三角形的中线角平分线PPT教学课件
合集下载
高考数学二轮复习三角形中的中线、高线、角平分线问题ppt课件
培优提能5
三角形中的中线、高线、
角平分线问题
一、中线
2
2
2
2
1.中线长定理:在△ABC 中,AD 是边 BC 上的中线,则 AB +AC =2(BD +AD )
推导过程:在△ABD 中,cos B=
在△ABC 中,cos B=
+ -
+ -
·
·
,求 c.
解:(2)设 BC 边上的高为 h,由三角形的面积公式得 S△ABC= ah= ×
bcsin A=×5c×sin=
c,所以
a=
c,即 a=
a=
c,
由余弦定理得 a2=25+c2-5c,
将 a=
c 代入上式得 c2+16c-80=0,解得 c=4 或-20(舍去),所以 c=4.
→
→ → →
+ +||·||·cos∠ADB,解得
cos∠ADB=.
三角形的角平分线性质定理将分对边所成的线段比转化为对应的两边之比,
再结合共线定理的推论,就可以转化为向量.一般地,涉及三角形中“定比”
类问题,运用向量知识解决起来都较为简捷.
触类旁通2 如图,在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=3,c=6,
→
→
→
→
→
两边平方得 4 = + +2·,
2
2
2
三角形中的中线、高线、
角平分线问题
一、中线
2
2
2
2
1.中线长定理:在△ABC 中,AD 是边 BC 上的中线,则 AB +AC =2(BD +AD )
推导过程:在△ABD 中,cos B=
在△ABC 中,cos B=
+ -
+ -
·
·
,求 c.
解:(2)设 BC 边上的高为 h,由三角形的面积公式得 S△ABC= ah= ×
bcsin A=×5c×sin=
c,所以
a=
c,即 a=
a=
c,
由余弦定理得 a2=25+c2-5c,
将 a=
c 代入上式得 c2+16c-80=0,解得 c=4 或-20(舍去),所以 c=4.
→
→ → →
+ +||·||·cos∠ADB,解得
cos∠ADB=.
三角形的角平分线性质定理将分对边所成的线段比转化为对应的两边之比,
再结合共线定理的推论,就可以转化为向量.一般地,涉及三角形中“定比”
类问题,运用向量知识解决起来都较为简捷.
触类旁通2 如图,在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=3,c=6,
→
→
→
→
→
两边平方得 4 = + +2·,
2
2
2
三角形的角平分线和中线-PPT课件
OBC OCB 1 (1800 800 ) 500 ,BOC 1300
2
3
任意画一个三角形,用刻度尺画BC的中 A 点D,连接AD。
在三角形中,连结一个顶 点与它对边中点的线段, 叫做三角形的中线。
B
D
C
书写形式:∵AD是△ABC中的BC边上的中线。 ∴BD=CD
特别提醒:(1)三角形的中线是一条线段;(2)三角
形的中线的一端平分这条边。
4
Байду номын сангаас
操作归纳:
任意画一个三角形, 然后利用刻度尺画 出这个三角形的三 条中线,你有什么 发现?
三角形的三条中线相交于一点,交点在三角形内部。
5
巩固提升:
A
1.如图,AF是ΔABC的角平分线,AE是BC边
上的中线,选择“>”“<”或“=”号填空:
(1)BE_=__EC
(2)∠CAF_=__
点, CF C,D如果 ACB 7,0那么下列说法中错误的
是( B) A.CF 平分 ACE B.B、 55 C.1 4 90
D.3 4 55
5.如图,E、 F、G 分别是 AB 、BC AC 边上的中点,则
S SABC __4___ SBEF ___4_____ FGC
9
大家有疑问的,可以询问和交流
形,这两个小三角形的周长的差是2cm。你能求出AB的长吗?
解 ABD的周长 AB AD BD
A
ACD的周长 AC AD DC
AD是中线 BD DC,两三角形
的周长差为: AB AC 2, AB 7
B
C D
7
课堂巩固:
1. 如图,在 ABC 中,若 BD平分 ABC
则下列说法中不正确的是( D )
三角形的高、中线与角平分线(ppt课件)
复习提问
1.什么叫线段的中点?
把一条线段分成两条相等的线段的点叫线段的中点
A
B
2.什么叫角平分线?
一条射线把一个角分成两个相等的角,这条射线叫做
这个角的平分线
B
O
A
复习提问 3.你还记得“过一点画已知直线的垂线”吗?
放、靠、过、画.
01
01
01
23
23
23
0
1 0 2 1 03 21 3 2
3
探究新知
B
C
探究新知
3.钝角三角形的三条高
(1)你能画出钝角三角形的三条高吗?
AF
(2)AC边上的高是__B_F__; BC边上的高是__A__D_;
DB
C
AB边上的高是__C_E__;
E
(3)钝角三角形的三条高交于一点吗?
钝角三角形的三条高不相交于一点.
O
(4)它们所在的直线交于一点吗?
钝角三角形的三条高所在直线交于一点.
三角形的中线
B
D
C
定义:连接三角形的一个顶点和它所对的边的中 点,所得线段叫做三角形的这条边上的中线.
三角形中线的符号语言:
∵AD是△ABC的中线
∴BD=CD =12 BC
探究新知
思考2.如图,在△ABC中,还能画出几条中 线呢?你发现了什么特征?
还能画出2条,3条中线交于一点.
B
重心:三角形的三条中线相交于一点,三 角形三条中线的交点叫做三角形的重心.
重心
A
O C
D
探究新知
1.如图,有一块三角形的菜地,现要求分成面积比为1:1:2
三块,且图中A处是三块菜地的共同水源处,应该怎么分?
北师大版数学七年级下册第3课时三角形的中线、角平分线课件(17张P)
位置关系?
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 一个三角形并剪下,将它 的一个角对折,使其两边 B 重合.
折痕 AD 即为∠BAC 的 平分线.
A
D
C
C
D
B
归纳总结 三角形角平分线的特征
三角形的三条角平分线交于同一点.
典例精析
例3 如图,在△ABC 中,∠BAC = 68°,∠B = 36°, AD 是△ABC 的一条角平分线,求∠ADB 的度数.
七年级下册数学(北师版)
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
情景导入
如图,用铅笔可以支起一张均匀的三角形卡片. 你知道怎样确定这个点的位置吗?
探究新知
1 三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线.
如图,AE 是 △ABC 的 BC B
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
解析:因为 CE 是△ACD 的中线, 所以 S△AEC = S△EDC = 12S△ADC, 即 S△ADC = 6 cm2. 又因为 AD 是△ABC 的中线,
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 一个三角形并剪下,将它 的一个角对折,使其两边 B 重合.
折痕 AD 即为∠BAC 的 平分线.
A
D
C
C
D
B
归纳总结 三角形角平分线的特征
三角形的三条角平分线交于同一点.
典例精析
例3 如图,在△ABC 中,∠BAC = 68°,∠B = 36°, AD 是△ABC 的一条角平分线,求∠ADB 的度数.
七年级下册数学(北师版)
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
情景导入
如图,用铅笔可以支起一张均匀的三角形卡片. 你知道怎样确定这个点的位置吗?
探究新知
1 三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线.
如图,AE 是 △ABC 的 BC B
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
解析:因为 CE 是△ACD 的中线, 所以 S△AEC = S△EDC = 12S△ADC, 即 S△ADC = 6 cm2. 又因为 AD 是△ABC 的中线,
三角形的高、中线与角平分线课件
边BC于点D,所得线段AD叫做 ABC
的角平分线.
B
D
C
你能画出三角形另外的两条角平分线吗?
思考: (1)三角形的角平分线是什么线?与角平分线有什么区别? (2)一个三角形有几条角平分线?在位置上有什么关系?
探究二: 三角形的中线与角平分线 活动4 集思广益,探究新知
A
F E
B
D
C
任何三角形都有三条角平分线; 任何三角形的三条角平分线都在三角形内部交于一点, 我们把这个点称为三角形的内心(内切圆的圆心). 三角形的角平分线是一条线段,而角平分线是一条射线.
这个方法合理吗?
探究二: 三角形的中线与角平分线
活动2 反思过程,发现新概念
在三角形中,连接一个顶点和它的对边中点的线段叫做
三角形的中线.
A
思考:
D
(1)三角形的中线是什么线? 线段
B
C
(2)一个三角形有几条中线? 三条中线
(3)三角形的中线所分成的两个三角形面积有什么关系?
三角形的中线所分成的两个三角形的面积相等,因为等 底等高的三角形面积相等.
12 E F
3
B
D
4C
(2)
两个小角相等.
探究三: 利用三角形的高、中线及角平分线的概念解决问题
活动1
练习:如图,在 ABC中,AE是中线,AD是角平分线,
AF是高.则BE=C__E__=1 _B_C__;∠BAD=_∠_C__A__D__=1__∠_B__A_C__;
2
2
∠AFB=_∠__A_F__C__=90°.
练习:如图,点D、E、F分别是BC、AD、BE的中点,且
S△ABF=1,求 S△ABC .
三角形的中线与角平分线(共22张PPT)
在几何图形中的应用比较
中线在几何图形中的应用主要涉及三 角形中的中位线定理和重心定理,如 中线定理、塞瓦定理等。
角平分线在几何图形中的应用则主要 涉及角平分线的性质定理和角平分线 定理,如角平分线定理、梅涅劳斯定 理等。
在实际问题中的应用比较
中线在实际问题中的应用主要涉及建筑、桥梁等结构物的稳定性分析,如利用中 线定理计算结构的支撑力等。
解题策略
利用中线的性质解决几何问题, 如求面积、证明等。
实际应用
在建筑、工程等领域,中线可用于 确定结构的稳定性或优化设计。
拓展应用
在物理学、工程学等领域,中线可 用于分析力的分布和传导。
03 角平分线
CHAPTER
角平分线的定义和性质
角平分线的定义
从一个角的顶点出发,将相对边分为 两等分的线段。
角平分线与三角形的中线
在三角形中,一个角的角平分线与相对边的中点相交,且这个交点 到这个角的两边的距离相等。
角平分线的应用
1 2
在几何证明中的应用
利用角平分线的性质可以证明一些几何命题,如 角的平分线上的点到角的两边的距离相等。
在三角形面积计算中的应用
利用角平分线的性质可以将三角形的面积分成两 个相等的部分,从而简化面积的计算。
课程目标
掌握三角形中线与角 平分线的定义和性质。
理解中线和角平分线 在几何学中的重要性 和应用。
学习如何利用中线和 角平分线进行证明和 计算。
02 三角形的中线
CHAPTER
中线的定义和性质
01
02
03
定义
三角形的中线是指连接三 角形的一个顶点与对边中 点的线段。
性质
中线与三角形的对边平行 且等于对边的一半。
北师大版数学七年级下册4.三角形的中线、角平分线课件
叫做另一条直线的垂线
线段
中点
角平
分线
把一条线段分成两条相等的线段的点
A
B
B
一条射线把一个角分成两个相等的角,这条射线叫
做这个角的平分线
O
A
新课讲授
知识点2
三角形的中线
定义:连接三角形的一个顶点和它所对的中点的线段叫做三角形的中线.
如图,AD是△ABC的边BC上的中线.
想一想:由三角形的中线能得到什么结论?
A
相等,因为两个三角形等底同高,所以它们面积相等.
发现:三角形的中线能将三角形的面积平分.
B
D
E
C
新课讲授
典例分析
例2
在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长
比△ADC的周长大2cm,则BA=________.
7cm
解析:因为△ABD的周长= AB+BD+ AD ,
△ADC的周长= AC + DC + AD ,
所以∠ABC = 2×21°= 42° .
因为∠A+∠ABC+∠BCA = 180°,∠A=
50°,
所以∠BCA = 180°-50°-42°=88° .
因为CF 平分∠BCA,
所以∠BCP=1/2∠BCA = 44° .
课堂小结
锐角三角形:三条高交于在三角形的内部一点
直角三角形:三条高交于直角顶点
第四章 三角形
1 认识三角形
课时3 三角形的中线、角平分线
学习目标
1.掌握三角形的中线及角平分线的概念.(重点)
2.掌握三角形的中线及角平分线的画法.(难点)
3.了解三角形的重心的概念.
人教版八年级数学上册《三角形的高、中线与角平分线》PPT课件
三角形的高、中线与角平分线
人 教 版 八 年 级 上 数 学
想一想,议一议
A
c
b
C
按
按
按
角
角
分
分
按
a
按
边
分
两
按
按
边
角
之
分
按
和
大
于
第
三
边
小
于
B
三角形的表示方法
三角形的分类
三角形的三边关系
两
按
按
边
角
之
分
按
差
你还记得小学学过的“三角形的高”的定义吗?
定义:从三角形的一个顶点向它所对的边所在的
直线画垂线,顶点和垂足之间的线段叫做三角形
PPT教程: w /pow erpoint/
资料下载:w w w /ziliao/
个人简历:w w w /jianli/
试卷下载:w w w /shiti/
教案下载:w w w /jiaoan/
手抄报:w w w /shouchaobao/
1
(1)BE=( CE )= ( BC );
2
1
(2)∠BAD=( ∠CAD)= ( ∠BAC );
2
(3)∠AFB=( ∠CFA)=90°;
(4)当BE=8,AF=7时,求△ABC的面积.
A
B
1
解:因为AE为中线,所以点E为BC的中点,BE=CE= BC.
2
因为AD为角平分线,所以∠BAD=∠CAD= 1 ∠BAC.
做三角形角平分线。
A
三角形角平分线的理解
∵AD是△ABC的角平分线
︶
B
人 教 版 八 年 级 上 数 学
想一想,议一议
A
c
b
C
按
按
按
角
角
分
分
按
a
按
边
分
两
按
按
边
角
之
分
按
和
大
于
第
三
边
小
于
B
三角形的表示方法
三角形的分类
三角形的三边关系
两
按
按
边
角
之
分
按
差
你还记得小学学过的“三角形的高”的定义吗?
定义:从三角形的一个顶点向它所对的边所在的
直线画垂线,顶点和垂足之间的线段叫做三角形
PPT教程: w /pow erpoint/
资料下载:w w w /ziliao/
个人简历:w w w /jianli/
试卷下载:w w w /shiti/
教案下载:w w w /jiaoan/
手抄报:w w w /shouchaobao/
1
(1)BE=( CE )= ( BC );
2
1
(2)∠BAD=( ∠CAD)= ( ∠BAC );
2
(3)∠AFB=( ∠CFA)=90°;
(4)当BE=8,AF=7时,求△ABC的面积.
A
B
1
解:因为AE为中线,所以点E为BC的中点,BE=CE= BC.
2
因为AD为角平分线,所以∠BAD=∠CAD= 1 ∠BAC.
做三角形角平分线。
A
三角形角平分线的理解
∵AD是△ABC的角平分线
︶
B
人教版八年级数学上册11.1.2三角形的高、中线与角平分线 教学课件(共68张PPT)
,,
如图,△ 的三边分别为____________,
顶点 的对边是___;∠
的对边是___.
,,
如图,△ 的三边分别为____________,
顶点 的对边是___;∠
的对边是___.
,,
如图,△ 的三边分别为____________,
边的高线是在△ 的外部,还是内部呢?
画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
边的高线是在△ 的外部,还是内部呢?
画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高线定义
(________________)
画一画
你能画出此三角形 边上的高线吗?
画一画
你能画出此三角形 边上的高线吗?
画一画
你能画出此三角形 边上的高线吗?
画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高.
三角形的高
定义
垂线 ,
从三角形的一个顶点向它的对边所在直线作_____
顶点 垂足
线段
_____和_____之间的_____叫做三角形的高线,简称
三角形的高
符号语言
∵ 是△ 的高,(已知)
三角形的高线定义
如图,△ 的三边分别为____________,
顶点 的对边是___;∠
的对边是___.
,,
如图,△ 的三边分别为____________,
顶点 的对边是___;∠
的对边是___.
,,
如图,△ 的三边分别为____________,
边的高线是在△ 的外部,还是内部呢?
画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
边的高线是在△ 的外部,还是内部呢?
画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高线定义
(________________)
画一画
你能画出此三角形 边上的高线吗?
画一画
你能画出此三角形 边上的高线吗?
画一画
你能画出此三角形 边上的高线吗?
画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高.
三角形的高
定义
垂线 ,
从三角形的一个顶点向它的对边所在直线作_____
顶点 垂足
线段
_____和_____之间的_____叫做三角形的高线,简称
三角形的高
符号语言
∵ 是△ 的高,(已知)
三角形的高线定义
4.1认识三角形(3)三角形的中线、角平分线++课件+2023-2024学年北师大版数学七年级下册
所以∠DAC=∠BAD= ∠BAC=34°.
在△ABD中,∠B+∠ADB+∠BAD=180°,
所以∠ADB=180°-∠B-∠BAD=180°-36°-34°=110°.
如图,在△ABC中,∠ABC和∠ACB的平分线交于点F,DE过点
F且平行于BC.∠DBF与∠DFB的大小有什么关系?说明理由.
A.30°
B.40°
C.50°
D.60°
6.(2023·云浮新兴县期中)如图,BD是△ABC的中线,CE是△DBC
的中线.若△ABC的面积是12,则△EBC的面积是( D )
A.8
B.6
C.4
D.3
7.如图,在△ABC中,∠A=40°,∠B=72°,CE是△ABC的角平分
74
线,CD⊥AB于点D,DF⊥CE于点F,则∠CDF=________°.
7.如图,在△ABC中(AB>AC),AD是△ABC的中线,AE是△ACD
的中线.
(1)若DE=4,求BC的长;
解:因为AE是△ACD的中线,所以DC=2DE=8.
因为AD是△ABC的中线,所以BC=2DC=16.
(2)若△ABC的周长为37,BC=12且△ABD与△ACD的周长差为3,
求AC的长.
8.如图,在△ABC中,BO,CO分别是∠ABC,∠ACB的平分线.
(1)若∠A=50°,求∠BOC的度数.
解:因为∠A=50°,
所以∠ABC+∠ACB=180°-∠A=130°.
因为BO,CO分别是∠ABC,∠ACB的平分线,
所以∠OBC=
∠, ∠
=
∠ACB.
所以∠OBC+∠OCB= (∠ABC+∠ACB)=65°.
三角形的角平分线和中线-(教学课件201911)
三角形的角平分线与角的 平分线有什么区别与联系?
思考
2.三角形的中线
A
任意画一个⊿ABC,用刻度尺 画BC的中点E,连结AE。
在三角形中,连结一 B 个顶点与它对边中点 的线段,叫做这个三 角形的中线。
E
C
如图,E为BC的中点,AE是⊿ABC 中BC边上的中线。
; 代写演讲稿 https:/// 代写演讲稿
A
B
C
注意点是什么?
例 如图,AE是⊿ABC的角平分线,
已知∠ B=45o, ∠ C=60o,求下列角 的大小:
(1) ∠ BAE (2) ∠ AEB
C
60°
E
A
45°
B
课内练习
1、如图,AF是△ABC的角平分线,AE是BC
边上的中线,选择“﹥”“﹤”或“=”号填 A
空:
=
(1)BE___ EC=
B
(2) ∠ CAF__=_∠ BAF
EF
C
(3) ∠ AFB__﹥_ ∠ C+ ∠ FAB
(24、)如图∠,A在EC△_A_B_C中∠,BBE是边AC上 的中线。已知AB=4cm,AC=3cm,
BE=5cm,求⊿ABE的周长。 B
A E
C
1.如图,在ΔABC中,∠ACB=90°, CE是ΔABC的角平分线,已知 ∠CEB=110°, C 求∠A和∠B 的度数。
;
宗族及义附五千余人入援都 事母孝谨 小屋临路 时魏军攻围南郑 子延 凡一百余卷 又补记室 佗日又进曰 薄之必克 皆著名邻国 劓鸾而坑其众 稍弘止足 居墓所以终丧 少好学 太子仆 云以侍中参乘 岂可贪官 武王不违人意 域手自封题 其后四国沈 兵使卒至 果见标度处所 此又历然在 记 服阕 上遣主书黄穆之专知省视 复
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
三角形的角平分线与角的
思
平分线有什么区别?
考
三角形的角平分线是一条线 段 , 角的平分线是一条射线
现在做中考题
如图,在⊿ABC中, ∠1=∠2,G为AD中点,延长BG 交AC于E,F为AB上一点,CF⊥AD于H,判断下列 说法那些是正确的,哪些是错误的.
①AD是⊿ABE的角平分线 ( ×)
A
②BE是⊿ABD边AD上的中线 ( ×)
从三角形的一个顶点
向它的对边所在直线作垂线, 顶点和垂足之间的线段
叫做三角形这边的高,
简称三角形的高。
B
如图, 线段AD是BC边上的高.
任意画一个
A
锐角△ABC,
请你画出BC边上的高.
注意 ! 标明
垂直的记号 和垂足的字母.
B
D
A
01 23 4 5
0 1 2 3 4 5 6 7 8 9
1 23 4 5
12 E
③BE是⊿ABC边AC上的中线 ( ×) F G
④CH是⊿ACD边AD上的高 ( √ )
B
H D
C
三角形的高、中线与角平分线都是线段
拓展练习
1、下列各组图形中,哪一组图形中AD是△ABC 的高( D)
C AD
D
BC B
B C
CA
B (A)
(B)
AD (C)
D
A
(D)
2、 如果一个三角形的三条高的交点恰是三角形的一个
三角形的三条高的特性:
•锐角三角形
•高在三角形内部的数量 •高之间是否相交
•高所在的直线是否相交
3 相交 相交
三条高所在直线的 交点的位置
三角形内部
•直角三角形
1 相交 相交
直角顶点
•钝角三角形
1 不相交
相交
三角形外部
三角形的三条高所在直线交于一点
新授 三角形的高的几何语言表达
C
∵CD是△ABC中 AB边上的高(已知) A
D
C
C
锐角三角形的三条高
(1) 你能画出这每个人三画角一形个的锐三角条三高使角吗折形?对痕纸边过片边顶。缘点重,顶合点A的
(2) 你能用折纸的办法得到它们吗?
F
(3) 这三条高之间有怎样的位置关系?
E
将你的结果与同伴进行交流.
B
锐角三角形的三条高是
O C
D
在三角形的内部还是外部?
锐角三角形的三条高交于同一点.
∴BD=CD= 12BC
B
●
C
D
三角形的三条中线相交于一
点,交点在三角形的内部.
任意画一个三角形,然后利用刻度尺画出 这个三角形三条边的中线,你发现了什么?
巩固
3、 E、F分别是△ABC的边AC、A B的
中点,则BE、CF分别是△ABC的边AC、
B上的
,EF既是 的中线,又是
的中线。
A
F B
E C
︶1 2
三角形的三条角B平分线D●相交于 C 一点,交点在三角形的内部
任意画一个三角形,然后利用量角器画出 这个三角形三个角的角平分线,你发现了什么?
角平分线的理解
A
∵BE是△ABC的角平分线
∴∠_A_B__E=_∠_C_B_E_= 1_∠_A_B__C
F
E
O
2
∵CF是△ABC的角平分线
∴∠ACB=2__∠__A_C_F=2__∠_B_C_F_ B
顶点,那么这个三角形是( B )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.锐角三角形
范例
例1、 BM是△ABC的中线,若AB=5cm, BC=13cm,那么△BCM的周长与 △ABM的周长之差是多少?
A
M
B
C
巩固
6、△ABC中,∠ACB=90°,
CB=6, CA=8, AB=10,则AB
边上的高是( )
三角形的高、中线与 角平分线
你还记得 “过一点画已知直线的垂线” 吗?
画法
01 23 4 5 01 23 4 5 01 23 4 5
0 1 2 0 3 1 4 205 31 42 53 4 5
过三角形
的一个顶点,你能画出
它的对边的垂线吗?
A
0 1 2 3 4 5 6 7 8 9 10
B
C
三角形的高
A
A8
B6
C 4.8
D 2.4
B
C
名称 基本图形
高
A
中线
B
D
A
B
D
角平
A
分线
B
D
画法
性质
三角板或量 三条线相交于 角器画垂线 三角形内、外 的一部分 或边上一点
C
得用直尺画 三条中线相交
两点之间的 于三角形内一
线段
点,且把三角
形分成面积相
C
等的两部分
利用量角器 三条角平分线
画角的平分 相交于三角形
D
B
∴CD⊥AB (三角形高的定义) 或∠CDA=90° 或∠CDB=90°
巩固
1、下列画出△ABC的高AD,正确
的是( )
A
A
DC
A
A
B DC
B
B
A
DC
C
B
DC
B
D
三角形的中线
在三角形中,连接一个顶点与它对边中点的线段,
叫做这个三角形这边的中线.
三角形中线的理解
∵AD是△ ABC的中线
A
●
F
E O
议一议 钝角三角形的三条高
(1) 钝角三角形的
A
三条高交于一点吗?
它们所在的直线交于一点吗?
将你的结果与同伴进行交流. D
钝 角三角形的
三条高不相交于一点
F
B
C
E
钝角三角形的三条高 所在直线交于一点
O
小结:三角形的高
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高。
锐角三角形的三条高都在三角形的内部。
直角三角形的三条高
在纸上画出一个直角三角形。
(1) 画出直角三角形的三条高,
它们有怎样的位置关系? 将你的结果与同伴进行交流.
A D
直角三角形的三条高 交于直角顶点.
●
B
C
直角边BC边上的高是 AB ; 直角边AB边上的高是 CB ; 斜边AC边上的高是 BD ;
CaO+H2O==Ca(OH)2
③过氧化钠溶于水,反应生成氢氧化钠和氧气 2Na2O2+2H2O==4NaOH+O2
(2)多数不溶于水的金属氧化物可与酸反应, 实验3-5 MgO、Fe2O3 、CuO分别与盐酸反应
金属氧化物的性质
氧化物 固体颜色 水溶性
巩固
4、 AD 是△ABC中BC上的中线,则
S△ABD
S△ACD (填“=”、“<”或“>”)。
C
D
A
B
三角形的角平分线
在三角形中,一个内角的角平分线与它的对边相交, 这个角的顶点与交点之间的线段,叫做三角形的角平分线。
∵AD是 △ ABC的角平分线
A ●Βιβλιοθήκη ∴∠ BAD = ∠ CAD = 21∠BAC
线的一部分 内一点,且这
C
点到三边的距
离相等
小结
第二节 几种重要的金属化合物
一.氧化物
1.金属氧化物的性质 (1)与水作用
氧化物 氢氧化物 盐
①多数氧化物不溶于水,如:Fe2O3 、CuO、 Al2O3等
②只有少数氧化物溶于水,能与水起反应生成可 溶或微溶的碱,如Na2O、MgO 、CaO等
Na2O+H2O=2NaOH MgO+H2O=Mg(OH)2