧≤=⎨-->⎩ 而x 的密度函数1()2000p ξ=,(20004000)x ≤≤ 40002000()2000yEy y p d d ξξξ+∞-∞=⋅=⎰⎰ 4000200023()320007000400000001000xxx d xd x x ξξξξ--+=-+-=⎰⎰通过对Ey 求导,令2700001000x Ey -+'==得到当3500x =吨时, Ey 达到最大值8250万元 。
在Matlab 命令窗口输入:>> syms x zita1=3*x; % x < z ita2=3*z-(x-z); % x>z phix=1/2000;Eita=simplify(int((ita2)*(phix),z,2000,x)+int((it a1)*(phix),z,x,4000))dif=diff(Eita,x) x=solve(dif) E=eval(Eita) 输出结果为Eita =7*x - x^2/1000 - 4000 dif =7 - x/500x =3500E =82503.某厂生产的某种型号的细轴中任取20个,测得其直径数据如下(单位:mm):13.26,13.63,13.13,13.47,13.40,13.56,13.35,13.56,13.38,13.20,13.48,13.58,13.57,13.37,13.48,13.46,13.51,13.29,13.42,13.69求以上数据的样本均值与样本方差。
解:在MATLAB命令窗口输入:X=[13.26,13.63,13.13,13.47,13.40,13.56,13.35,13.56,13.38,13.20,13.48,13.58,13.57,13.37,13.48,13.46,13.51,13.29,13.42,13.69];j=mean(X),f=var(X)输出结果为:j =13.4395f =0.02114.将一枚硬币重复掷n次,并以X,Y分别表示出现正面和反面的次数.求X和Y的相关系数。