matlab实现求图的连通分量算法

matlab实现求图的连通分量算法
matlab实现求图的连通分量算法

该算法主要是仿照c中利用先深搜索算法求图的连通分量的算法改写的。

该算法假设有20个点,1号和2、4号相连,2号和3号相连,5号和6、7号相连,8号和9号相连,其他点都是孤立点。

结果图如下:

代码如下:

clear

N_TASK=20; %N_TASK任务的总个数

%随机生成任务点的坐标

x=rand(N_TASK,1);

x=x*N_TASK;

y=rand(N_TASK,1);

y=y*N_TASK;

for i=1:N_TASK

z(i).x=x(i);

z(i).y=y(i);

z(i).mark=0;

z(i).next=0;

z(i).next(2)=0;

z(i).next(3)=0;

z(i).groupnumber=0;

end

%使用z的next域表示点的下一个连接点

z(1).next(1)=2;

z(2).next(1)=3;

z(1).next(2)=4;

z(5).next(1)=6;

z(5).next(2)=7;

z(8).next(1)=9;

%使用邻接矩阵表示点与点之间的链接关系

z_neighbors=zeros(N_TASK,N_TASK);

z_neighbors(1,2)=1;

z_neighbors(2,3)=1;

z_neighbors(1,4)=1;

z_neighbors(5,6)=1;

z_neighbors(5,7)=1;

z_neighbors(8,9)=1;

%使用递归的方法对图进行先深搜索求图的连通分量z=dfs_main(z);

%画点

for i=1:N_TASK

plot(z(i).x,z(i).y,'k*');

hold on

end

% 画出连线

x1=[z(1).x z(2).x];

y1=[z(1).y z(2).y];

x2=[z(2).x z(3).x];

y2=[z(2).y z(3).y];

x3=[z(1).x z(4).x];

y3=[z(1).y z(4).y];

x4=[z(5).x z(6).x];

y4=[z(5).y z(6).y];

x5=[z(5).x z(7).x];

y5=[z(5).y z(7).y];

x6=[z(8).x z(9).x];

y6=[z(8).y z(9).y];

plot(x1,y1,'r*-');

hold on

plot(x2,y2,'r*-');

hold on

plot(x3,y3,'r*-');

hold on

plot(x4,y4,'r*-');

hold on

plot(x5,y5,'r*-');

hold on

plot(x6,y6,'r*-');

hold on

grid on

function results = dfs_main(z)

k=0;

for i=1:20;

if(z(i).mark==0)

k=k+1;

fprintf('第%d个连通分量的顶点集为:\n{',k);

z=dfs(z,i);

fprintf('}\n');

end

end

results = z;

function results = dfs(z,i)

fprintf('%d',i);

z(i).mark=1;

k=1;

while(z(i).next(k)~=0)

p=z(i).next(k);

if(z(p).mark==0)

z=dfs(z,p);

end

k=k+1;

end

results=z;

图的连通性总结

图的连通性总结 boboo 目录 1.图的遍历及应用 1.1.DFS遍历 1.2.DFS树的边分类 1.3.DFS树的性质 1.4.拓补排序 1.5.欧拉回路 2.无向图相关 2.1求割顶 2.2求图的桥 2.3求图的块 3.有向图相关 3.1求强连通分量(SCC划分) 3.2求传递闭包 4.最小环问题

一、图的遍历及应用 1.1 DFS遍历 DFS是求割顶、桥、强连通分量等问题的基础。 DFS对图进行染色, 白色:未访问; 灰色:访问中(正在访问它的后代); 黑色:访问完毕 一般在具体实现时不必对图的顶点进行染色,只需进行访问开始时间和访问结束时间的记录即可,这样就可以得出需要的信息了。 -发现时间D[v]:变灰的时间 -结束时间f[v]:变黑的时间 -1<=d[v]

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

数据结构图习题分解

第7章图 一、单项选择题 1.在一个无向图G中,所有顶点的度数之和等于所有边数之和的______倍。 A.l/2 B.1 C.2 D.4 2.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的______倍。 A.l/2 B.1 C.2 D.4 3.一个具有n个顶点的无向图最多包含______条边。 A.n B.n+1 C.n-1 D.n(n-1)/2 4.一个具有n个顶点的无向完全图包含______条边。 A.n(n-l) B.n(n+l) C.n(n-l)/2 D.n(n-l)/2 5.一个具有n个顶点的有向完全图包含______条边。 A.n(n-1) B.n(n+l) C.n(n-l)/2 D.n(n+l)/2 6.对于具有n个顶点的图,若采用邻接矩阵表示,则该矩阵的大小为______。 A.n B.n×n C.n-1 D.(n-l) ×(n-l) 7.无向图的邻接矩阵是一个______。 A.对称矩阵B.零矩阵

C.上三角矩阵D.对角矩阵 8.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则表头向量的大小为______。 A.n B.e C.2n D.2e 9.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则所有顶点邻接表中的结点总数为______。 A.n B.e C.2n D.2e 10.在有向图的邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。 A.入边B.出边 C.入边和出边D.不是入边也不是出边 11.在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。 A.入边B.出边 C.入边和出边D.不是人边也不是出边 12.如果从无向图的任一顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是______。 A.完全图B.连通图 C.有回路D.一棵树 13.采用邻接表存储的图的深度优先遍历算法类似于二叉树的______算法。 A.先序遍历B.中序遍历 C.后序遍历 D.按层遍历

matlab判别图的连通性

《数学文化》课程报告 题目:MATLAB判别图的连通性 2016年 11月26日

MATLAB判别图的连通性 摘要 图论中,在无向图G中,结点u和v之间若存在一条路,则称结点u和结点v是连通的。若图G只有一个连通分支,则称G是连通图。 如果两点相邻接,则在矩阵中记为1,否则记为0,形成的矩阵称为邻接矩阵。若两点相互连通,则记为1,否则记为0,形成的矩阵称为可达性矩阵。 用矩阵表示图,可以在matlab中进行计算 关键词:连通性;matlab;矩阵;可达性

实验目的 给定n个结点的有向图,判断图的连通性,如果是连通图,判断是强连通图、弱连通图还是单侧联通图 实验原理与数学模型 对于给定的邻接矩阵A,求出A所表示的图的可达矩阵P。对于可达矩阵P 来说,如果P的所有元素均为1,则所给的有向图是强连通的;对于P的所有元素(除主对角线元素外)Pij来说,均有:Pij+Pji>0,则所给有向图是单向连通的。当所给有向图既不是强连通的,又不是单向连通的时候,我们改造邻接矩阵为:对于矩阵A中所有的元素(除主对角线的元素外)aij,若aij=1或aji=1,则1?aij且1?aji。对于这样改造之后所得到的新的矩阵A’(A’相当于原有向图忽略方向之后所得到的无向图的邻接矩阵),再用前面所述的方法进行判断,当P’的所有元素(除主对角线的元素外)均为1时,原有向图是弱连通图;否则,原有向图是不连通的。 实验内容(要点) 1.通过图的邻接矩阵计算可达性矩阵 2.通过可达性矩阵判断图的连通性 3.如果是连通图,判断图是强连通图、弱连通图还是单侧连通图 实验过程记录 计算可达性矩阵函数 function P=canget(A) n=length(A); P=A; for i=2:n P=P+A^i; end P=(P~=0); 主程序 clear A=input('Enter an Adjacency Matrix:'); P=canget(A);

7.4.1无向图的连通分量和生成树

7.4.1无向图的连通分量和生成树。

void DFSForest(Graph G,CSTree &T) //建立无向图G的深度优先生成森林的 //(最左)孩子(右)兄弟链表T。 { T=NULL; for(v=0;vnextSibling=p; //是其他生成树的根(前一棵的根的“兄弟”)。 q=p; //q指示当前生成树的根。 DFSTree(G,v,p); //建立以p为根的生成树。 }// if(!visited[v]) }// for(v=0;vlchild=p;first=FALSE; }// if(first) else //w是v的其它未被访问的邻接顶点 { //是上一邻接顶点的右兄弟节点。 q->nextsibling=p; }// else q=p; DFSTree(G,w,q); //从第w个顶点出发深度优先遍历图G,建立子生成树q。 }// if(!visited[w]) }// for(w=FirstAdjVex(G,v); }// DFSTree

求一个无向图G的连通分量的个数

《数据结构》实验报告 实验内容:(一)判断一个图有无回路 (二)求一个无向图G的连通分量的个数 一、目的和要求(需求分析): 1、了解图的定义和图的存储结构。 2、熟悉掌握图的邻接矩阵和邻接表。 3、理解图的遍历算法---深度优先搜索和广度优先搜索。 4、学会编程处理图的连通性问题。 二、程序设计的基本思想,原理和算法描述: (包括程序的结构,数据结构,输入/输出设计,符号名说明等) 判断一个图有无回路: 在程序设计中,先必须确定所要创建的图是有向还是无向,是图还是网,其次再根据各自的特点,用连接表来实现创建。 在有向图中,先找出入度为0的顶点,删除与这个顶点相关联的边(出边),将与这些边相关的其它顶点的入度减1,循环直到没有入度为0的顶点。如果此时还有未被删除的顶点,则必然存在环路,否则不存在回路。 无向图则可以转化为: 如果存在回路,则必然存在一个子图,是一个回路。因此回路中所有定点的度>=2。 第一步:删除所有度<=1的顶点及相关边,并将另外与这些边相关的其它顶点的度减1。 第二步:将度数变为1的顶点排入队列,并从该队列中(使用栈)取出一个顶点,并重复步骤一。 如果最后还有未删除的顶点,则存在回路,否则没有。 求一个无向图G的连通分量的个数: 用连接表创建图,对于非连通图,则需从多个顶点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其各个连通分量中的顶点集。所以在设计中,为了统计出无向图中的连通分量个数,则因在其深度优先所搜无向图时对函数DFSTraverse(ALGraph G)调用DFS次数进行统计,其结果便为无向图中连通分量个数。 三、调试和运行程序过程中产生的问题及采取的措施: 在调试和运行求一个无向图G的连通分量的个数程序时,由于执行语句块 void DFSTraverse(ALGraph G)先于void DFS(ALGraph G,int v), 而void DFSTraverse(ALGraph G)内调用了DFS( ),因此计算机无法正确运行,将两者顺序进行了交换,程序便实现了其功能,且运行正常。 四、源程序及注释:

基于MATLAB的图像处理字母识别

数字图像处理 报告名称:字母识别 学院:信息工程与自动化学院专业:物联网工程 学号:201310410149 学生姓名:廖成武 指导教师:王剑 日期:2015年12月28日 教务处制

目录 字母识别 1.---------------------测试图像预处理及连通区域提取 2.---------------------样本库的建立采集feature 3.---------------------选择算法输入测试图像进行测试 4.---------------------总结

字母识别 1.imgPreProcess(联通区域提取)目录下 conn.m:连通区域提取分割(在原图的基础上进行了膨胀、腐蚀、膨胀的操作使截取的图像更加接近字母) %%提取数字的边界,生成新的图 clear; clc; f=imread('5.jpg'); f=imadjust(f,[0 1],[1 0]); SE=strel('square',5); %%膨胀、腐蚀、膨胀 A2=imdilate(f,SE); SE=strel('disk',3) f=imerode(A2,SE) SE=strel('square',3); f=imdilate(f,SE); gray_level=graythresh(f); f=im2bw(f,gray_level); [l,n]=bwlabel(f,8) %%8连接的连接分量标注 imshow(f) hold on for k=1:n %%分割字符子句 [r,c]=find(l==k); rbar=mean(r); cbar=mean(c); plot(cbar,rbar,'Marker','o','MarkerEdgeColor','g','MarkerFaceColor',' y','MarkerSize',10); % plot(cbar,rbar,'Marker','*','MarkerEdgecolor','w'); row=max(r)-min(r) col=max(c)-min(c) for i=1:row for j=1:col seg(i,j)=1; end

有向图的强连通分量算法

有向图的强连通分量 分类:C/C++程序设计2009-04-15 16:50 2341人阅读评论(1) 收藏举报最关键通用部分:强连通分量一定是图的深搜树的一个子树。 一、Kosaraju算法 1.算法思路 基本思路: 这个算法可以说是最容易理解,最通用的算法,其比较关键的部分是同时应用了原图G和反图G T。(步骤1)先用对原图G进行深搜形成森林(树),(步骤2)然后任选一棵树对其进行深搜(注意这次深搜节点A能往子节点B走的要求是E AB存在于反图G T),能遍历到的顶点就是一个强连通分量。余下部分和 原来的森林一起组成一个新的森林,继续步骤2直到没有顶点为止。7 改进思路: 当然,基本思路实现起来是比较麻烦的(因为步骤2每次对一棵树进行深搜时,可能深搜到其他树上去,这是不允许的,强连通分量只能存在单棵树中(由开篇第一句话可知)),我们当然不这么做,我们可以巧妙的选择第二深搜选择的树的顺序,使其不可能深搜到其他树上去。想象一下,如果步骤2是从森林里选择树,那么哪个树是不连通(对于G T来说)到其他树上的

呢?就是最后遍历出来的树,它的根节点在步骤1的遍历中离开时间最晚,而且可知它也是该树中离开时间最晚的那个节点。这给我们提供了很好的选择,在第一次深搜遍历时,记录时间i离开的顶点j,即numb[i]=j。那么,我们每次只需找到没有找过的顶点中具有最晚离开时间的顶点直接深搜(对于G T来说)就可以了。每次深搜都得到一个强连通分量。 隐藏性质: 分析到这里,我们已经知道怎么求强连通分量了。但是,大家有没有注意到我们在第二次深搜选择树的顺序有一个特点呢?如果在看上述思路的时候,你的脑子在思考,相信你已经知道了!!!它就是:如果我们把求出来的每个强连通分量收缩成一个点,并且用求出每个强连通分量的顺序来标记收缩后的节点,那么这个顺序其实就是强连通分量收缩成点后形成的有向无环图的拓扑序列。为什么呢?首先,应该明确搜索后的图一定是有向无环图呢?废话,如果还有环,那么环上的顶点对应的所有原来图上的顶点构成一个强连通分量,而不是构成环上那么多点对应的独自的强连通分量了。然后就是为什么是拓扑序列,我们在改进分析的时候,不是先选的树不会连通到其他树上(对于反图GT来说),也就是后选的树没有连通到先选的树,也即先出现的强连通分量收缩的点只能指向后出现的强连通分量收缩的点。那么拓扑序列不是理所当然的吗?这就是Kosaraju算法的一个隐藏性质。

图的连通性判断

基于MATLAB的实现,此方法可以知道有几个连通域,并且知道各个顶点的归属。Branches中显示各个节点的归属,同一行的为同一连通分支中的节点。其第一列为它的分类数。 例如下图,有五个连通分支,1、2、3在同一个连通分支中。 这是上图的邻接矩阵,同一节点间为0。 Branches中的显示内容,第一列为连通分支数,后边跟着的是给连通分支中的节点。第一行就表示1、2、3为一个连通分支,4自己在一个连通分支中等等。 function [Branches,numBranch]=Net_Branches(ConnectMatrix) % ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % This program is designed to count the calculate connected components in networks. % Usage [Cp_Average, Cp_Nodal] = Net_ClusteringCoefficients(ConnectMatrix,Type) % Input: % ConnectMatrix --- The connect matrix without self-edges. % Output: % Branches --- A matrix, each rows of which represents the

% different connected components. % numBranch --- The numbers of connected components in network % % +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % Refer: % Ulrik Barandes % Written by Hu Yong, Nov,2010 % E-mail: carrot.hy2010@https://www.360docs.net/doc/8b10578527.html, % based on Matlab 2008a % Version (1.0),Copywrite (c) 2010 % Input check-------------------------------------------------------------% [numNode,I] = size(ConnectMatrix); if numNode ~= I error('Pls check your connect matrix'); end % End check---------------------------------------------------------------% Node = [1:numNode]; Branches = []; while any(Node) Quence = find(Node,1); %find a non-zero number in Node set subField=[]; %one component % start search while ~isempty(Quence) currentNode = Quence(1); Quence(1) = []; %dequeue subField=[subField,currentNode]; Node(currentNode)=0; neighborNode=find(ConnectMatrix(currentNode,:)); for i=neighborNode if Node(i) ~= 0 %first found Quence=[Quence,i]; Node(i)=0; end end end subField = [subField,zeros(1,numNode-length(subField))]; Branches = [Branches;subField]; %save end numBranch = size(Branches,1);

数据结构 第六章 图 练习题及答案详细解析(精华版)

图 1. 填空题 ⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵ 任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶ 图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度

⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路 ⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。 【解答】vi, vj, vk 【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。 2. 选择题 ⑴ 在一个无向图中,所有顶点的度数之和等于所有边数的()倍。 A 1/2 B 1 C 2 D 4 【解答】C 【分析】设无向图中含有n个顶点e条边,则。

有向图的强连通分量

实验报告 课程名称数据结构 实验项目名称有向图的强连通分量 班级与班级代码14计算机实验班 实验室名称(或课室)实验楼803 专业计算机科学与技术 任课教师 学号: 姓名: 实验日期:2015年12 月03 日 广东财经大学教务处制

姓名实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

一、实验目的与要求 采用邻接表存储的有向图。 二、实验内容 (1)创建N个节点的空图 DiGraph CreateGraph(int NumVertex)//创建一个N个节点的空图 { DiGraph G; G = malloc( sizeof( struct Graph ) ); if( G == NULL ) FatalError( "Out of space!!!" ); G->Table = malloc( sizeof( struct TableEntry ) * NumVertex ); if( G->Table == NULL ) FatalError( "Out of space!!!" ); G->NumVertex = NumVertex; G->NumEdge = 0; int i; for (i=0;iTable[i].Header=MakeEmpty(NULL); G->Table[i].V=i; } return G; } (2)在图G上执行DFS,通过对DFS生成森林的后序遍历对G的顶点编号。 //后序DFS遍历图G,并将节点按后序遍历的顺序编号 int *PostDFS(DiGraph G) { int NumVertex=G->NumVertex; int visited[NumVertex]; int i;

数据结构 无向图的存储和遍历

《数据结构》实验报告 ◎实验题目:无向图的存储和遍历 ◎实验目的:1、掌握使用Visual C++6.0上机调试程序的基本方法; 2、掌握图的邻接表存储结构和深度优先遍历的非递归算法。 3、提高自己分析问题和解决问题的能力,在实践中理解教材上的理论。 ◎实验内容:建立有10个顶点的无向图的邻接表存储结构,然后对其进行深度优先遍历,该无向图可以是无向连通图或无向非连通图。 一、需求分析 1、输入的形式和输入值的范围:根据提示,首先输入图的所有边建立邻接表存储结构,然后输入遍历的起始顶点对图或非连通图的某一连通分量进行遍历。 2、输出的形式:输出对该图是连通图或非连通图的判断结果,若是非连通图则输出各连通分量的顶点,之后输出队连通图或非连通图的某一连通分量的遍历结果。 3、程序所能达到的功能:输入图的所有边后,建立图的邻接表存储结构,判断该图是连通图或非连通图,最后对图进行遍历。 4、测试数据: 输入10个顶点(空格分隔):A B C D E F G H I J 输入边的信息(格式为x y):AB AC AF CE BD DC HG GI IJ HJ EH 该图为连通图,请输入遍历的起始顶点:A 遍历结果为:A F C D B E H J I G 是否继续?(是,输入1;否,输入0):1 输入10个顶点(空格分隔):A B C D E F G H I J 输入边的信息(格式为xy):AB AC CE CA AF HG HJ IJ IG 该图为非连通图,各连通分量中的顶点为: < A F C E B > < D > < G I J H > 输入第1个连通分量起始顶点:F 第1个连通分量的遍历结果为:F A C E B 输入第2个连通分量起始顶点:I 第2个连通分量的遍历结果为:I G H J 输入第3个连通分量起始顶点:D 第3个连通分量的遍历结果为:D 是否继续?(是,输入1;否,输入0):0 谢谢使用! Press any key to continue 二概要设计 1、邻接表是图的一种顺序存储与链式存储结构结合的存储方法。邻接表表示法类似于树的孩子链表表示法。就是对图G中的每个顶点Vi,将所有邻接于Vi的顶点Vj链成一个单链表,这个单链表就称为顶点Vi的邻接表,再将所有邻接表的表头放到数组中,就构成了图的邻接表,邻接表表示中的两种结点结构如下所示。

图的连通性

图的连通性 图的连通性2010-07-23 21 :02 图的连通性 第十三章图的基本概念 第三节图的连通性 一.连通性概念 图中两点的连通:如果在图G中u、v 两点有路相通,则称顶点u、v 在图G中连通。 连通图(connected graph) :图G中任二顶点都连通。 图的连通分支(connected brch,component) :若图G 的顶点集 V(G)可划分为若干非空子集V 1,V 2, ?,V w, 使得两顶点属于同一子集当且仅当它们在G 中连通,则称每个子图G为图G的一个连通分支(i=1,2, ?,w) 。 注:(1) 图G的连通分支是G的一个极大连通子图。 (2)图G连通当且仅当w=1。 例13.5 设有2n 个电话交换台,每个台与至少n 个台有直通线路,则该交换系统中任二台均可实现通话。 证明:构造图G如下:以交换台作为顶点,两顶点间连边当且仅当对应的两台间有直通线路。问题化为:已知图G有2n 个顶点,且 δ(G) ≥n,求证G连通。 事实上,假如G不连通,则至少有一个连通分支的顶点数不超过n。在此连通分支中,顶点的度至多是n–1。这与δ(G)≥n 矛盾。 证毕

例13.6 若图中只有两个奇度顶点,则它们必连通。 证明:用反证法。假如u与v 不连通,则它们必分属于不同的连通分支。将每个分支看成一个图时,其中只有一个奇度顶点。这与推论13.1 矛盾。证毕 在连通图中,连通的程度也有高有低。 例如 后面将定义一种参数来度量连通图连通程度的高低。 二.割点 定义13.2 设v∈V(G),如果w(G–v)w(G) ,则称v 为G的一个割点。( 该定义与某些著作有所不同,主要是在有环边的顶点是否算作割点上有区别) 。 例如 定理13.3 如果点v 是图G的一个割点,则边集E(G)可划分为两个非空子集E 1和E 2,使得G[E 1]和G[E 2]恰好有一个公共顶点 v。 推论13.2 对连通图G,顶点v 是G的割点当且仅当G–v 不连通。 以上两个结论的证明留作习题。 三.顶点割集 定义13.3 对图G,若V(G)的子集V' 使得 w(G–V')w(G), 则称V'为图G的一个顶点割集。含有k 个顶点的顶点割集称为k-顶点割集

求无向连通图的生成树

求无向连通图的生成树 一、实验目的 ⑴掌握图的逻辑结构 ⑵掌握图的邻接矩阵存储结构 ⑶验证图的邻接矩阵存储及其遍历操作的实现 二、实验内容 (1)建立无向图的邻接矩阵存储 (2)对建立的无向图,进行深度优先遍历 (3)对建立的无向图进行广度优先遍历 三、设计与编码 (1)本实验用到的理论知识 (2)算法设计 (3)编码 // 图抽象类型及其实现.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include"Graph.h" #include"iostream.h" int Graph::Find(int key,int &k) { int flag=0; for(int i=0;i

if(vertexnum<1)return(-1);//参数vertexnum非法 int i,front,rear,k; Enode *q; //先生成不带边表的顶点表--即顶点为孤立顶点集 A=new Vnode[vertexnum]; if(!A)return(0);//堆耗尽 for(i=0;ikey=front; q->Weight=E[i].weight; q->next=A[rear].first; A[rear].first=q; A[rear].data.OutDegree++; A[front].data.InDegree++; if(Type>2) { q=new Enode; if(!q)return(0); q->key=rear; q->next=A[front].first;

图论讲义2连通性

第二章 图的连通性 连通图:任二顶点间有路相连。 例 可见在连通图中,连通的程度也是有高有低。 本章的目的就是定义一种参数来度量连通图连通程度的高低。 §2.1 割边、割点与连通度 一、割点: 定义2.1.1 设)(G V v ∈,如果)()(G w v G w >?,则称v 为G 的一个割点。(该定义与某些著作有所不同,主要是在有环边的顶点是否算作割点上有区别)。 例 定理2.1.1 如果点v 是图G 的一个割点,则边集E (G)可划分为两个非空子集1E 和2E ,使得 ][1E G 和][2E G 恰好有一个公共顶点v 。 推论2.1.1 对连通图G ,顶点v 是G 的割点当且仅当v G ?不连通。 以上两个结论的证明留作习题。 定理2.1.2 设v 是树T 的顶点,则v 是T 的割点当且仅当1)(>v d 。 证明:必要性:设v 是T 的割点,下面用反证法证明1)(>v d 。 若0)(=v d ,则1K T ?,显然v 不是割点。 若1)(=v d ,则v T ?是有1)(??v T ν条边的无圈图,故是树。从而)(1)(T w v T w ==?。因此v 不是割点。 以上均与条件矛盾。 充分性:设1)(>v d ,则v 至少有两个邻点u ,w 。路uvw 是T 中一条),(w u 路。因T 是树,uvw 是T 中唯一的),(w u 路,从而)(1)(T w v T w =>?。故v 是割点。证毕。 推论2.1.2 每个非平凡无环连通图至少有两个顶点不是割点。 证明:设T 是G 的生成树,则T 至少有两个叶子u ,v ,由上一定理知,u ,v 都不是T 的割点,即1)()(==?T w u T w 。由于u T ?是图u G ?的生成树,故 )(1)()()(G w T w u T w u G w ===?=?,

判断图的强连通性

判断图的强连通性 一、判断一个n阶图的强连通性分以下3步骤: <1>根据图写出图的邻接矩阵(n * n)。 <2>依次计算邻接矩阵的2至(n-1)次方。 <3>观察得到的矩阵,若存在一点在每一个矩阵中都是0,则该点对应的两个顶点不存在通路,可得该图不是强连通图。若任一点在这些图中存在至少一个不为0,则任意两点总存在通路,可得该图是强连通图。(程序中将得到每个矩阵相加得到d矩阵,将d矩阵中所有不为“0”的元素置为“1”,再由顶点到顶点是连通的性质得到可达矩阵)。 二、用程序实现<2><3>两个步骤: 源代码如下: #include int main(){ int x,i,j,k; printf("请输入图的顶点数:"); scanf("%d",&x); int a[x][x],b[x][x],c[x][x],d[x][x];//a是图的邻接矩阵由d得出图的可达矩阵printf("请依次输入每行数据:\n"); for(i = 0 ; i < x ; i++){ for(j = 0 ; j < x ; j++){ scanf("%d",&a[i][j]); b[i][j] = a[i][j]; c[i][j] = a[i][j]; d[i][j] = a[i][j]; } getchar(); } //依次求出a的2至x-1次方 int t = 2;

while(t < x){ printf("A的%d次方:\n",t++); for(i = 0 ; i < x ; i++){ for(j = 0 ; j < x ; j++){ int sum = 0; for(k = 0 ;k < x ; k++){ sum = sum + b[i][k] * a[k][j]; } c[i][j] = sum; d[i][j] += c[i][j]; printf("%d\t",c[i][j]); } printf("\n"); } for(i= 0 ; i < x ; i ++) for(j = 0 ; j < x ; j++) b[i][j] = c[i][j]; } //输出可达矩阵并判断是否为强连通图 int flag = 1; printf("可达矩阵为:\n"); for(i= 0 ; i < x ; i ++){ for(j = 0 ; j < x ; j++){ if(d[i][j] > 0 || i == j) printf("1\t"); else{ printf("0\t"); flag = 0; } } printf("\n"); } if(flag == 1) printf("由可达矩阵知此图是强连通图!\n"); else printf("由可达矩阵知此图不是强连通图!\n"); return 0; } 实例测试: 教材p127图5-13

实现有向图强连通分量的算法 数据结构课程设计报告

课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:实现求有向图强连通分量的算法 院(系): 专业: 班级: 学号: 姓名: 指导教师:

沈阳航空航天大学课程设计报告 目录 1 系统分析 (1) 1.1题目介绍 (1) 1.2功能要求 (1) 2 概要设计 (2) 2.1流程图 (2) 2.2结构体说明 (2) 3 详细设计 (3) 3.1遍历函数设计 (3) 3.1.1 Kosaraju算法基本思路: (3) 3.1.2伪代码 (4) 3.2调试分析和测试结果 (6) 3.2.1调试分析 (6) 3.2.2测试结果 (6) 参考文献 (8) 附录(关键部分程序清单) (9)

沈阳航空航天大学课程设计报告 1 系统分析 1.1 题目介绍 在键盘上输入有向图,对任意给定的图(顶点数和边数自定),建立它的邻接表并输出。然后判断该图是否强连通。如果是强连通图,求出该图的所有强连通分量并输出字符。 1.2 功能要求 首先输入图的类型,有向图(因为遍历与权值无关,所以没有涉及带权图)。然后输入图的顶点数、边数和各条边,之后生成该图的邻接表并输出。 再输入要遍历该图的起点,然后从所输入的点深度搜索该图的十字链表,并按遍历顺序输出顶点内容。之后决定是否继续遍历该图或输入另一个需要遍历的图亦或是结束程序。 要求采取简单方便的输入方式。并且系统要求提供观察有向图图形结构和各强连通分量结构的功能。

2 概要设计 2.1 流程图 根据程序要求,设计流程图如下: 图2.1——流程图 2.2 结构体说明 //有向图十字链表存储表示 typedef struct arcbox int tailvex,headvex;//该弧的尾和头顶点的位置

(完整版)图的连通性判断matlab实验报告

实验三:图的连通性判断 一、实验目的 用计算机语言编写图的连通性判断算法,可输入图的邻接矩阵,判断图是否连通以及确定连通分支的个数,掌握Warshell 算法或矩阵幂算法的实现方法。 二、实验原理 1、Warshell 算法 Warshell 算法可解决图是否连通的问题, 而且效率很高。在该算法中,矩阵P 是判断矩阵,1=ij p 表示从i 到j 连通,0=ij p 表示从i 到j 不连通。 (1)置新矩阵 P:= C ; (2)置 i = 1; (3)对所有的j ,若1),(=i j p , 则对k=1,2,…,n , 有),(),(:),(k i p k j p k j p ∨=; (4) 1+=i i ; (5) 如i n ≥转向步骤(3), 否则停止。 2、矩阵幂算法 由于邻接阵包含了图的所有信息,和关联阵一样,是图的等价表示。可以通过对邻接阵C 做一些计算,得到图G 的一些性质。例如考虑3C 中的),(j i 的元素 )3(,j i c ,如果它不为零,由于∑∑=k j l l k k i j i c c c c l ,,,)3(,,则至少存在一组1 ,,,===j l l k k i c c c 或一个长度为3的链使端i 和端j 相连。从而,通过计算C 的各阶幂次可得到关于图是否连通的信息。 三、实验内容 1.利用MATLAB 等语言实现图的连通性判断算法,可对输入的邻接阵进行连通性以及连通分支数的判断。 2.比较Warshell 算法和矩阵幂算法在算法正确性和算法复杂度上的区别。 3.对算法进行优化。 四、采用的语言 MatLab 源代码: clear,clc; %输入邻接矩阵

图练习题

第七章:图练习题 一、选择题 1、一个有n个顶点的无向图最多有()条边。 A、n B、n(n-1) C、n(n-1)/2 D、2n 2、具有6个顶点的无向图至少有()条边才能保证是一个连通图。 A、5 B、6 C、7 D、8 3、具有n个顶点且每一对不同的顶点之间都有一条边的图被称为()。 A、线性图 B、无向完全图 C、无向图 D、简单图 4、具有4个顶点的无向完全图有()条边。 A、6 B、12 C、16 D、20 5、G是一个非连通无向图,共有28条边,则该图至少有()个顶点 A、6 B、7 C、8 D、9 6、存储稀疏图的数据结构常用的是()。 A、邻接矩阵 B、三元组 C、邻接表 D、十字链表 7、对一个具有n个顶点的图,采用邻接矩阵表示则该矩阵的大小为()。 222n D、(n-1)、C、(n+1)A、n B8、设连通图G的顶点数为n,则G的生成树的边数为()。 A、n-1 B、n C、2n D、2n-1 9、n个顶点的无向图的邻接表中结点总数最多有()个。 A、2n B、n C、n/2 D、n(n-1) 10、对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表向量的大小为(),所有顶点邻接表的结点总数为()。 A、n B、n+1 C、n-1 D、2n E、e/2 F、e G、2e H、n+e 11、在有向图的邻接表存储结构中,顶点v在表结点中出现的次数是()。 A、顶点v的度 B、顶点v的出度 C、顶点v 的入度 D、依附于顶点v的边数 12、已知一个图,若从顶点a出发进行深度和广度优先搜索遍历,则可能得到的顶点序列分别为()和() (1)A、abecdf B、acfebd C、acebfd D、acfdeb (2)A、abcedf B、abcefd C、abedfc D、acfdeb 13、采用邻接表存储的图的深度和广度优先搜索遍历算法类似于二叉树的()和()。 A、中序遍历 B、先序遍历 C、后序遍历 D、层次遍历 14、已知一有向图的邻接表存储结构如下图所示,分别根据图的深度和广度优先搜索遍历算法,从顶点v1出发,得到的顶点序列分别为()和()。 v1,v4,v3,v5,v2、v1,v2,v3,v5,v4 D、v1,v3,v2,v4,v5 C、v1,v2,v3,v4,v5 B、 A.

相关文档
最新文档