有机合成邻氯苯基环戊酮小试,中试,放大及工艺路线优化

有机合成邻氯苯基环戊酮小试,中试,放大及工艺路线优化
有机合成邻氯苯基环戊酮小试,中试,放大及工艺路线优化

有机合成,先要在实验室进行全部合成试验,一步步打通合成路线,用小量的反应物进行试验,确定合成的反应控制条件。确定反应物和生成物的关系量。对中间体和反应物进行检测定性定量;中试是在小试成功的基础上,增加合成反应物质的量,由实验室合成向工业化合成规模前进行的试验,进一步掌握有机合成的反应条件,合成发生的可能变化和反应控制条件变化,进一步摸清全部合成路线的相关情况和控制数据,合成反应与设施设备及控制仪器仪表的适应情况,各中间体和反应物的流程处理,安全处置等;放大是将完全清楚的全部合成路线,在掌握所有合成控制数据的基础上,按照工业化生产的要求,在符合安全要求的中试生产线上,将合成路线的全部反应按工业化生产的要求,将有机合成的投料量与反应物的生成量达到工业化生产的规模和水平;工艺优化是将完全放大合格的有机合成路线,从产出物与投入物比例最大化,合成路线可控,安全,副反应物少,产出物纯度高、合成过程控制简单,合成能耗小等方面进行改进和更新的过程。

目前,生产邻氯苯基环戊酮的基本方法有十多种,原料易获得的制造方法相对麻烦一些。比如以邻氯苯甲酸,邻氯苯甲酰氯,溴代环戊烷,环戊醇,环戊烷,

环戊酮等等都可以作为主要原料,但其中最简单的,也是目前比较常见的有两种方法的主要原料就是邻氯苯甲酰氯,溴代环戊烷。技术含量并不高,原料很容易找到,化学合成只需要在实验室就能完成,方便易行、易分散、易隐蔽,成本低廉而售价较高。利润丰厚。“具有初中化学水平的人,如果拥有制毒配方,在家就能够生产毒品。”对于文化程度不高的高中文化,初中文化,小学文化人员来说,这些技术也是容易学会的。生产出来的产品成色也挺好好,量也大。但现在盐酸羟亚胺,邻酮管控严格,不容易买到。因此就要得我们自己生产了。从生产角度来讲,氯胺酮技术相对简单,从盐酸羟亚胺到氯胺酮只需要重排既可以,反应加结晶一天就可以出来。从邻酮做也不算太难。氯胺酮的整个技术路线:包括需要的设备,原料、配料比、反应时间、反应温度、操作要点细节、注意事项等,内容具体详细通俗易懂。

对于从事化学制造的化学工作者来说,有机化学反应的放大就是最终目的,也检验了一个有机化学工作者的真正水平。为什么这么说呢?在实验室里做的化学反应,总是能够得到产品的,而得到产品往往是不计较代价的,比如分离的成本,原材料的成本、反应的收率、反应的重复性等等往往考虑的不多。这就是大

多数化学工作者的弊病,往往学理科的人容易犯这种错误。说到这里可能有一部分人不愿意听了。举一个真实的例子你就会同意我这个观点。我的一个朋友和老师有机合成的水平相当高,在国内也是响当当的,以前也是很轻视化学反应的放大,等到自己从事了这方面的工作,才发现自己原先想的不太一样,从此也很是重视化学反应的放大。

下面给大家简单介绍下两种方法:制造邻氯苯基环戊酮的第一种方法是:以溴代环戊烷作为主要原料,通过溴代环戊烷,镁粉,乙醚。合成格氏试剂环戊烷基溴化镁,然后加入邻氯苯晴后搅拌反应三天后,加入氯化铵水解反应,再加入试剂苯,高温还原。得到邻氯苯基环戊酮。但是格氏试剂合成, 原料溶剂要求十分严格,操作困难。格林尼亚试剂简称“格氏试剂”是含卤化镁的有机金属化合物。当与邻氯苯腈反应时,腈基与格氏试剂反应,经过烯胺格氏反应,中间物用氯化铵水解。格氏试剂水解后,用水终止反应,生成的产物是Mg(OH)Cl,而实验中一般用饱和氯化铵溶液终止反应,它是酸性的而且大大过量,所以终产物MgCl2。格式试剂对无水环境要求苛刻。活性很强,不容易停留在酮的这个步骤上,容易进一步反应成醇或者烷,不易制备。制造邻氯苯基环戊酮的另一种方法

是:现代工厂都以邻氯苯甲酰氯作为主要原料,以无水三氯扣扣599932791化铝作为催化剂、环己烷与二氯乙烷作为溶剂、戊烷和苯作为基团转换剂,与环戊烯发生加成反应,然后经蒸馏提纯而得到邻氯苯基环戊酮。后面就可以再溴化、氢化,胺化、中和,水解、成盐,再与苯甲酸乙酯C9H10O2扩环从派分子,后得到氯胺酮。其优点是工期短、收率高、含量均在96-98之间。但也有缺点:1:其反应过程生成的大量有害气体无法净化和转换、只能直接排放,2:反应过程还会产生大量废水,对水体环境造成无法修复的污染侵害。化学反应的放大,不是将化学反应的体积由小试时的几毫升、几十毫升放大几倍、几十倍、甚至几百倍就算是完成了。这是大多数人的理念,甚至一些人至今还是这种理念。这样做往往会收获失败,因为忽略了化学反应的奇妙性。这种现象在刚刚从事化学放大的学生或科研人员中大量存在。成功的直接放大反应也有,仅仅局限于少数的、简单的化学反应,这些反应对于从事化学放大的化学工作者来说,遇到的不是很多。大多数的反应在放大时都会存在或多或少的问题,有时与小试时完全不同。遇到这种问题时,应仔细的观察放大时发生的化学现象与小试时有何不同,甚至是有何本质的不同。“本质不同”这句话很重要,这

句话说起来容易,做起来可不是那么回事。它需要扎实的理论基础和灵活的头脑及丰富的化学放大经验。能够检验你对化学反应的理解程度和对化学反应工程的理解程度。

有机合成反应放大实验需要考虑的几个问题:1.实验室和放大实验温度梯度,浓度梯度不同

小实验温度和浓度都是比较好控制的,但放大实验就不同了,首先看温度由于体积增大,要达到一定的温度的时间比较长,温度的不均匀,导致反应的不均匀,有时要是强放热反应,还容易导致局部温度过高,加速副反应.滴加的料也不容易均匀.有措施减少这种情况的发生:对于加热反应(且低温副反应严重的)可以先把物料单独加热到需要的温度,再加入.为了控制局部浓度过大,可以把加液点设在搅拌的最大线速度附近,或改滴加为喷雾加.2.换热面积和反应时间不一样3.温度指示的偏差:实验室温度计可以直接插入反应液中,及时快速反映反应温度,而放大实验由于不可能这样,温度要经过很长一个传导过程才到温度计,反映实际的温度会滞后,波动也会变小.对于简单反应,均相反应,以上影响不大,放大效应主要是针对复杂反应的,放热反应.非均相反应一般为扩散控制:要激烈搅拌,使分散相小,加速反应,对放热反应也有降低界面温度

和减小温度梯度的功效.局部温度和浓度梯度是最关键的,直接关系放大的失败和成功,解决上面说到.吸热反应的控制唯一手段就是控制夹套的加热介质.

放热反应的温度控制有以下几点:1.良好的搅拌,使浓度温度均匀分布2.将液流导到搅拌线速最大处3.减小液滴,实现好的分布,如喷入4.减低液滴温度减小

局部过热5.反应温度实行低限控制6.增加液滴的溶剂量,增加热容,减小局部温升.

比如对于放热的化学反应来说(重氮化反应、铁粉还原反应、硝化反应、还原反应等等,这些只是常见的放热反应),在小试时放出的热量可以由实验室的冷却系统(冰浴、冷水)及时的移走,而对反应的进行几乎没有影响。但是稍一放大,这种热量的及时移走就变得不太容易了,极易影响反应按正确的方向进行。严重时甚至容易发生冲料和爆炸现象。在这种情况下,除了配备良好的冷却系统外,还需从改变化学反应的进行速度处着手解决,这就涉及到反应的加料顺序、加料快慢等等许多问题。而加料顺序及加料快慢又影响到反应的副反应问题。这也需要解决。总之从方面考虑问题才能解决问题。

比如对于非均相反应,在小试时搅拌速度对反应的影响很小,一旦放大,这个问题就严重的影响反应的顺利进行。甚至反应难以进行。这时需要考虑的是怎么提高搅拌速度和在搅拌速度一定的条件下,怎样提高两相的混合均匀程度,而这对反应的进行是相当重要的。如果还是反应进行的不理想,就要想到改变反应性质了,比如由非均相反应变为均相反应,将活性低的原料变为活性高的原料。不管怎么说,在大多数情况下,均相反应总是比非均相反应进行的容易些。但是非均相反应有一个优点,就是有时可以降低副反应的发生。

化学反应放大一个主要的问题是分离问题,这个问题在小试时无关紧要,在放大时非常重要。再分离方法中,最头疼的问题是过滤和精馏两个单元操作。过滤遇到的难题是过滤的难易程度;精馏遇到的问题是产品的分解和纯度问题。过滤难主要是由于析出晶体的颗粒细小,解决的方法除了在设备上选型外,最主要的还是从结晶工艺上来控制晶体粒子的大小。

有机合成作业(论文)

白藜芦醇的合成 摘要:白藜芦醇具有多种生物和药理活性,使其广泛应用于食品、医药、保健 品、化妆品等领域。白藜芦醇具有优良药理活性和保健功能其市场需求很大且与日剧增,目前已有大部分国家和地区都开发了白藜芦醇及其制品。白藜芦醇是一种含有芪类结构的非黄酮类多酚化合物。它不仅是植物遭受胁迫时产生的一种能提高植物抵抗病原性攻击和环境恶化的植物抗毒素, 还具有抗癌、抗氧化、调节血脂、影响寿命等多方面有益于人类健康的重要功能。以下对白藜芦醇的理化特性、合成、提取、纯化与检测方法进行了全面总结, 并在其作用的分子机制基础上, 对其生物学活性、基因工程研究及产业化情况进行了重点介绍。发现在传统育种的基础上, 借助于现代生物技术手段, 将白藜芦醇的天然活性保健作用应用于保健食品的开发、作物经济附加值的提高具有广阔的前景。 关键词:白藜芦醇;化学合成;研究进展 Abstract:Resveratrol has multiple biological and pharmacological activities, it is widely used in food, medicine, health products, cosmetics and other fields. Pharmacological activity of resveratrol has an excellent and great demand for health functions and with its market-increasing, there are most of the developed countries and regions of resveratrol and its products. Key words:resveratrol;chemical synthesis;progres 1 前言 白藜芦醇(Resveratro1),化学名为反式3,4ˊ,5-三羟基二苯乙烯(3,4ˊ,5-Trihydroxy-trans-stilbene),是一种存在于植物中的具有芪类结构的非黄酮类天然多酚化合物,其化学结构式如下所示。 白藜芦醇广泛存在于葡萄、虎杖、决明子和花生等天然植物中, 它是植物在受到生物或非生物威胁时产生的一种植物抗毒素。白藜芦醇生理活性显著, 高效低毒, 有抗肿瘤、抗炎、抗菌、抗氧化、抗自由基、保护肝脏、保护心血管和抗心肌缺血等功能,被喻为继紫杉醇之后又一新的绿色抗肿瘤药物;同时其保健功能也引起了欧美科学家的普遍兴趣, 被美国专著《抗衰老圣典》列为100种最热门有效抗衰老物质之一。由于白藜芦醇在医药和食品工业中的广泛应用, 导致白

有机合成工艺学作业.doc

有机合成工艺学作业 一、单选题(共10 道试题,共100 分。) 1. 催化加氢是指有机化合物中一个或几个不饱和的官能团在催化剂的作用下与氢气发生加成反应;而催化脱氢是在催化剂的作用下,烃类脱氢生成二种或两种以上新物资,通过加氢和脱氢过程,可以合成氨、(甲醇)、丁二烯、苯乙烯等非常重要的基本有机化工产品。 2. 合成甲醇的产物中,除目的产物外,还含有二甲醚、异丁醇、甲烷等副产物。合成甲醇早期为高压法,由于它存在许多无法克服的缺点,被后来发展起来的低压法所取代,低压法的动力消耗为高压法的(60% )左右。 3. 催化脱氢可以生成高分子材料的重要单体,产量最大、用途最广的两个产品是苯乙烯和(丁二烯)。 4. 合成甲醇的技术自20世纪80年代来主要取得了(三)个新成果。 5. 正丁烯氧化脱氢制丁二烯过程中,主要的副反应有(六)个。 6. 丁二烯的用途较大,目前它的主要来源是裂解副产品混合C4通过特殊精馏得到,西欧和日本的全部、美国(80%)的丁二烯是通过这一途径得到的。 7. 合成甲醇的反应机理有许多学者进行了研究,也有很多报道,归结起来有(三)种假定。 8. 甲醇作为化工原料的用途越来越广,它既可以直接合成汽油,也可以作为无铅汽油的优质添加剂,它的主要原料是合成气,据统计,世界上(80% )的甲醇来源于天然气。 9. 乙苯脱氢制得苯乙烯的工艺进行不断改进,主要从(三)方面着手。 10. 苯乙烯是高分子材料的一种重要单体,由于市场需求旺盛,苯乙烯的产量不断增加,目前生产苯乙烯的主要方法是乙苯脱氢法,主要原料是(乙烯和苯)。 1. 催化自氧化反应的机理属于自由基机理,起决定作用的是(链引发)过程。 2. 氧化反应在化工领域中比较常见,它具有许多特征,综合起来有(四)大特征。 3. 烃类氧化过程中,氧化剂可以在空气、纯氧、过氧化氢和其他过氧化物中选择,目前最常用的是(空气和纯氧)。 4. 异丙苯法生产苯酚和丙酮的工艺流程中,从烷基化反应开始到反应混合物中产品的精制分离,一共需要经过(八)个单元。 5. 催化氧化的技术进展主要体现在(三)个方面。 6. 原料的纯度在生产上也是一个主要操作条件,工艺上用于生产乙醛的原料乙烯要求在(99.5% )以上。 7. 工业上乙烯氧化生成乙醛的过程容易发生爆炸,实际生产过程中,往往通过控制循环气中乙烯和氧气的量来预防爆炸发生,乙烯含量控制在65%左右,氧含量控制在(8%)左右。 8. 丙烯氨氧化制丙烯腈的工艺路线主要有(五)条。 9. 烃类氧化有完全氧化和部分氧化之分,目前全球生产的化学品中,(50%)是通过部分氧化得到的。 10. 在采用共氧化法生产环氧丙烷过程中,联产物量很大,所产联产物是异丁烯和(苯乙烯)。 1. 工业上生产醋酸的方法有(三)种。 2. 以丙烯为原料经羰基合成反应和加氢反应生成1,4-丁二醇的工艺已经由(美国)ARCO 公司实现工业化。 3. 影响氢甲酰化反应的因素很多,主要体现在(三)方面。 4. 由于羰基化反应的应用越来越广泛,它的发展趋势主要体现在(二)个方面。 5. 羰基合成的原料为烯烃和合成气,所得到的产品的碳原子数与原料烯烃的差为(1)。 6. 羰基合成在精细化工中的应用很广,主要在(香料)方面。 7. 甲醇低压羰基合成醋酸在技术经济上的优越性很大,它归纳起来大约有(八)个特点。

合成工艺的优化

合成工艺的优化 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 转化率是消耗的原料的摩尔数除于原料的初始摩尔数。 选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。 收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。 转化率×选择性= 收率 反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,少量原料依然存在于反应体系中。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。 化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。 只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。 提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓

精细有机合成化学与工艺学复习参考题

1、精细化学品与精细化工的概念与特点。 精细化学品:“凡能增进或赋予一种(类)产品以特定功能,或本身具有特定功能的小批量或高纯度化学品”。 精细化学品的特点:① 产品功能性强(专用性)② 批量小③ 品种多④ 利润率高⑤ 更新换代快 精细化工 :“生产精细化学品的工业”。 “它属于一类化工产品的生产行业” 。 精细化工的特点:① 多品种、小批量 ② 综合生产流程和多功能生产装置 ③ 高技术密集度 ④ 大量应用复配技术 ⑤ 新产品开发周期长,费用高 ⑥ 商品性强、市场竞争激烈 2、新领域精细化学品的类别。 食品添加剂、饲料添加剂、电子化学品、造纸化学品、塑料助剂、皮革化学品、表面活性剂、水处理剂等。 3、精细化率的定义、我国目前的精细化率。 精细化率是一个国家或地区化学工业发达程度和化工科技水平高低的重要标志。我国目前的精细化率为45%。 4、世界精细化工的发展趋势。 发达国家新领域精细化工发展迅速、重视化境友好绿色精细化学品和超高功能及超高附加值产品,发展绿色化生产与生物工程技术。传统精细化工向发展中国家转移。 5、我国精细化工的现状与存在的主要问题。 ●我国精细化工产品的自我供应能力已有了大幅度的提升,传统精细化工产品不仅自给有余,而且大量出口;新领域精细化工产品的整体市场自给率达到70%左右。一些产品在国际市场上具有较大的影响力。 ●目前国精细化工产品尚难以满足细分市场需求。以中低档产品为主,难以满足高端市场要求,以电子化学品为代表的高端精细化学品严重依靠进口。 ● 在快速变化的市场面前,我国的研发力量还很不足的,特别是薄弱的精细化工的基础性研究已成为我国开发新技术和新产品的重要制约因素。 ● 部分国家以保护环境和提高产品安全性为由,陆续实施了一批新的条例和标准;我国也在不断加大与人民生活息息相关的工业品的安全管理力度和提%100?=化工产品的总值精细化工产品的总值)精细化工率(精细化率

制药工艺学试题及习题答案

《化学制药工艺学》第一次作业 一、名词解释 1、工艺路线: 一个化学合成药物往往可通过多种不同的合成途径制备,通常将具有工业生产价值的合成途 径称为该药物的工艺路线。 2、邻位效应: 指苯环内相邻取代基之间的相互作用,使基团的活性和分子的物理化学性能发生显著变化的 一种效应。 3、全合成: 以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得化学合成 药物,这种途径被称为全合成。 4、半合成: 由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得化学合成药物的途径。 5、临时基团: 为定位、活化等目的,先引入一个基团,在达到目的后再通过化学反应将这个基团予以除去,该基团为临时基团。 6、类型合成法: 指利用常见的典型有机化学反应与合成方法进行合成路线设计的方法。 7、分子对称合成法: 由两个相同的分子经化学合成反应,或在同一步反应中将分子相同的部分同时构建起来,制得具有分子对称性的化合物,称为分子对称合成法。 8、文献归纳合成法: 即模拟类推法,指从初步的设想开始,通过文献调研,改进他人尚不完善的概念和方法来进行药物工艺路线设计。 二、问答题 1、你认为新工艺的研究着眼点应从哪几个方面考虑? 答: (1)工艺路线的简便性, (2)生产成本因素, (3)操作简便性和劳动安全的考虑, (4) 环境保护的考虑, (5) 设备利用率的考虑等。 2、化学制药工艺学研究的主要内容是什么? 答: 一方面,为创新药物积极研究和开发易于组织生产、成本低廉、操作安全和环境友好的 生产工艺;另一方面,要为已投产的药物不断改进工艺,特别是产量大、应用面广的品种。研究和开发更先进的新技术路线和生产工艺。 3、你能设计几种方法合成二苯甲醇?哪种路线好? 答:

有机合成工艺优化

有机合成工艺优化 1.合成工艺的优化主要就是反应选择性研究有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有 机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。 平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温 度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度, 可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低 浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主 反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再 确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性, 搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组 分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对 大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应 采取不同的抑制方法。 (1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因 为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究

有机合成工艺优化.doc

有机合成工艺优化方法学---心得 1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位

《有机合成工艺学》课程综合复习资料

《有机合成工艺学》课程综 合复习资料 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《有机合成工艺学》综合复习资料 一、填空题 1、绝热式乙苯脱氢工艺流程中,原料为和,反应器入口温度需要610~660℃,它是一个吸热反应,热量靠过热蒸汽带入,因此,催化剂床层分段,段间补充过热水蒸汽,全部蒸汽与乙苯的摩尔比为。反应产物经冷凝器冷却后,气液分离,不凝气中含有大量的和CO、CO2,可作燃料使用。冷凝液经精馏后分离出、、和,最后产物是。 2、合成气制备甲醇的工艺流程中,原料为新鲜,由于合成甲醇是多个反应同时进行,除主反应外,还有生成和甲烷等副反应。因此,如何提高合成甲醇反应,提高甲醇收率是 问题,它涉及到催化剂的选择以及操作条件的的控制,诸如、、和原料气。由于反应是个可逆的反应,存在一个温度曲线。 3、烃类氧化反应过程中氧化剂在、纯氧、和其它过氧化物上选择,究竟使用什么氧化剂要视分析而定。近年来,作为氧化剂发展迅速,它具有条件,操作简单,反应选择性,不易发生深度反应,对环境友好和可实现生产的特点。 4、当代环境十大问题是:污染、臭氧层、全球变、海洋、淡水资源和污染、生物多样性、环境公害、有毒化学品和废物、土地和沙漠化、锐减。 5、Monsanto低压法甲醇羰化反应合成醋酸的不利条件是催化剂的资源稀缺,价格较。甲醇低压羰基合成醋酸在上的优越性很大,其特点为:原料可以用煤、和重质油,不受供应和价格波动影响;反应的转化率和选择性,过程能量效率高;所采用的催化系统稳定,用量少,寿命;流程中的反应系统和系统合为一体,工程和控制都很巧妙,结构紧凑;已经解决了设备的问题,找到了耐腐蚀的材料;生产过程中副产物很,三废排放少,操作安全可靠。 6、催化加氢通常用于合成和许多化工产品的过程;催化脱氢可以生成高分子材料的重要,产量最大、用途最广的两个最重要的产品是和。

有机合成工艺小试到中试放大之关键

有机合成工艺小试到中试放大之关键 在生产过程中凡直接关系到化学合成反应或生物合成途径的次序,条件(包括物料配比、温度、反应时间、搅拌方式、后处理方法及精制方法等)通称为工 艺条件。 一、研发到生产的三个阶段 1、小试阶段:开发和优化方法 2、中试阶段:验证和使用方法 3、工艺验证/商业化生产阶段:使用方法,并根据变更情况以绝对是否验证 注:批量的讨论:中试批量应不小于大生产批量的十分之一 二、小试阶段 对实验室原有的合成路线和方法进行全面的、系统的改革。在改革的基础上通过实验室批量合成,积累数据,提出一条基本适合于中试生产的合成工艺路线。小试阶段的研究重点应紧紧绕影响工业生产的关键性问题。如缩短合成路线,提高产率,简化操作,降低成本和安全生产等。 1、研究确定一条最佳的合成工艺路线:一条比较成熟的合成工艺路线应该 是:合成步骤短,总产率高,设备技术条件和工艺流程简单,原材料来源充裕而 且便宜。 2、用工业级原料代替化学试剂:实验室小量合成时,常用试剂规格的原料 和溶剂,不仅价格昂贵,也不可能有大量供应。大规模生产应尽量采用化工原料和工业级溶剂。小试阶段应探明,用工业级原料和溶剂对反应有无干扰,对产品的产率和质量有无影响。通过小试研究找出适合于用工业级原料生产的最佳反应 条件和处理方法,达到价廉、优质和高产。 3、原料和溶剂的回收套用:合成反应一般要用大量溶剂,多数情况下反应 前后溶剂没有明显变化,可直接回收套用。有时溶剂中可能含有反应副产物,反应不完全的剩余原料,挥发性杂质,或溶剂的浓度改变,应通过小试研究找出回收处理的办法,并以数据说明,用回收的原料和溶剂不影响产品的质量。原料和溶剂的回收套用,不仅能降低成本,而且有利于三废处理和环境卫生。

制药工艺学课后答案

第二章化学制药工艺路线的设计和选择 2-1工艺路线设计有几种方法,各有什么特点?如何选择? 答:(1)类型反应法,类型反应法是指利用常见的典型有机化学反应与合成方法进行合成工艺路线设计的方法。类型反应法既包括各类化学结构的有机合成通法,又包括官能团的形成,转换或保护等合成反应。对于有明显结构特征和官能团的化合物,通常采用类型反应法进行合成工艺路线。 (2)分子对称法,药物分子中存在对称性时,往往可由两个相同的分子片段经化学合成反应制得,或在同一步反应中将分子的相同部分同时构建起来。该法简单,路线清晰,主要用于非甾体类激素的合成。 (3)追溯求源法,从药物分子的化学结构出发,将其化学合成过程一步步逆向推导,进行寻源的思考方法,研究药物分子化学结构,寻找出最后一个结合点,逆向切断链接消除重排和官能团形成与转化,如此反复追溯求源直到最简单的化合物,即期始原料为止,即期始原料应该是方便易的,价格合理的化学原料或天然化合物,最后是各步的合理排列与完整合成路线的确定。 2—2工艺路线评价的标准是什么?为什么? 答:原因:一个药物可以有多条合成路线,且各有特点,哪条路线可以发展成为适合于工业生产的工艺路线则必需通过深入细致的综合比较和论证,从中选择出最为合理的合成路线,并制定出具体的实验室工艺研究方案。 工艺路线的评价标准:1)化学合成途径简捷,即原辅材料转化为药物的路线简短;2)所需的原辅材料品种少并且易得,并有足够数量的供应; 3)中间体容易提纯,质量符合要求,最好是多不反应连续操作; 4)反应在易于控制的条件下进行,如无毒,安全; 5)设备要求不苛刻; 6)“三废”少且易于治理; 7)操作简便,经分离,纯化易达到药用标准; 8)收率最佳,成本最低,经济效益好。 第五章氯霉素生产工艺 5-2、工业上氯霉素采用哪几种合成路线?各单元步骤的原理是什么?关键操作控制是什么? 答:工业上氯霉素采用具有苯乙基结构的化合物原料的合成路线;

我从事有机合成工艺研发工作三年的体会

我从事有机合成工艺研发工作三年的体会 作者:ttyhhecheng(优化合成) 时间过得真快!转眼之间我已经在Bristol-Myers Squibb从事有机合成工艺优化(process R&D)工作三年了,这三年,感谢公司的栽培,我顺利完成了从学校毕业生到有机合成工艺优化专家的转变。因为此前我一直都在学校读书,这个转变对我个人而言也是真正实现学以致用的开端,我在此把三年来的经历和体会作个总结,兴许新的有机合成化学毕业生看了能有所得。 2004年三月,我刚入公司第一天,我就被安排做新API的路线优化和第一批临床原料的合成,虽然这只是一个四步的合成工艺,但在不到三个月的时间,我完成了从最佳工艺路线的挑选,建立各步合成反应中控标准,定型API分离方案,下车间放大生产(1.5kg, 50L) 的所有工作,就这样在很短的时间内对工艺优化所牵涉到的各方面问题有了全面接触,例如如何挑选API路线(我学到的第一课是最短的不一定是最好的),如何运用统计学原理迅速地优化多变量反应,如何运用自下而上的原理帮助确定分离方案,如何处理收率和质量的关系,如何检验工艺的可重复性,等等。。。 现在回想起来,这是一个学习强度非常高的时期,一方面我得做大量实验优化各步工艺,提高我运用合成化学理论知识解决实际问题的能力;另一方面我得迅速熟悉PR&D各部门间交流对话的机制和快节奏的决策过程,定出符合FDAcGMP工业标准的生产放大方案并付诸实施。从我这最初三个月的经历来看,我们部门实行的是通过压担子--在完成任务的同时完成对新人的培养的策略,我个人的成长经历说明这一策略是非常成功的。当然,成功实施这一策略的前提条件是部门内有很好的团队精神,新手能及时地得到资源上,人际关系上的帮助。在此我一方面要感谢公司对我的信任,让我直接负责新API的工艺研发,另一方面,我也要向我的很多同事致以由衷的谢意!我能迅速胜任重担是和他们对我的无私的指导和帮助分不开的。从我个人成长来说,我深切体会到不管在哪里,多做少说是新手树立良好第一印象适应公司氛围的关键,不管是老中老美,大家总还是尊重勤恳干活的人的。 在完成了第一个项目后,领导征询我的意见是否愿意领兵做一个重要的中间体工艺放大工作。这个项目和第一个完全不同,反应了有机合成工艺优化工作的极具挑战性的另一侧面,即如何啃下硬骨头。第一个项目事务繁杂但技术难度并不大,其中的挑战性在于如何依据实际情况分清工作主次,在有限的时间内作出合理决策。这第二个项目的核心内容是技术攻关,即如何将一个非常复杂的化学反应优化放大,完成三百公斤规模的生产。值得一提的是,这个放大生产是要在外包商的车间完成,这其中就还牵涉到如何顺利完成技术转移的任务。当时我工作了还不到四个月,确实并没有体察到完成这个任务所要求的方方面面的能力,只因为对这任务的技术上的挑战性充满兴趣,二话没说就接受了。现在回想起来,那时真有点不知天高地厚,豪气干云的意思,根本没想过万一做不下来会如何如何。 这个中间体的合成包括了三个主要步骤:先是高温(140摄氏度)下进行三加二环加成反应得到消旋产物的dimer,然后将dimer转化成消旋性产物,最后将消旋性产物拆分成所需的旋光性对映体。在我接手之前,通过多批次的办法已经合成过40公斤,这时的平均收率在16%左右。但我的任务是要生产300公斤。从前的工艺是行不通的。主要的问题有:高温下的环加成反应重复性差,收率和立体选择性变化幅度大;需进行两步分离,而消旋性产物盐的分离有极大难度(当时用了两天的离心时间);最后拆分工艺也不稳定,析出的晶体的旋光纯度随结晶时间的延长而逐步下降。所以要顺利实现这个放大,我必需解决这三个技术难题:1,如何确保高温反应的高收率和重现性;2,如何解决中间体的分离难题或者更进一步干脆省略中间体的分离步骤;3,如何建立稳定的拆分工艺。而这三个难题实际上是相关的,第一个难题的解决是解决第二个和第三个难题的基础。明确这个关系后,我们三人攻关小组现聚焦第一关。我们利用了在线红外波谱仪详细研究了高温下环加成反应机理,搞清了反应物配比,浓度,溶剂成分,温度和升温速率等变量对主反应和几个副反应的影响,把反应实时收率从80%提高到95%左右,同时实现了高重复性。第一步的高收率也意味着在这一步产生较低杂质,这样为省略中间体的分离(纯化)步骤奠定了基础,也为建立起稳定的拆分工艺提供了良好原料。就这样,我们用了近五个月的时间,把一个两步分离,平均收率16%的工艺改进成一步分离,单反应罐操作,平均收率30%的稳定工艺,并顺利地实现了对外包商的技术转移和规模生产。 在优化这一复杂反应过程中,方法论方面我有两点重要体会,第一,在技术攻关时,一定要站在战略性的高度来详尽分析各个矛盾,找到主要矛盾,集中所有资源先解决主要矛盾,只有这样才能高屋建瓴,

(完整版)制药工艺学元英进课后答案

第一章论绪 第二章1-1:分析制药工艺在整个制药链中的地位与作用。 答:制药工艺学的工程性和实用性较强,加之药品种类繁多,生产工艺流程多样,过程复杂。即使进行通用药物的生产,也必须避开已有专利保护,要有自主知识产权的工艺。制药工艺作为把药物产品化的一种技术过程是现代医药行业的关键技术领域,在新药的产业化方面具有不可代替的作用;制药工艺学是研究药的生产过程的共性规律及其应用的一门学科,包括制配原理,工艺路线和质量控制,制药工艺是药物产业化的桥梁与瓶颈,对工艺的研究是加速产业化的一个重要方面。 1-2.提取制药、化学制药、生物技术制药的工艺特点是什么,应用的厂品范围是什么? 答:提取制药工艺的特点:以化工分离提取单元操作组合为主,直接从天然原料中用分离纯化等技术制配药物;应用的产品范围包括:氨基酸、维生素、酶、血液制品、激素糖类、脂类、生物碱。 化学制药工艺的特点:生产分子量较小的化学合成药物为主,连续多步化学合成反应,随即分离纯化过程;应用产品范围包括;全合成药物氯霉素,半合成药物多烯紫杉醇,头孢菌素C等。 生物技术制药工艺特点:生产生物技术制药、包括分子量较大的蛋白质、核酸等药物。化学难以合成的或高成本的小分子量药物。生物合成反应(反应器,一步)生成产物,随后生物分离纯化过程;应用的产品范围包括:重组蛋白质、单元隆抗体、多肽蛋白质、基因药物、核苷酸、多肽、抗生素等。 1-3化学制药产品一定申报化学制药吗?生物技术制药产品一定申报生物制药吗?为什么?举例说明。 答:化学制药产品和生物制药产品均不一定申报化学药物和生物制药制品:

有些药物的生产工艺是由化学只要和生物技术制药相互链接有机组成的。如两步法生产维生素C,首先是化学合成工艺,之后是发酵工艺,最后是化学合成工艺;有些药物经过化学合成工艺,最后是生物发酵工艺,如氢化可的松。 1-4从重磅炸弹药物出发,分析未来制药工艺的趋势。 答:重磅炸弹药物是指年销售收入达到一定标注,对医药产业具有特殊贡献的一类药物。未来制药工艺的趋势:(1)主要药物的类型将会增加(2)研发投入加大(3)企业并购与重组讲促进未来只要工艺的统一化(4)重磅炸弹药药物数量增加,促进全球经济的发展。 1-5世界销售收入排前十位的制药是什么?它们属于哪类药物?采取的制药工艺是什么? 答:(1)抗溃疡药物(219亿美元),属于内分泌系统药物,采取化学制药工艺,(2)降低胆固醇和甘油三酯药物(217亿美元),属于生物合成药物,采取生物技术制药工艺.(3)抗抑郁药物(170亿美元)属于中枢神经系统药物,采用化学制药工艺(4)非甾体固醇抗风湿药物(113亿美元)属于生物制品,采用生物制药工艺(5)钙拮抗药物(99亿美元)属于化学合成药物,采用化学合成工艺(6)抗精神病药物(95亿美元)中枢神经系统药物,化学制药工艺(7)细胞生成素(80亿美元)血液和造血系统药物,化学制药工艺(8)口服抗糖尿病药物(80亿美元)生物制药,生物制药工艺(9)ACE抑制药(78亿美元)化学合成药物,化学制药工艺(10)头孢菌素及其组合(76亿美元)生物制品,提取制药工艺 1-6列举出现频率较高的制药工艺技术 答:生物制药技术发展迅速,出现频率较高,该工艺包括微生物发酵制药,酶工程技术制药,细胞培养技术制药 1-7化学药物,生物药物,中药今年来增长情况怎样? 答:随着现代科技技术改造和发展,世界正处于开发新药过程中,而化学药物,生物药物,中药今年来增长依然迅速,起着主导作用,尤其是生物药物为人

石油华东《有机合成工艺学》2015年秋学期在线作业(二)答案

《有机合成工艺学》2015年秋学期在线作业(二) 单选题 一、单选题(共 20 道试题,共 100 分。) 1. 工业上生产醋酸的方法有()种。 . 三; . 四; . 五; . 六。 -----------------选择: 2. 氧化反应在化工领域中比较常见,它具有许多特征,综合起来有()大特征。 . 二; . 三; . 四; . 五。 -----------------选择: 3. 教材中所给出的丁醛生产丁醇和2-乙基己醇(辛醇)的流程包括()个部分。 . 二; . 三; . 四; . 五。 -----------------选择: 4. 烃类氧化过程中,氧化剂可以在空气、纯氧、过氧化氢和其他过氧化物中选择,目前最常用的是()。 . 空气; . 纯氧; . 过氧化氢; . 空气和纯氧。 -----------------选择: 5. 原料的纯度在生产上也是一个主要操作条件,工艺上用于生产乙醛的原料乙烯要求在()以上。 . 97%; . 98%; . 99%; . 99.5%。 -----------------选择: 6. 异丙苯法生产苯酚和丙酮的工艺流程中,从烷基化反应开始到反应混合物中产品的精制分离,一共需要经过()个单元。 . 五; . 六; . 七; . 八。

7. 催化自氧化反应的机理属于自由基机理,起决定作用的是()过程。 . 链引发; . 链增长; . 链终止; . 化学反应速度。 -----------------选择: 8. 在采用共氧化法生产环氧丙烷过程中,联产物量很大,所产的联产物是异丁烯和()。. 苯酚; . 丙酮; . 氯乙烯; . 苯乙烯。 -----------------选择: 9. 以丙烯为原料经羰基合成反应和加氢反应生成1,4-丁二醇的工艺已经由()RO公司实现工业化。 . 日本; . 德国; . 美国; . 英国。 -----------------选择: 10. 烃类氧化有完全氧化和部分氧化之分,目前全球生产的化学品中,()是通过部分氧化得到的。 . 50%; . 60%; . 70%; . 80%。 -----------------选择: 11. 甲醇低压羰基合成醋酸在技术经济上的优越性很大,它归纳起来大约有()个特点。. 五; . 六; . 七; . 八。 -----------------选择: 12. 羰基合成的原料为烯烃和合成气,所得到的产品的碳原子数与原料烯烃的差为()。. 1; . 2; . -1; . -2。 -----------------选择: 13. 由于羰基化反应的应用越来越广泛,它的发展趋势主要体现在()个方面。 . 二; . 三; . 四; . 五。

有机合成工艺小试到中试放 大之关键

有机合成工艺小试到中试放大之关键在生产过程中凡直接关系到化学合成反应或生物合成途径的次序,条件(包括物料配比、温度、反应时间、搅拌方式、后处理方法及精制方法等)通称为工艺条件。 一、研发到生产的三个阶段 1、小试阶段:开发和优化方法 2、中试阶段:验证和使用方法 3、工艺验证/商业化生产阶段:使用方法,并根据变更情况以绝对是否验证 注:批量的讨论:中试批量应不小于大生产批量的十分之一 二、小试阶段 对实验室原有的合成路线和方法进行全面的、系统的改革。在改革的基础上通过实验室批量合成,积累数据,提出一条基本适合于中试生产的合成工艺路线。小试阶段的研究重点应紧紧绕影响工业生产的关键性问题。如缩短合成路线,提高产率,简化操作,降低成本和安全生产等。 1、研究确定一条最佳的合成工艺路线:一条比较成熟的合成工艺路线应该是:合成步骤短,总产率高,设备技术条件和工艺流程简单,原材料来源充裕而且便宜。 2、用工业级原料代替化学试剂:实验室小量合成时,常用试剂规格的原料和溶剂,不仅价格昂贵,也不可能有大量供应。大规模生产应尽量采用化工原料和工业级溶剂。小试阶段应探明,用工业级原料和溶剂对反应有无干扰,对产品的产率和质量有无影响。通过小试研究找出适合于用工业级原料生产的最佳反应条件和处理方法,达到价廉、优质和高产。 3、原料和溶剂的回收套用:合成反应一般要用大量溶剂,多数情

况下反应前后溶剂没有明显变化,可直接回收套用。有时溶剂中可能含有反应副产物,反应不完全的剩余原料,挥发性杂质,或溶剂的浓度改变,应通过小试研究找出回收处理的办法,并以数据说明,用回收的原料和溶剂不影响产品的质量。原料和溶剂的回收套用,不仅能降低成本,而且有利于三废处理和环境卫生。 4、安全生产和环境卫生:安全对工业生产至关重要,应通过小试研究尽量去掉有毒物质和有害气体参加的合成反应;避免采用易燃、易爆的危险操作,实属必要,一时又不能解决,应找出相应的防护措施。尽量不用毒性大的有机溶剂,寻找性质相似而毒性小的溶剂代替。药物生产的特点之一是原材料品种多,用量大,化学反应复杂,常产生大量的废气、废渣和废物,处理不好,将严重影响环境保护,造成公害。三废问题在选择工艺路线时就要考虑,并提出处理的建议。 三、中试阶段 1、中试与小试的区别 小试与中试的区分不仅仅在于投料量的多少、以及所用设备的大小之上,两者是要完成不同时段的不同任务。小试主要从事探索、开发性的工作,化学小试解决了所定课题的反应、分离过程和所涉及物料的分析认定,拿出合格试样,且收率等经济技术指标达到预期要求,就可告一段落,转入中试阶段。中试过程要解决的问题是:如何釆用工业手段、装备,完成小试的全流程,并基本达到小试的各项经济技术指标,当然规模也扩大了。 2、为何要中试 (1)规模不同 (2)原料来源不同 (3)搅拌方式不同 (4)热量的传递方式不同

CO2参与的有机合成方法学研究新进展

CO2参与的有机合成方法学研究新进展 本文对二氧化碳参与的有机合成方法学研究(不包括二氧化碳与环氧烷烃的环加成及交替共聚反应、超临界条件下二氧化碳参与的反应)的最新进展进行了总结归纳。具体内容包括合成羧酸,合成羧酸酯及新型金属有机配合物活化二氧化碳及其反应三部分。 一,合成羧酸 二氧化碳与Grignard试剂、有机锂等亲核试剂制备羧酸是经典的有机合成反应。而近几年发展起来的碳碳不饱键化合物与二氧化碳反应,有机锌、有机硼等亲核试剂与二氧化碳的催化转化合成羧酸是二氧化碳参与的有机合成方法学研究的热点[1]。 1,碳碳不饱键化合物与二氧化碳反应 丙烯酸是目前具有广泛用途且需求量巨大的一种重要化工原料。由二氧化碳与乙烯反应直接合成丙烯酸的方法倍受瞩目。从热力学上考虑此反应是完全可行的[2],但到目前为止仍未开发出有效的催化剂,只是发现少数金属有机配合物能与CO2进行计量反应得到丙烯酸[3]。 一些低价态的金属有机配合物能与CO2及含有不饱和键的化合物反应得到金属杂五元环内酯化合物,这是CO2与含碳碳不饱和键化合物反应合成羧酸的理论基础[4]。 在零价镍配合物存在下,CO2能与炔烃、共轭二烯烃及联烯等在常压条件下反应形成相应的镍杂五元环内酯化合物,经酸化便得到相应的羧酸[5]。体系中加入DBU通常可促进反应的进行。由于镍杂五元环内酯化合物酸化后不能再生

形成零价镍配合物,所以整个反应需要反应当量的零价镍配合物。 在以上反应体系中加入反应当量的烷基锌,使其与镍杂五元环内酯化合物进行金属交换反应,然后通过还原消除便可以实现零价镍配合物的再生,使零价镍配合物参与的的计量反应变成零价镍配合物催化的反应[6]。

《有机合成工艺学》课程综合复习资料

《有机合成工艺学》综合复习资料 一、填空题 1、绝热式乙苯脱氢工艺流程中,原料为和,反应器入口温度需要610~660℃,它是一个吸热反应,热量靠过热蒸汽带入,因此,催化剂床层分段,段间补充过热水蒸汽,全部蒸汽与乙苯的摩尔比为。反应产物经冷凝器冷却后,气液分离,不凝气中含有大量的和CO、CO2,可作燃料使用。冷凝液经精馏后分离出、、和,最后产物是。 2、合成气制备甲醇的工艺流程中,原料为新鲜,由于合成甲醇是多个反应同时进行,除主反应外,还有生成和甲烷等副反应。因此,如何提高合成甲醇反应,提高甲醇收率是问题,它涉及到催化剂的选择以及操作条件的的控制,诸如、、和原料气。由于反应是个可逆的反应,存在一个温度曲线。 3、烃类氧化反应过程中氧化剂在、纯氧、和其它过氧化物上选择,究竟使用什么氧化剂要视分析而定。近年来,作为氧化剂发展迅速,它具有条件,操作简单,反应选择性,不易发生深度反应,对环境友好和可实现生产的特点。 4、当代环境十大问题是:污染、臭氧层、全球变、海洋、淡水资源和污染、生物多样性、环境公害、有毒化学品和废物、土地和沙漠化、锐减。 5、Monsanto低压法甲醇羰化反应合成醋酸的不利条件是催化剂的资源稀缺,价格较。甲醇低压羰基合成醋酸在上的优越性很大,其特点为:原料可以用煤、和重质油,不受供应和价格波动影响;反应的转化率和选择性,过程能量效率高;所采用的催化系统稳定,用量少,寿命;流程中的反应系统和系统合为一体,工程和控制都很巧妙,结构紧凑;已经解决了设备的问题,找到了耐腐蚀的材料;生产过程中副产物很,三废排放少,操作安全可靠。 6、催化加氢通常用于合成和许多化工产品的过程;催化脱氢可以生成高分子材料的重要,产量最大、用途最广的两个最重要的产品是和。 7、甲醇作为化工原料的用途越来越广,主要用于制备、对苯二甲酸二甲酯、卤甲烷、炸药、药、染料、药及其它化工产品。 二、选择题 1、催化脱氢可以生成高分子材料的重要单体,产量最大、用途最广的两个最重要的产品是苯乙烯和()。 A:丁二烯;B:聚乙烯;C:丁烯;D:丙烯。 2、催化自氧化反应的机理也是自由基链式反应机理,其中起决定性作用的是()过程。 A:链的引发;B:链增长;C:链终止;D:化学反应速度。

有机合成工艺学

《有机合成工艺学》课程综合复习资料 一、填空题 1、绝热式乙苯脱氢工艺流程中,原料为和,反应器入口温度需要610~660℃,它是一个吸热反应,热量靠过热蒸汽带入,因此,催化剂床层分段,段间补充过热水蒸汽,全部蒸汽与乙苯的摩尔比为。反应产物经冷凝器冷却后,气液分离,不凝气中含有大量的和CO、CO2,可作燃料使用。冷凝液经精馏后分离出、、和,最后产物是。 2、催化加氢通常用于合成和许多化工产品的过程;催化脱氢可以生成高分子材料的重要,产量最大、用途最广的两个最重要的产品是和。 3、烃类氧化反应过程中氧化剂在、纯氧、和其它过氧化物上选择,究竟使用什么氧化剂要视分析而定。近年来,作为氧化剂发展迅速,它具有条件,操作简单,反应选择性,不易发生深度反应,对环境友好和可实现生产的特点。 4、当代环境十大问题是:污染、臭氧层、全球变、海洋、淡水资源和污染、生物多样性、环境公害、有毒化学品和废物、土地和沙漠化、锐减。 5、合成气制备甲醇的工艺流程中,原料为新鲜,由于合成甲醇是多个反应同时进行,除主反应外,还有生成和甲烷等副反应。因此,如何提高合成甲醇反应,提高甲醇收率是问题,它涉及到催化剂的选择以及操作条件的的控制,诸如、、和原料气。由于反应是个可逆的反应,存在一个温度曲线。 6、绿色化学的原则有条,它们是:⑴防止产生;⑵合理地设计化学反应和过程,尽可能提高反应的;⑶尽可能少使用、不生成对人类健康和环境有毒有害的物质; ⑷设计高功效低毒害的;⑸尽可能不使用溶剂和助剂,必须使用时则采用安全的溶剂和助剂;⑹采用低的合成路线;⑺采用可的物质为原料;⑻尽可能避免不必要的衍生反应;⑼采用性质优良的;⑽设计可降解为 物质的化学品;⑾开发分析检测和控制有毒有害物质的方法;⑿采用性能安全的化学物质以尽可能减少的发生。 二、选择题

相关文档
最新文档