单容自衡水箱液位特性测试实验
过程装备控制技术及应用实验
实验内容一:单容自衡水箱液位特性测试实验实验学时:2学时实验类型:(验证、综合、设计)实验要求:(必修、选修) 一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数;二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机及相关软件3. 万用电表一只三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。
液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。
若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=Adtdh(1-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=Adthd (1-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量;A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh=0;当Q 1发生变化时,液位h 随之变化,水箱出 口处的静压也随之变化,Q 2也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即1-1 单容自衡水箱特性测试系统 (a )结构图 (b )方框图ΔQ 2=R h∆ 或 R=2Q ∆∆h (1-3)式中:R ——阀F1-11的阻力,称为液阻。
将式(1-2)、式(1-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为 W 0(s )=)()(1s Q s H =1RCs R +=1s +T K (1-4) 式中T 为水箱的时间常数,T =RC ;K 为放大系数,K =R ;C 为水箱的容量系数。
一阶单容上水箱对象特性的测试实验报告
《控制工程实验》实验报告实验题目:一阶单容上水箱对象特性的测试课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.05实验一一阶单容上水箱对象特性的测试一、实验目的1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3. 掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1和F1-6全开,设上水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,上水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q2。
液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。
根据动态物料平衡关系有:Q1−Q2=A dhdt(1)变换为增量形式有:∆Q1−∆Q2=A d∆hdt(2)其中:∆Q1,∆Q2,∆ℎ分别为偏离某一平衡状态的增量;A为水箱截面积图1 单容自衡水箱特性测试结构图(a)及方框图(b)在平衡时,Q1=Q2,dhdt=0;当Q1发生变化时,液位h随之变化,水箱出口处的静压也随之变化,Q2也发生变化。
由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q2与h成正比关系,与阀F1-11的阻力R成反比,即∆Q2=∆ℎR 或R=∆ℎ∆Q2(3)式中: R为阀F1-11的阻力,称为液阻。
实验报告:单容自横水箱液位特性测试实验报告
过程控制综合实验报告实验名称:单容自衡水箱液位特性测试实验专业:班级:姓名:学号:实验方案一、实验名称:单容自衡水箱液位特性测试实验二、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
四、实验准备在所给实验设备准备好时,由实验指导书连线,检查线路之后上电,打开启动按钮,对实验对象进行液位特性测试。
通过该实验,我们最后要得到的理想结论是,通过手动控制阀门的开度来对水箱进行液位的特性测试,测试结果应该是,在给实验对象加扰动的情况下,贮蓄容器可以依靠自身重新恢复平衡的过程。
在实验之前,将储水箱中贮足水量,实验过程中选择下水箱作为被测对象,将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭,进行观察实验。
(a)结构图(b)方框图一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备三相电源(~380V/10A)远程数据采集模拟量输出模块SA-22、SA-23(24V输入)三相磁力泵(~380V)压力变送器电动调节阀(4~20mA、~220V)三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图2-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
实验1 单容水箱液位数学模型的测定实验
实验1 单容水箱液位数学模型的测定实验一、实验目的1、熟练掌握液位测量方法。
2、熟练掌握调节阀流量调节特性。
3、获得单容水箱液位数学模型。
二、实验设备A3000-FS/FBS 常规现场系统,任意控制系统。
三、实验原理与介绍1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。
被调量为水位H 。
分析水位在调节阀开度扰动下的动态特性。
直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。
(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。
)调整水箱出口到一定的开度。
突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。
通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ,给定值 图4-1单容水箱液位数学模型的测定实验其中,F 是水槽横截面积。
在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。
公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。
如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示:)1()(0+=TS S KR S G 。
相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。
2、控制系统接线表3参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。
实际开口面积5.5x49.5=272.25 mm²。
此时负载阀开度系数:s m x H Q k /1068.6/5.24max -==。
水槽横截面积:0.206m²。
那么得到非线性微分方程为(标准量纲)::H H dt dH 24003.000138.0206.0/)668000.0000284.0(/-=-=进行线性简化,可以认为它是7一阶惯性环节加纯延迟的系统)1/()(+=-Ts Ke s G s τ。
单容水箱实验报告
单容液位定值控制系统一、实验目的1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。
三、实验原理图3-6 中水箱单容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-6所示。
被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
四、实验内容与步骤本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。
以上小水箱为例叙述实验步骤如下:1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。
2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。
3. 采用智能仪表控制:1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。
2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。
3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。
实验一 单容自恒水箱液位特性测试实验
实验报告课程过程控制及仪表实验日期2020 年6月15日专业班级自动化1702班姓名学号1706010403实验名称实验一单容自恒水箱液位特性测试实验评分批阅教师签字1.实验目的1. 熟悉利用计算法建立系统一阶惯性环节加纯延迟环节的数学模型方法。
2. 学会利用MATLAB/Simulink对系统进行建模的方法。
2.实验内容某单容水箱为被控对象,水箱液位为被控参数,水箱总量程为100mm, 在阶跃扰动20%∆=时,其阶跃响应的实验数据如表1-1所示。
u表1-1 阶跃响应实验数据响应曲线起始速度较慢,其阶跃响应曲线呈S状,可近似认为被控对象是具有纯滞后的一阶惯性环节,利用计算法,确定增益K,时间常数T和纯滞后时间τ。
(1)首先根据输出稳态值和阶跃输入的变化幅值可得增益K=(20/100)/20%=1;(2)根据系统近似为具有纯滞后的一阶惯性环节的计算方法,编写MATLAB程序(gkshiyan1_1)。
(3)建议Simulink系统仿真(gkshiyan1),将阶跃信号的初始作用时间和幅值分别设置为0和20。
(4)将实际系统和近似系统的阶跃响应曲线进行比较,编写MATLAB程序(gkshiyan1_2)。
3.实验方法与步骤(1)首先根据输出稳态值和阶跃输入的变化幅值可得增益K=(20/100)/20%=1;(2)根据系统近似为具有纯滞后的一阶惯性环节的计算方法,编写MATLAB程序(gkshiyan1_1)。
程序如下:% 将系统近似一阶惯性环节加纯延迟的计算程序tr=10; % 输出响应延迟时间,即输出无变化时间t=[10 20 40 60 80 100 140 180 250 300 400 500 600 700 800]-tr;h=[0 0.2 0.8 2 3.6 5.4 8.8 11.4 14.4 16.1 18.2 19.2 19.6 19.8 20];h=h/h(length(h)); %把输出转换成无量纲形式h1=0.39;h2=0.63;t1=interp1(h,t,h1)+tr; %利用一维线性插值计算当响应曲线在39%时的时间t1t2=interp1(h,t,h2)+tr; %利用一维线性插值计算当响应曲线在63%时的时间t2T=2*(t2-t1) %被控对象传递函数的惯性时间常数tao=2*t1-t2 %被控对象传递函数的延迟时间运行结果如下:>> gkshiyan1_1T =159.5294tao =48.4706>>(3)建议Simulink系统仿真(gkshiyan1),将阶跃信号的初始作用时间和幅值分别设置为0和20。
单容量水箱液位pid控制实验报告
单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。
实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。
根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。
实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。
2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。
3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。
4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。
5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。
6. 重复步骤3-5,直到达到所需的控制效果。
实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。
通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。
如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。
结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。
同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。
这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。
思考题
单容自衡水箱液位特性测试实验五、实验报告要求1.画出“单容水箱液位特性测试”实验的结构框图。
2.根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。
六、思考题1.做本实验时,为什么不能任意改变出水阀F1-11开度的大小?如果实验条件中没有水量大小,及水量是恒定的,肯定不能改变水流大小,不然在其他外因发生变化时产生的测试结果就不能完全归结于该外因变化的结果,可能还存在水流大小变化的影响。
2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?答:因为系统用到了仪表,因此与仪表的精度有关,同时与出水阀开度的大小有关。
并和放大系数K、时间常数T以及纯滞后时间有关。
3.如果采用上水箱做实验,其响应曲线与下水箱的曲线有什么异同?并分析差异原因。
双容(串联)水箱特性的测试五、实验报告要求1.画出双容(串联)水箱液位特性测试实验的结构框图。
2.根据实验得到的数据及曲线,分析并计算出双容水箱液位对象的参数及传递函数。
3.综合分析几种控制方案的实验效果。
六、思考题1.做本实验时,为什么不能任意改变两个出水阀门开度的大小?对设定的给定值会有影响2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?与k和T有关3.引起双容对象滞后的因素主要有哪些?K,T及时间常数单容液位定值控制系统五、实验报告要求1.画出单容水箱液位定值控制实验的结构框图。
2.用实验方法确定调节器的相关参数,写出整定过程。
3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。
4.比较不同PID参数对系统的性能产生的影响。
5.分析P、PI、PD、PID四种控制规律对本实验系统的作用。
6.综合分析多种控制方案的实验效果。
六、思考题1.如果采用上水箱做实验,其响应曲线与下水箱的曲线有什么异同?并分析差异原因。
2.改变比例度δ和积分时间T I对系统的性能产生什么影响?双容(串联)水箱液位定值控制系统五、实验报告要求1.画出双容水箱液位定值控制实验的结构框图。
单容液位特性实验和单容液位控制实验
单容液位特性实验一、实验目的1、掌握单容水箱的阶跃响应测试方法;2、记录相应的响应曲线;二、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或设备等干预,依靠其自身重新恢复平衡的过程。
水箱的结构和特性。
水箱的出水量与水压油罐,而水压又与水位高度近乎成正比。
这样,当水箱的水位升高时,其出水量也在不断增大,所以,水箱的阀开度适当,在不溢出的状况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。
三、实验步骤将水箱1的进水阀全开,出水阀开30%,其他阀门全关。
1、点击“PCS-A-PPL-MCG”2、mm:12343、点击“进入运行环境”4、“系统管理”,用户登录(无密码)5、“特性实验”---“单容特性”6、“阀门开度”设定为60或者707、达到平衡时,测量值不变,记录测量值8、给系统一个扰动(增大阀门开度或者调解出水阀),待系统达到一个新的平衡后,记录测量值9、实验结束四、实验报告1、原始记录阀门开度60----对应的测量值----达到平衡时的液位高度阀门开度65----对应的测量值----达到平衡时的液位高度2、数据处理作图:测量值与实间的变化曲线思考题与习题1.做本实验时,为什么不能任意改变出水阀F1-9开度的大小?2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?单容液位控制实验一、实验目的1、了解单容水箱液位控制系统的结构与组成;2、掌握单容水箱液位控制系统调解参数的方法3、了解PID调节器对液位、水压控制的作用二、实验原理单容水箱控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所需求的高度,并减小或消除来自系统内部或外部扰动的影响。
本实验以液位控制系统的水箱作为研究对象,水箱的液位为被控制量,采用PID算法控制。
首先由差压传感器检测出水箱水位,水位实际值通过DDC单元转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID 程序算法得到输出值,再将输出值经过转换,由DDC控制单元输入模拟信号控制阀门开度,从而形成一个闭环系统,实现水位的计算机控制。
单容水箱液位过程控制实验报告
单容水箱液位过程控制实验报告一、实验目的1、了解单容水箱液位控制系统的结构与组成。
2、掌握单容水箱液位控制系统调节器参数的整定方法。
3、研究调节器相关参数的变化对系统静、动态性能的影响。
4、了解PID调节器对液位、水压控制的作用。
二、单容水箱系统模型图12.1液位控制的实现本实验采用计算机PID算法控制。
首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。
2.2 被控对象本实验是单容水箱的液位控制。
被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。
由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。
这样,当水箱水位升高时,其出水量也在不断增大。
所以,若阀开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。
由此可见,单容水箱系统是一个自衡系统。
三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。
电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。
图2为电动调节阀与管道的连接图。
图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度s----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。
四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。
本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。
过程控制系统实验指导书02
《过程控制系统》实验指导书目录第一章实验装置说明 (1)第二章实验要求及安全操作规程 (4)实验一单容自衡水箱液位特性测试 (5)实验二双容水箱特性的测试 (9)实验三单容水箱液位定值控制系统 (12)实验四单闭环流量定值控制系统 (15)实验五锅炉内胆水温定值控制系统 (17)实验六锅炉内胆水温位式控制系统 (19)第一章实验装置说明实验对象总貌图如图1-1所示:图1-1 实验对象总貌图本实验装置对象主要由水箱、锅炉和盘管三大部分组成。
供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。
一、被控对象由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。
1.水箱:包括上水箱、中水箱、下水箱和储水箱。
上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。
上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。
水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。
水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。
上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。
储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。
储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。
2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。
单容水箱液位控制系统实验设计
单容水箱液位控制系统实验设计【摘要】通过对单容水箱液位控制系统特性的测试掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。
根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。
【关键词】单容水箱;液位控制;数字模型1.单容水箱液位控制系统组成本实验装置由被控对象和上位控制系统两部分组成。
系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。
1.1被控对象被控对象由不锈钢储水箱、圆筒形有机玻璃水箱和敷塑不锈钢管路组成。
水箱:包括上水箱和储水箱。
上水箱采用淡蓝色圆筒型有机玻璃,不但坚实耐用,而且透明度高,便于学生直能接观察到液位的变化和记录结果。
分别是缓冲槽,工作槽,出水槽。
管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。
有效提高了实验装置的使用年限。
其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀打开让水直接排出。
1.2检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。
1.3执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。
它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等。
水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。
泵体完全采用不锈钢材料,以防止生锈,使用寿命长。
可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。
输出电压用来控制加热器加热,从而控制锅炉的温度。
电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。
实验指导说明
实验一单容水箱特性测试实验一、实验目的1.熟悉单容水箱的数学模型,掌握单容水箱特性的阶跃响应曲线测试方法;2..根据实验测得的液位阶跃响应曲线,确定其特征参数K 、T 、τ及传递函数。
二、实验设备及参考资料1、PCS 过程控制实验装置(使用其中:电动调节阀、AI818智能调节仪一台、上水箱及液位变送器、水泵1系统等)2、AI-818仪表的操作说明书,智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。
三、实验原理阶跃响应测试法是被控对象在开环运行状态下,待工况稳定后,通过控制器手动操作改变对象的输入信号(阶跃信号),同时记录对象的输出数据和阶跃响应曲线。
然后根据跟定对象模型的形式,对实验数据进行合理的处理,确定模型中的相关参数。
具有自衡能力的单容水箱示意图如图2.1所示。
图2.1 具有自衡能力的单容水箱示意图根据物料平衡方程,可得出单容液位过程的传递函数为1)()(1+=Ts Ks Q s H (2.1) 考虑到对象的滞后时间,则单容液位过程的传递函数可用式(2.2)表示s e Ts Ks Q s H τ-+=1)()(1(2.2) 通过实验的方法,可以测得一阶系统的阶跃响应模型。
实验方法如下:123图2.2 具有纯滞后的一阶惯性对象的S 型阶跃响应曲线1.手动改变控制器的输出信号)(k u ,观察被控变量)(k h 的变化过程。
2.由阶跃响应曲线计算被测对象的特征参数 对象的近似模型:s e Ts Ks u s h τ-+=1)()((2.3) 由图2.2可得,稳态增益K 为:10u u y y K --=∞(2.4)纯滞后时间τ与时间常数T 分别为:01T T -=τ(2.5)12T T T -=(2.6) 四、实验内容与步骤1.了解实验装置中的对象,流程图如图2.3所示。
图2.3 上水箱单容特性测试实验流程图2.按图2.4接好实验导线和通讯线。
图2.4 上水箱单容特性测试实验接线图3.将控制台背面的通讯口与上位机连接。
实验1单容水箱液位数学模型的测定实验
实验1 单容水箱液位数学模型的测定实验一、实验目的1、熟练掌握液位测量方法。
2、熟练掌握调节阀流量调节特性。
3、获得单容水箱液位数学模型。
二、实验设备A3000-FS/FBS 常规现场系统,任意控制系统。
三、实验原理与介绍1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。
被调量为水位H 。
分析水位在调节阀开度扰动下的动态特性。
直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。
(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。
)调整水箱出口到一定的开度。
突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。
通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ,给定值 图4-1单容水箱液位数学模型的测定实验其中,F 是水槽横截面积。
在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。
公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。
如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示:)1()(0+=TS S KR S G 。
相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。
2、控制系统接线表3参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。
实际开口面积5.5x49.5=272.25 mm²。
此时负载阀开度系数:s m x H Q k /1068.6/5.24max -==。
水槽横截面积:0.206m²。
那么得到非线性微分方程为(标准量纲)::H H dt dH 24003.000138.0206.0/)668000.0000284.0(/-=-=进行线性简化,可以认为它是7一阶惯性环节加纯延迟的系统)1/()(+=-Ts Ke s G s τ。
单容水箱液位控制实验报告
单容水箱液位控制实验报告单容水箱液位控制实验报告一、引言液位控制是自动化领域中一个重要的研究课题。
在许多工业领域,如化工、石油、食品等,液位的准确控制对生产过程的稳定性和安全性至关重要。
本实验旨在通过搭建一个单容水箱液位控制系统,探究液位控制的原理和方法,并验证控制系统的性能。
二、实验装置及原理1. 实验装置本实验采用的实验装置包括:单容水箱、液位传感器、控制器、执行器和数据采集系统。
2. 原理介绍液位传感器通过测量液位高度将其转换为电信号,并传输给控制器。
控制器根据接收到的信号,通过控制执行器的开关状态,调节水箱进出水的流量,以达到控制液位的目的。
数据采集系统用于记录和分析实验数据。
三、实验步骤1. 搭建实验装置首先,将液位传感器安装在水箱内部,并连接到控制器。
接下来,连接执行器和控制器,并确保所有连接线路正确无误。
最后,将数据采集系统与控制器连接,确保数据采集的准确性。
2. 系统校准在实验开始之前,对液位传感器进行校准。
校准的目的是确定液位传感器输出信号与实际液位之间的关系,以确保控制系统的准确性。
3. 进水控制实验将水箱放置在合适的位置,并将进水管道连接到水箱。
打开进水阀门,控制器开始接收液位传感器的信号,并根据设定的目标液位调节进水阀门的开关状态。
记录下实验过程中的液位变化情况。
4. 出水控制实验将出水管道连接到水箱,并打开出水阀门。
控制器根据液位传感器的信号,控制出水阀门的开关状态,以维持设定的目标液位。
同样,记录下实验过程中的液位变化情况。
四、实验结果与分析通过实验数据的记录和分析,我们可以得出如下结论:1. 进水控制实验在进水控制实验中,我们观察到当液位低于目标液位时,控制器打开进水阀门,增加水箱内的水量;当液位高于目标液位时,控制器关闭进水阀门,减少水箱内的水量。
实验结果表明,控制系统能够有效地调节进水流量,使液位保持在目标值附近。
2. 出水控制实验在出水控制实验中,我们观察到当液位低于目标液位时,控制器关闭出水阀门,减少水箱内的出水量;当液位高于目标液位时,控制器打开出水阀门,增加水箱内的出水量。
单容水箱液位特性测试
一、 单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数;二、实验设备DDD-Z05-I 实验对象及DDD-Z05-IK 控制屏、DDD-Z05-III 电源控制柜一台、SA-12挂件一个、SA-13A 挂件一个、计算机一台、万用表一个、实验连接线若干。
三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或设备等干预,依靠其自身重新恢复平衡的过程。
图2-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F2-14和F1-6全开,设上水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,上水箱的流出量为Q 2,改变出水阀F1-9的开度可以改变Q 2。
液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。
若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。
图2-1 单容自衡水箱特性测试系统(a )结构图 (b )方框图根据动态物料平衡关系有Q 1-Q 2=Adtdh (2-1) 将式(2-1)表示为增量形式ΔQ 1-ΔQ 2=A dt h d (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh =0;当Q 1发生变化时,液位h 随之变化,水箱出口处的静压也随之变化,Q 2也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-9的阻力R 成反比,即ΔQ 2=R h ∆ 或 R=2Q ∆∆h (2-3) 式中:R ——阀F1-9的阻力,称为液阻。
单容水箱液位控制系统实验设计
单容水箱液位控制系统实验设计【摘要】通过对单容水箱液位控制系统特性的测试掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。
根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。
【关键词】单容水箱;液位控制;数字模型1.单容水箱液位控制系统组成本实验装置由被控对象和上位控制系统两部分组成。
系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。
1.1被控对象被控对象由不锈钢储水箱、圆筒形有机玻璃水箱和敷塑不锈钢管路组成。
水箱:包括上水箱和储水箱。
上水箱采用淡蓝色圆筒型有机玻璃,不但坚实耐用,而且透明度高,便于学生直能接观察到液位的变化和记录结果。
分别是缓冲槽,工作槽,出水槽。
管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。
有效提高了实验装置的使用年限。
其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀打开让水直接排出。
1.2检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。
1.3执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。
它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等。
水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。
泵体完全采用不锈钢材料,以防止生锈,使用寿命长。
可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。
输出电压用来控制加热器加热,从而控制锅炉的温度。
电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。
一阶单容上水箱对象特性的测试实验报告
控制工程实验》实验报告实验题目:一阶单容上水箱对象特性的测试课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期:2019.04.05实验一一阶单容上水箱对象特性的测试一、实验目的1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T 和传递函数;3. 掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备1. 实验装置对象及控制柜 1 套2. 装有Step7、WinCC等软件的计算机 1 台3. CP5621 专用网卡及MPI通讯线各1 个三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1 所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1 和F1-6 全开,设上水箱流入量为Q1, 改变电动调节阀V1 的开度可以改变Q1 的大小,上水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1 作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。
根据动态物料平衡关系有:(1)变换为增量形式有:(2)其中:,,分别为偏离某一平衡状态的增量;A 为水箱截面积图 1 单容自衡水箱特性测试结构图( a)及方框图( b)在平衡时,Q1=Q2,=0;当Q1发生变化时,液位h随之变化,水箱出口处的静压也随之变化,Q2 也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,与阀F1-11 的阻力R 成反比,即或(3)式中: R 为阀F1-11的阻力,称为液阻。
将式(2) 、式(3) 经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为(4)式中T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。
05.单容水箱液位对象特性的测试
一、强电连线
将三相电源输出端U、V、W对应连接到三相磁力泵(~380V)的输入端U、V、W;将电动调节阀的~220V输入端L、N接至单相电源Ⅲ的3L、3N端;并将LT3下水箱液位钮子开关拨到“ON”位置。
将控制屏上的直流24V电源(+、-)端对应接到FM模块电源输入(+、-)端。
二、实验结构图
三、实验步骤
1. 按上述要求连接实验系统,并将对象相应的水路打开(打开阀F1-1、F1-2和F1-8,将阀F1-11开至一定开度,其余阀门均关闭)。
2. 用电缆线将对象和DCS控制台连接起来。
3. 合上DCS控制屏电源,启动服务器和主控单元。
4. 在工程师站的组态中选择“DCSsystem”工程进行编译下装。
5. 启动操作员站,在其运行界面中选择实验1,进入实验一流程图。
6. 启动对象总电源,并合上相关电源开关(三相电源、单相Ⅲ、24V电源),开始实验(如果是控制柜,打开三相电源总开关、三相电源、单相开关,并同时打开三相磁力泵电源开关、电动调节阀电源开关、控制站电源开关)。
7. 在流程图的液位测量值上点击左键,弹出PID窗口,手动调节输出为一适当的值,使下水箱的液位处于某一平衡位置。
8. 增大或减小手动输出量的大小,使其输出有一个正或负阶跃增量的变化(此增量不宜过大,以免水箱中的水溢出),让下水箱的液位进入新的平衡状态。
9. 在实验中可点击窗口中的“趋势”下拉菜单中的“综合趋势”,选择实验1曲线,可查看相应的实时曲线和历史曲线,并分析和计算出下水箱在固定的出水阀开度下的对象参数K及T值。
实验一 单容水箱对象特性的测试
实验一、单容水箱对象特性的测试一、 实验目的1、了解本实验装置的结构与组成,掌握压力变送器的使用方法。
2、掌握实验装置的基本操作与变送器仪表的调整方法。
3、了解单容水箱的自衡特性掌握单容水箱的数学模型及其阶跃响应曲线。
4、实测单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-07 2、 万用表一只三、实验原理阶跃响应测试法是被控对象在开环运行状况下,待工况稳定后,通过调节器手动改变对象的输入信号(阶跃信号)。
同时,记录对象的输出数据和阶跃响应曲线,然后根据给定对象模型的结构形式,对实验数据进行合理的处理,确定模型中的相关参数。
图解法是确定模型参数的一种实用方法,不同的模型结构,有不同的图解方法。
单容水箱的数学模型可用一阶惯性环节来近似描述,且用下述方法求取对象的特征参数。
单容水箱液位开环控制结构图如图2-1所示:图2-1、 单容水箱液位开环控制结构图设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h ,出水阀V2固定于某一开度值。
根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:式中,T=R2*C 为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),K=R2为过程Q R h dthd CR ∆=∆+∆221-2 11)()()(221+=+==TS K CS R R s Q s H s G的放大倍数,也是阀V2的液阻,C 为水箱的底面积。
令输入流量Q1(S )=RO/S ,RO 为常量,则输出液位的高度为:2-2 2-32-4式(2-3)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2所示。
由式(2-4)可知该曲线上升到稳态值的63.2%所对应的时间,就是水箱的时间常数T 。
该时间常数T 也可以通过坐标原点对响应曲线作切线,此切线与稳态值的交点所对应的时间就是时间常数T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI 通讯电缆一根。
三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图2-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。
液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。
若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=A dtdh (2-1) 将式(2-1)表示为增量形式ΔQ 1-ΔQ 2=A dth d ∆ (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏离某一平衡状态的增量;A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ∆ 或 R=2Q ∆∆h (2-3)式中:R ——阀F1-11的阻力,称为液阻。
将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为W 0(s )=)()(1s Q s H =1RCs R +=1s +T K (2-4) 式中T 为水箱的时间常数,T =RC ;K 为放大系数,K =R ;C 为水箱的容量系数。
若令Q 1(s )作阶跃扰动,即Q 1(s )=s x 0,x 0=常数,则式(2-4)可改写为 H (s )=T T K 1s /+×s x 0=K s x 0-T K 1s x 0+ 对上式取拉氏反变换得h(t)=K x 0(1-e -t/T ) (2-5)当t —>∞时,h (∞)-h (0)=K x 0,因而有 K=x 0h h )()(-∞=阶跃输入输出稳态值 (2-6) 当t=T 时,则有h(T)=K x 0(1-e -1)=0.632K x 0=0.632h(∞) (2-7)式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a )所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。
也可由坐标原点对响应曲线作切线OA ,切线与稳态值交点A 所对应的时间就是该时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。
图2-2 单容水箱的阶跃响应曲线 如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b ),在此曲线的拐点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。
图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为: H(S)=TsKe s+-1τ (2-8) 四、实验内容与步骤本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。
具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。
(一)、智能仪表控制1.将“SA-12智能调节仪控制”挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。
将“LT3下水箱液位”钮子开关拨到“ON”的位置。
图2-3 仪表控制单容水箱特性测试实验接线图2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。
3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。
4.在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,此操作需通过调节仪表实现。
5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。
6.待下水箱液位平衡后,突增(或突减)智能仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-4所示。
图2-4 单容下水箱液位阶跃响应曲线7.根据前面记录的液位值和仪表输出值,按公式(2-6)计算K值,再根据图2-2中的实验曲线求得T值,写出对象的传递函数。
(二)、远程数据采集控制1.将“SA-22远程数据采集模拟量输出模块”、“SA-23远程数据采集模拟量输入模块”挂件挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。
将“LT3下水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。
3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。
4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。
图2-5 远程数据采集控制单容水箱特性测试实验接线图(三)、DCS分布式控制1.按照第一章图1-6用网线和交换机连接操作员站(网卡IP设为128.0.0.2)和服务器(A网卡IP设为128.0.0.1),以及服务器(B网卡设为168.0.0.1)和主控单元,将“SA-31 FM148现场总线远程I/O模块”、“SA-33 FM151现场总线远程I/O模块”挂件挂到屏上,并将挂件的通讯线接头插入屏内Profibus-DP总线接口上,将控制屏左侧Profibus-DP总线连接到主控单元DP口,并按照下面的控制屏接线图连接实验系统。
将“LT3下水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给现场总线I/O 模块及压力变送器上电,打开主控单元电源。
启动服务器,在工程师站的组态中选择“单回路控制系统”工程进行编译下装,然后重启服务器。
3.启动操作员站,打开主菜单,点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。
在流程图的液位测量值上点击鼠标左键,弹出PID 窗口,将PID设为手动控制,并调节其输出为一适当的值。
4.按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。
5.以下步骤请参考前面“(一)智能仪表控制”的步骤5~7。
图2-6 DCS分布式控制单容水箱特性测试实验接线图(四)、S7-200PLC控制1.将“SA-42 S7-200PLC控制”挂件挂到屏上,并用PC/PPI通讯电缆线将S7-200PLC连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。
将“LT3下水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给S7-200PLC及电动调节阀上电。
3.打开Step 7-Micro/WIN 32软件,并打开“S7-200PLC”程序进行下载,然后将S7-200PLC置于运行状态,然后运行MCGS组态环境,打开“S7-200PLC 控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。
4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。
图2-7 S7-200PLC控制单容水箱特性测试实验接线图(五)、S7-300PLC控制1.将“SA-41 S7-300PLC控制”挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。
将“LT3下水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。
3.打开Step 7软件,打开“S7-300”程序进行下载,然后将S7-300PLC置于运行状态,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。
4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。
图2-8 S7-300PLC控制单容水箱特性测试实验接线图。