超细粉体存在的技术问题
【精品文章】超临界流体技术在超细粉体工业中的应用
超临界流体技术在超细粉体工业中的应用
超细粉体,特别是纳米级粉体的研制,在当前的高新技术中己成为一个热门领域,在材料、化工、轻工、冶金、电子、生物医学等领域得到广泛应用。
过去已发展形成了一些常规技术用于制备超细粒子,但这些方法由于各自存在的缺点而制约着其应用。
喷雾干燥、超细碾磨的主要缺点是形成的粒子尺寸分布宽,并且只有一小部分的粒子属于纳米范围。
超临界流体技术为超细粉体,特别是热敏性(如炸药)、具生物活性(如生物制品)或具催化活性粉末的制备提供了一条新途径。
一、超临界流体的形成与性质1、超临界态与超临界流体
纯物质在密闭容器中随温度与压力的变化会呈现出液体、气体、固体等状态。
当温度和压力达到特定的临界点以上时,液体与气体的界面会消失,液、气合并为均匀的流体,这就被称为“超临界流体”(Supercritical fluid,简称SCF)。
临界点时的温度称为临界温度,此时的压力称为临界压力(见图1)。
在临界点附近,流体的物理化学性质,如密度、黏度、溶解度、热容量、扩散系数、介电常数等会发生急剧的变化,如表2所示。
图1超临界状态与超临界流体
表1 气体、液体和超临界流体的性质比较
2、超临界流体的特性
超临界流体同时具备气、液两态的双重性质(二像性)。
像液体:密度、溶解能力和传热系数接近于液体,比气体大数百倍。
它是极好的溶剂,可溶解许多固体,包括难溶的树脂、油污、农药、咖啡因、氮化硅、晶圆和线路板蚀刻后的残渣等。
超细粉体技术及应用现状
超细粉体技术及应用现状超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开发展现了广阔的应用前景。
超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多技术领域。
1、材料领域在电子信息行业中,将γ-F2O3超微粉用于磁性材料,可使得开发的录音带、录像带等磁记录产品具有稳定性好、图像清晰、信噪比高、失真小等优点。
在磁记录元件的涂层中用LaF3超细粉作为固体润滑剂,可使涂层及磁头寿命提高100多倍。
2、轻工、化工领域由氮化硅超细粉为原料制造的复合材料材,抗裂系数、抗折强度、耐压强度和硬度都都较好,在各工业行业中制造滑动轴承、滚动轴承用滚珠、俄罗斯产离心泵用端部密封件、切削工具、耐磨喷嘴、透平的叶片及耐火制品等。
钛酸四丁酯制备二氧化钛胶体,利用旋涂法形成透明的二氧化钛薄膜,并研究了影响成膜的因素。
结果表明表面活性剂能够改善膜的均匀度和增大薄膜的表面粗糙度。
光电性能测试发现薄膜厚度、薄膜表面粗糙度、烧结温度以及烧结时间等是影响二氧化钛薄膜光电性能的重要因素。
利用份菁作敏化剂,敏化后二氧化钛薄膜的光电性能得到很大的改善。
利用电泳法制备出大范围内均匀度好的TiO2超微粒薄膜。
用于新型太阳能电池,不仅能满足薄膜电极要有一定的厚度、大面积平整度好以及粗糙度因子高等要求,而且所需实验设备简单,操作方便,具有较高的实用价值。
3、中医药领域目前中药的超微粉碎以单味中药的粉碎研究较多,研究结果表明超微粉碎技术能够增加中药的溶出量,溶出率,有效成分的溶出和生物利用度。
而中药复方的超微粉碎主要是就其有效成分的溶出量,制剂稳定性以及是否提高药理作用等方面进行研究,另外,还有对超细粉在仁术健胃颗粒中的应用的研究,结果表明超微粉碎有利于制剂的成型,改善颗粒剂的稳定性和口感。
4、食品工业领域果蔬超微粉可作为食品原料添加到糖果、糕点、果冻、果酱、冰淇淋、奶制品、方便食品等多种食品中,增加食品的营养,增进食品的色香味,改善食品的品质,增添食品的品种。
超细粉体负压螺旋脱气充填机理研究
超细粉体负压螺旋脱气充填机理研究随着粉体技术的不断发展,超细粉体在各个领域的应用越来越广泛。
而超细粉体的负压螺旋脱气充填技术在粉体处理过程中起着至关重要的作用。
本文将从以下几个方面对超细粉体负压螺旋脱气充填机理进行深入研究。
一、超细粉体的特性超细粉体相较于普通粉体具有粒径小、比表面积大、形状复杂等特点。
这些特性使得超细粉体在储存、输送、充填等过程中容易产生堵塞、结块等问题,因此需要特殊的处理方法。
1. 粒径小超细粉体的平均粒径通常小于10微米,具有很高的比表面积。
由于粒径小,超细粉体在输送中容易产生堵塞,影响设备的正常运行。
2. 形状复杂超细粉体具有不规则的形状,容易发生堆积和聚集,导致充填不均匀。
3. 比表面积大超细粉体的比表面积很大,导致粉体表面的活跃性增强,易吸附水分和氧气,影响产品质量。
二、负压螺旋脱气充填技术负压螺旋脱气充填技术是一种利用螺旋输送机与真空泵相结合的充填方式。
通过对粉体进行负压处理,达到脱气和充填的目的。
该技术具有以下特点:1. 螺旋输送机螺旋输送机是将粉体沿着输送方向进行移动的装置,具有输送速度快、结构简单、操作可靠等特点。
在负压脱气充填过程中,螺旋输送机起着至关重要的作用。
2. 真空泵真空泵是将工作室内的气体抽出,形成负压的装置。
在负压螺旋脱气充填过程中,真空泵通过抽出工作室内的气体,降低了工作室内的压力,使粉体能够更加紧密地填充容器。
三、机理研究在超细粉体的负压螺旋脱气充填过程中,涉及到气体的脱除、粉体的充填等多个复杂的物理过程。
对负压螺旋脱气充填的机理进行深入研究,对于提高粉体充填的效率和质量具有重要意义。
1. 气体脱除在负压螺旋脱气充填过程中,真空泵将工作室内的气体抽出,降低了工作室内的压力,使得粉体中的气体被排出。
气体脱除是负压螺旋脱气充填过程的关键步骤,直接影响到充填效果。
2. 粉体充填在气体脱除之后,粉体通过螺旋输送机进行充填。
在充填过程中,需要考虑粉体的密实性、均匀性等因素,以确保充填效果达到要求。
超细粉体团聚的形成机理及消除方法研究
超细粉体团聚的形成机理及消除方法研究张敏/文【摘要】超细粉体团聚作为粉体工程中的一种普遍现象,不仅给粉体的制备和储存带来了困难,还可使粉体失去其本身的性质,如何控制粉体的团聚成为粉体技术研究的重点课题之一。
本文介绍了超细粉体团聚的原因及种类,并重点阐述了超细粉体的形成机理及消除方法。
【关键词】超细粉体;团聚机理;消除方法;粉体颗粒引言超细粉体是一种微小的固体颗粒, 它属于微观粒子和宏观物体交界的过渡区域。
超细粉体的团聚是指原生的粉体颗粒在制备、分离、处理及存放过程中相互连接形成的由多个颗粒形成较大的颗粒团簇的现象。
超细粉体团聚作为粉体工程中的一种普遍现象,不仅给粉体的制备和储存带来了困难,还可使粉体失去其本身的性质。
因此,随着粉体工程的发展,如何控制粉体的团聚就成为了一个重点研究课题。
1.超细粉体产生团聚的原因物料经超细化后呈现出许多与原物料不同的性质,最典型的特征就是比表面积增大,表面能升高,表面活性增加,颗粒之间吸引力增大。
外表杂质(如水)的存在,也易引起超细粒子的团聚。
另外,超细粉体在粉碎过程中表面静电很高,粒子和粒子在互相碰撞过程中也可以互相吸引而聚集。
通过长时间深入研究,研究者们认为,引起超细粉体产生团聚的原因,大致可以归纳为如下四个方面。
1.1静电作用矿物材料在超细过程中,由于冲击、摩擦及粒径的减小,在新生超细粒子的表面积累了大量的正电荷或负电荷。
由于新生微粒的形状各异,极不规则,新生粒子的表面电荷极易集中在颗粒的拐角及凸起处。
这些带点粒子极不稳定,为了趋于稳定,它们互相吸引,尖角处互相接触连接,使颗粒产生团聚,此过程的主要作用力是静电力。
1.2范德华力作用当矿物材料超细化到一定粒度以下时,颗粒之间的距离极短,颗粒之间的范德华力远大于颗粒自身的重力。
因此,这种超细颗粒往往互相吸引团聚。
1.3表面能降低矿物材料在粉碎过程中,吸收了大量的机械能或热能,因而使新生的超细颗粒表面具有相当高的表面能,粒子处于极不稳定状态。
【精品文章】粒度测试中的一次粒径和二次粒径问题初探
粒度测试中的一次粒径和二次粒径问题初探
使用粒度仪测试超细粉体过程中,有一个不太好定性的问题,那就是一次粒径和二次粒径问题。
对于多数粉体颗粒,它有一定的大小,广义角度看单个颗粒是一个个体。
但是从严谨角度说它依然是个可再分的由更小颗粒组成的群体。
这时候问题就产生了,我们对颗粒进行粒度分析时,到底是希望测试粉体被分散到什么程度时的粒度分布呢?举个例子:纳米硫酸钡和纳米碳酸钙粉体,电镜拍摄的照片显示,单晶颗粒都在几十或者几百纳米级别,但是激光粒度仪测试结果通常是微米级别的粒度分布,相差一个数量级。
是激光粒度仪错了吗?其实不是。
纳米碳酸钙电镜图片
纳米材料的表面能极大,化学法生产的纳米硫酸钡和碳酸钙,只是在化学结晶过程中产生的晶体是纳米级的。
由于硫酸钡和碳酸钙的纳米晶体表面能很大,这些晶体通常会几颗或者几十颗的团聚在一起,成为难以分散开的微米级颗粒。
这类粉体,由于晶体颗粒已经达到纳米级别,虽然团聚体是微米级或者亚微米级的,但依然被称为纳米材料。
超细碳酸钙国标GB/T 19690-2004中,提出了一次粒径和团聚指数的说法。
规定碳酸钙结晶体粒径d(一次粒径)采用电镜测量或者XRD线宽化法测量。
晶体团聚体的平均粒径D则规定使用激光粒度仪测量。
团聚指数T=D/d。
有了纳米碳酸钙的实例后,再回过头来讨论的是一次粒径和二次粒径概念。
坦白的说,颗粒学界并未就两种粒径概念作出明确的定义。
只能从应用角度去讨论这两种粒径的区别。
简单的说,二次粒径就是一次粒径颗粒的团聚体的粒径。
这时,团聚体的团聚力量强弱是关键因素。
举两个比较。
超细粉体表面包覆技术研究进展
超细粉体表面包覆技术讨论进展超细粉体通常是指粒径在微米级或纳米级的粒子。
和原大块常规材料相比具有更大比表面积、表面活性及更高的表面能,因而表现出优异的光、热、电、磁、催化等性能。
超细粉体作为一种功能材料近些年在得到人们的广泛讨论,并在国民经济进展各领域得到越来越广泛的应用。
然而由于超细粉体独有的小尺寸效应、表面效应及宏观量子隧道效应所引起的团聚及分散问题使其失去了很多优异性能,严重制约了超细粉体的进一步进展及工业化应用。
因此,如何避开超细粉体的团聚失效已成为超细粉体进展应用所面临的难题。
通过对超细粉体进行肯定的表面包覆,使颗粒表面获得新的物理、化学及其他新的功能,从而大大改善了粒子的分散性及与其他物质的相容性。
表面包覆技术有效地解决了超细粉体团聚这一难题。
1超细粉体表面包覆机理超细粉体包覆技术所形成的核/壳结构是一种新型的复合结构,目前对于其形成机理,学者们的观点重要有静电相互作用、化学键合、过饱和度、吸附层媒介等。
2超细粉体的表面包覆技术目前关于超细粉体的表面包覆技术依据不同方式有几种分类方法。
如依照反应体系状态可分为固相包覆法、液相包覆法、气相包覆法;按壳层物质性质分为金属包覆法、无机包覆法和有机包覆法;依照包覆性质可分为物理包覆法和化学包覆法等等。
本文就固相、液相、气相包覆法的分类方式对超细粉体的表面包覆技术近年的讨论进展进行论述。
2.1固相包覆法2.1.1机械球磨法该方法是利用球磨过程中粒子之间的挤压、冲击、剪切、摩擦等机械应力作用,使被包覆颗粒表面激活吸附表面改性物质从而达到表面包覆目的。
该方法具有处理时间短、反应过程简单掌控、操作简单等优点;但仅适用于微米级粉体的表面包覆,且要求粉体具有单一分散性。
袁华堂、冯艳等采纳球磨的方法对四元非晶合金Mg0.99Ti0.06Zr0.04Ni进行了石墨表面包覆。
讨论表明,石墨对Mg0.99Ti0.06Zr0.04Ni的包覆使合金电极容量和循环寿命都有所提高,从而有效改善了Mg基贮氢合金的电化学性能。
超细微粉磨在锰矿石加工中应注意的问题
超细微粉磨在锰矿石加工中应注意的问题锰矿石种类繁多,分布广泛,按照种类可以分为水锰矿、褐锰矿、软锰矿、硬锰矿、黑锰矿这几类,但是一般科用作矿山加工开采的有:软锰矿、硬锰矿、沼锰矿或者少量的水锰矿。
在锰矿加工中,用到的设备为超细微粉磨,其微粉磨技术是国内最顶尖的超细磨技术,产品质量方面大家可以放心,但是要在日常操作总要注意污染物对超细微粉磨的影响:由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益金属,因此给选矿加工带来很大难度。
目前,常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选、强磁选和浮选),以及火法富集、化学选矿法等。
氧化锰和碳酸锰矿包含耐火材料矿石,锰,铁,磷或煤矸石的密切共生,嵌布粒度很细,很难排序,你可以考虑如何处理冶炼。
例如,要处理高磷高锰富锰渣法矿,积极锰和硝酸浸出电解二氧化锰生产法生产,以用于工业生产。
此外,二硫化钙的研究和浸出等。
织梦好,好织梦碳酸锰矿碳酸锰矿石沉积,主要对象是锰矿菱锰矿,菱锰矿钙,锰和方解石岭锰矿等;有碳酸盐和硅酸盐矿物的煤矸石;也往往伴随着杂质如硫、铁。
矿石一般比较复杂,嵌入式锰到几微米的小尺寸,分离并不容易,往往难以得到品位较高的矿石。
锰氧化物矿选矿为基础的方法重选法。
风化的石头经常含有大量泥和矿物粉末,使用的洗涤法生产锰氧化物。
煤矿脱泥,纯收入矿石,有的可作为矿物制品,以及需要一些选矿法来提取,如摇跳汰机及重选。
洗选机洗出的矿粒有时需要重选或强磁选和其他方法,以进一步提取。
一些泥沙型锰氧化物,通常使用重选法,以消除煤矸石,提取出来以为大规模生产使用。
铁氧化锰矿,主要是褐铁矿。
铁和锰难以重选出来,浮选或强磁选进一步选别,磁选需要还原焙烧方法。
近些年来,我国建筑装修材料不断的升级,所以对粉体材料的需要也越来越大,石粉加工市场发展速度越来越快,如重钙粉、大理石粉。
滑石粉、石灰石粉等。
而石粉加工市场的快速发展,与磨粉机设备的帮助是离不开的。
超细粉体的团聚机理和表征及消除
收稿日期:2007-07-06,修回日期:2007--09-10。 基金项目:国家自然科学基金项目.编号:2056601:内蒙古自治区自然 科学基金项目.编号:200607010201。 第一作者简介:王觅堂(1982一),男,硕士研究生。电话:13739923969。 E-mail:btwmt@126.com。
AA=:订1T2ca=21:Tp而-二2.』2!, 旦 堕了 堡
-4(4盯£o)
式中。h为颗粒间距;R为球形颗粒半径;C为色散作
用能系数;p为密度(个数密度/m,;或质量密度, kg/m3);Oto为原子极化率C21112·J-l;丘为普朗克常数, 6.626x10"34J·S;矽为电子的旋转频率,对于原子V----
Wang Mitang,Li Mei,Liu Zhaogang,Hu Yanhong
(School ofMaterial and Metallurgy。Inner Mongolia University of Science and Technology,Baotou 014010。China)
Abe-act:When the particle sl孺ofpowder dCCTCSb'匏to nanoscale.1t has many novel properties and therefore has numel'Oti¥application.However, the agglomeration is callsegt easily in the process ofpreparation and appli- cation because ofits higher surface energy.The mechanism andcharao- tel"ization and colmtermeasnl-髓of the agglomeration of ultra-fine pard-
超细粉体制备技术研究的内容及发展现状
超细粉体制备技术研究的内容及发展现状引言:超细粉体制备技术是一门研究如何制备具有纳米级颗粒尺寸的粉体材料的学科。
该技术在各个领域都具有重要的应用价值,例如材料科学、化学工程和环境科学等。
本文将探讨超细粉体制备技术的研究内容及其发展现状。
一、超细粉体制备技术的研究内容1. 材料选择:超细粉体制备技术要求选择适合的原料,如金属、陶瓷或聚合物等,并考虑其物理化学性质以及制备过程中的相互作用。
2. 制备方法:超细粉体的制备方法包括物理法、化学法和物化法等。
物理法主要有磨碎法、气雾法和凝胶法等;化学法主要有溶胶凝胶法、水热法和溶剂热法等;物化法则是将物理法和化学法相结合,如高能球磨法和溶胶冻胶法等。
3. 控制参数:超细粉体的制备过程中,需要控制一系列参数,如反应温度、反应时间、溶液浓度和溶剂选择等。
这些参数的调节将直接影响到粉体颗粒的尺寸和形貌。
4. 表征分析:制备好的超细粉体需要进行表征分析,如粒径分布、比表面积、晶体结构和形貌等。
常用的表征方法包括扫描电镜、透射电镜、X射线衍射和比表面积测定等。
二、超细粉体制备技术的发展现状1. 研究热点:超细粉体制备技术的研究热点主要集中在以下几个方面:- 纳米材料的制备方法优化:研究人员不断改进传统的制备方法,提高制备效率和控制颗粒尺寸的精度。
- 纳米材料的表征手段研究:随着纳米材料的制备技术的发展,对其表征手段的研究也日益重要,以满足对纳米材料粒径和形貌等更准确的表征需求。
- 新型超细粉体的应用研究:超细粉体在材料科学、医学和环境保护等领域具有广泛的应用前景,研究人员正积极探索新型超细粉体的应用潜力。
2. 发展趋势:- 多学科交叉:超细粉体制备技术的研究已经从单一的材料学领域扩展到了化学、物理、生物等多个学科领域的交叉研究,这将进一步推动超细粉体制备技术的发展。
- 绿色制备:随着环境问题的日益突出,研究人员正致力于开发绿色制备方法,以减少对环境的影响。
- 自组装技术:自组装技术是一种通过物体自身的相互作用实现组装的方法,近年来在超细粉体制备中得到了广泛应用。
国内外超细粉磨技术的发展现状
国内外超细粉磨技术的发展现状
国内外超细粉磨技术的发展现状是指超细粉磨领域在国内外的研究、应用和市场发展情况。
国内超细粉磨技术的发展现状:
1. 技术水平提高:国内一些研究机构和企业在超细粉磨技术方面取得了一定的突破,研发出了一系列高效、节能的超细粉磨设备和工艺。
2. 应用领域拓展:超细粉磨技术在建材、化工、冶金、电子材料等领域得到广泛应用,为这些行业的发展提供了重要的技术支撑。
3. 市场需求增加:随着工业化的推进和新材料的发展,对超细粉磨技术的需求日益增加,市场潜力巨大。
国外超细粉磨技术的发展现状:
1. 技术先进:发达国家在超细粉磨技术方面具有较为深入的研究,各类高效的超细粉磨设备得到广泛应用。
2. 产品质量提高:国外超细粉磨技术发展成熟,可以生产出颗粒尺寸更小、分布更均匀的超细粉体产品,质量更加稳定。
3. 国际市场占有率高:一些国外公司在超细粉磨设备生产领域具有较高的市场占有率,向全球出口相关产品。
总体而言,国内外超细粉磨技术都在不断进步,技术水平不断提高。
随着对超细粉磨技术的需求增加,国内外的超细粉磨技术发展前景广阔。
超细粉磨技术
超细粉磨技术摘要:一、超细粉磨技术的背景与意义1.超细粉磨技术的发展历程2.超细粉磨技术在国民经济中的重要性二、超细粉磨技术的原理与分类1.超细粉磨技术的原理2.超细粉磨技术的分类三、超细粉磨技术的应用领域1.非金属矿物的深加工2.金属矿山的选矿3.化工行业的粉体生产4.医药行业的药物制剂四、超细粉磨技术的优缺点分析1.优点a.高效率b.低能耗c.产品粒度分布窄d.环保2.缺点a.设备投资大b.运行成本较高c.设备维护要求高五、超细粉磨技术的发展趋势1.设备小型化2.工艺过程的自动化3.绿色环保生产正文:超细粉磨技术是一种高效、节能、环保的粉体深加工技术。
随着我国经济的快速发展,对资源的高效利用和环境保护的要求越来越高,超细粉磨技术在我国的地位和作用日益凸显。
本文将从超细粉磨技术的背景与意义、原理与分类、应用领域、优缺点分析以及发展趋势等方面进行详细阐述。
一、超细粉磨技术的背景与意义超细粉磨技术起源于20世纪50年代的美国,随着研究的深入,该技术逐渐应用于非金属矿物、金属矿山、化工和医药等行业。
在我国,超细粉磨技术得到了国家政策的大力支持,被列为“九五”国家科技攻关项目。
该技术的发展对提高资源利用率、优化产业结构、降低环境污染具有重要意义。
二、超细粉磨技术的原理与分类超细粉磨技术是通过磨机对物料进行粉碎,使物料粒度达到超细范围。
根据粉碎方式的不同,超细粉磨技术可分为冲击磨、气流磨、搅拌磨、球磨等。
三、超细粉磨技术的应用领域超细粉磨技术在非金属矿物的深加工、金属矿山的选矿、化工行业的粉体生产以及医药行业的药物制剂等领域得到了广泛应用。
例如,在非金属矿物行业,超细粉磨技术可以提高产品的附加值,扩大应用领域;在金属矿山行业,可以提高金属矿物的得率和品位;在化工行业,可以改善产品的性能;在医药行业,可以提高药物的生物利用度和疗效。
四、超细粉磨技术的优缺点分析超细粉磨技术具有高效率、低能耗、产品粒度分布窄和环保等优点,但同时也存在设备投资大、运行成本较高、设备维护要求高等缺点。
【精品文章】【连载一】亚微米粉体定义及干法间歇生产亚微米粉体的技术缺陷
【连载一】亚微米粉体定义及干法间歇生产亚微米
粉体的技术缺陷
百度百科【亚微米】词条是这样注释的:超细粉体是材料工业的新概念,其原料主要是非金属矿物。
超细粉体加工技术作为科学研究的重要组成部分,正在国民经济各部门中起到越来越多的作用。
超细粉体在广义上是指从微米级到纳米级的一系列超细材料;在狭义上是指从微米级(5μm 以下)、亚微米级(100nm以上)的一系列超细材料。
目前,在超细粉体加工行业已基本形成的共识是:亚微米材料粒度直径100nm~1.0μm。
国际上公认0.1nm~100nm为纳米尺度空间,100nm~1000nm为亚微米体系,小于1个纳米为原子团簇。
一般集成电路行业定义500纳米以下为深亚微米;500~1000纳米为亚微米。
那么什么是亚微米粉体呢?目前,这是学术界没用定义的词汇。
亚微米只是一个具体的尺寸,亚微米粉体则是要用一个范围的尺度来进行衡量。
我们的这篇文章以这样一个标准来定义:(此定义为根据文章和试验数据确认,和国际及国内标准无任何关系,是为文章需要而假设)
1、由于750纳米为集成为集成电路的中心尺寸,就将D50=750纳米设为亚微米的中位粒径。
2、一些矿石超细粉体的D50为750纳米左右时,好的分级设备可以将该粉体的D97做到小于2微米。
3、自然界空气中的超细颗粒物,不是均匀分布,也不是正态分布。
而是多峰分布。
2微米以上是一个近似于正态分布;2微米左右是一个谷点;2。
混凝土中添加超细粉体的应用技术
混凝土中添加超细粉体的应用技术一、引言混凝土是一种重要的建筑材料,其结构稳定、强度高、抗压性能好等特点使其得到广泛应用。
但是,在长期使用中,混凝土会出现裂缝、龟裂等问题,降低了其使用寿命。
为了提高混凝土的性能,提高其抗裂性能和耐久性,一种有效的方法是添加超细粉体。
二、超细粉体的概念超细粉体是指粒径在1-100微米之间的粉末材料。
由于其颗粒非常细小,表面积大,能够更好地填充混凝土内部的微小空隙,进而提高混凝土的密实性、强度和耐久性。
三、超细粉体的种类1.硅灰石粉:硅灰石粉是一种由石灰石和石英石经高温煅烧后得到的粉末材料,其主要成分为SiO2和CaO。
硅灰石粉具有优良的活性和细度,能够填充混凝土中的微小孔隙,提高混凝土的密实性和强度。
2. 滑石粉:滑石粉是一种由滑石矿石经加工制成的粉末材料,其主要成分为MgO和SiO2。
滑石粉具有优良的填充性能和抗裂性能,能够改善混凝土的抗裂性能和耐久性。
3. 硅灰土:硅灰土是一种由硅酸盐矿物经加工制成的粉末材料,其主要成分为SiO2和Al2O3。
硅灰土具有优良的活性和细度,能够填充混凝土中的微小孔隙,提高混凝土的密实性和强度。
四、超细粉体的应用技术1. 超细粉体的添加量:超细粉体的添加量应该根据混凝土的使用要求和工艺要求来确定。
一般来说,硅灰石粉和滑石粉的添加量应该在5%-15%之间,硅灰土的添加量应该在10%-20%之间。
2. 超细粉体的加工:超细粉体的加工应该在混凝土的配合设计中进行。
在混凝土的配合设计中,应该根据混凝土的使用要求和工艺要求来确定超细粉体的加工方法和加工参数。
3. 超细粉体的混合:超细粉体的混合应该在混凝土的制备过程中进行。
在混凝土的制备过程中,应该先将水和超细粉体混合,然后再将混合物加入到混凝土中进行混合。
4. 超细粉体的表面处理:为了提高超细粉体的活性和细度,可以采用表面处理技术。
表面处理技术可以通过包覆、润湿、离子交换、化学修饰等方式来实现。
超细粉体制备技术研究的内容及发展现状
超细粉体制备技术研究的内容及发展现状随着科学技术的不断发展,超细粉体制备技术在材料科学、化学工业、医药领域等方面扮演着越来越重要的角色。
超细粉体具有较大的比表面积、高活性和特殊的物理化学性质,因此广泛应用于催化剂、涂料、电子材料等领域。
本文将着重介绍超细粉体制备技术的研究内容以及目前的发展现状。
超细粉体制备技术的研究内容主要包括物理方法和化学方法两大类。
物理方法主要有机械法、凝胶法、气相法等;化学方法主要有溶胶-凝胶法、水热法、沉淀法等。
这些方法各有特点,可以根据需要选择合适的方法进行制备。
物理方法中的机械法是一种常用的制备超细粉体的方法。
通过机械力的作用,将原料粉体不断粉碎,直至达到所需的颗粒尺寸。
常用的机械法有球磨法、高能球磨法等。
机械法制备的超细粉体具有颗粒尺寸均匀、形状规则等特点,但制备过程中能量消耗较大,易产生热量,需要进行冷却。
凝胶法是一种通过凝胶的形成来制备超细粉体的方法。
主要包括溶胶-凝胶法和反应凝胶法。
溶胶-凝胶法是将溶液中的金属离子通过溶胶聚合到凝胶颗粒上,形成胶体颗粒,经过干燥后得到超细粉体。
反应凝胶法是将溶液中的金属离子与还原剂发生反应,生成凝胶颗粒,再经过煅烧得到超细粉体。
凝胶法制备的超细粉体具有颗粒尺寸可调、分散性好等特点,但制备过程中需要控制溶胶的形成和凝胶的稳定性。
气相法是通过气相反应制备超细粉体的方法。
主要有气溶胶法和气相沉积法。
气溶胶法是将溶胶颗粒悬浮在气体中,通过气体的传输和控制,使溶胶颗粒在气相中聚集成为超细粉体。
气相沉积法是将气体中的原料分子在高温条件下反应生成超细粉体,然后通过凝聚机制使其沉积到基底上。
气相法制备的超细粉体具有纯度高、颗粒尺寸可调等特点,但制备过程中需要控制气体流动和温度条件。
在超细粉体制备技术的发展现状方面,近年来,随着纳米科技的兴起,纳米粉体的研究得到了广泛关注。
纳米粉体是指粒径小于100纳米的超细粉体。
纳米粉体具有更大的比表面积和更高的活性,表现出与传统材料不同的物理化学性质。
超细粉体制备技术研究的内容及发展现状
超细粉体制备技术研究的内容及发展现状超细粉体制备技术是一种重要的材料制备技术,其应用范围广泛,包括电子、化工、冶金、建筑等领域。
超细粉体的制备技术研究已经成为材料科学领域的热点之一。
本文将介绍超细粉体制备技术的内容及发展现状。
超细粉体制备技术是指将普通粉体通过物理或化学方法加工处理,使其粒径小于100纳米的技术。
超细粉体具有较高的比表面积和较好的物理、化学性能,因此在材料科学领域有着广泛的应用。
超细粉体制备技术主要包括物理法、化学法和生物法三种。
物理法是指通过机械力、热力、光力等物理手段将普通粉体加工成超细粉体。
其中,机械法是最常用的一种方法,包括球磨法、高能球磨法、振动球磨法等。
这些方法通过机械力的作用,使粉体颗粒之间发生碰撞、摩擦和剪切等作用,从而使粒径减小。
热力法则是通过高温处理使粉体颗粒发生熔融、蒸发和氧化等反应,从而使粒径减小。
光力法则是通过激光束的作用使粉体颗粒发生熔融、蒸发和氧化等反应,从而使粒径减小。
化学法是指通过化学反应将普通粉体加工成超细粉体。
其中,溶胶-凝胶法是最常用的一种方法,该方法通过溶胶的形成和凝胶的形成使粉体颗粒减小。
其他化学法还包括气相法、水相法等。
生物法是指通过生物体内的生物反应将普通粉体加工成超细粉体。
其中,微生物法是最常用的一种方法,该方法通过微生物的代谢作用将普通粉体加工成超细粉体。
目前,超细粉体制备技术已经得到了广泛的应用。
在电子领域,超细粉体可以用于制备高性能的电子元器件;在化工领域,超细粉体可以用于制备高性能的催化剂和吸附剂;在冶金领域,超细粉体可以用于制备高性能的金属材料;在建筑领域,超细粉体可以用于制备高性能的水泥和混凝土等。
总之,超细粉体制备技术是一种重要的材料制备技术,其应用范围广泛。
随着科技的不断进步,超细粉体制备技术也将不断发展,为各个领域的材料科学研究提供更好的支持。
粉体技术及设备现状与发展
粉体技术及设备现状与发展粉体技术是一门涉及粉体物料的制备、特性、处理和应用的学科。
粉体物料是指颗粒尺寸在1微米到1毫米之间的物质,包括粉末、颗粒和颗粒状物料。
粉体技术在许多领域中都有广泛的应用,如化工、冶金、材料科学、食品工程等。
一、粉体技术的现状1. 粉体物料的制备技术:粉体物料的制备技术包括物理方法和化学方法。
物理方法主要包括研磨、粉碎、喷雾干燥等,化学方法主要包括溶胶-凝胶法、化学气相沉积法等。
目前,粉体物料的制备技术已经相当成熟,能够满足不同领域的需求。
2. 粉体物料的特性研究:粉体物料的特性研究包括颗粒形状、颗粒大小分布、颗粒表面性质等。
这些特性对于粉体物料的应用具有重要影响,比如颗粒形状对流体力学性能和流变性能有显著影响。
目前,通过电子显微镜、粒度分析仪等先进设备,可以对粉体物料的特性进行精确测量。
3. 粉体物料的处理技术:粉体物料的处理技术包括压制成型、干燥、烧结等。
压制成型是将粉体物料通过压力使其形成所需形状的过程,干燥是将湿粉体物料中的水分去除的过程,烧结是将压制成型后的粉体物料在高温下进行结合的过程。
目前,这些处理技术已经相当成熟,并且不断有新的技术和设备被引入,提高了处理效率和产品质量。
4. 粉体物料的应用领域:粉体物料在许多领域中都有广泛的应用。
在化工领域,粉体物料被用于催化剂、吸附剂、填料等;在冶金领域,粉体物料被用于金属粉末冶金、陶瓷创造等;在材料科学领域,粉体物料被用于陶瓷材料、复合材料等;在食品工程领域,粉体物料被用于食品添加剂、调味品等。
随着科技的不断发展,粉体技术在各个领域的应用也在不断扩大。
二、粉体技术的发展趋势1. 粉体物料的纳米化:随着纳米技术的发展,粉体物料的纳米化成为一种趋势。
纳米粉体具有较大的比表面积和较好的物理化学性质,可以应用于催化剂、传感器、电子器件等领域。
目前,纳米粉体的制备技术和表征技术已经相当成熟,可以实现对粉体物料的精确控制。
2. 粉体物料的功能化:随着科技的进步,对粉体物料的功能化要求也越来越高。
超细粉体防团聚的方法和进展
超细粉体防团聚的方法和进展摘要:粉体的团聚是一个比较复杂的过程,涉及的内容广泛,目前国内外对团聚的研究取得了一定的进展,但一些控制团聚的方法也刚处于起步阶段,要进一步弄清楚团聚形成的机理与有效地控制超细粉末的团聚,还需要我们科研工作者不懈的努力。
本文根据各种文献资料,综述了近年来对超细粉体团聚的研究状况,讨论和归纳了超细粉末团聚产生的现象与机理, 控制团聚的原理与方法, 团聚体的表征;介绍了关于超细粉末团聚领域的研究发展趋势。
关键词:超细粉末;团聚;形成机理;控制方法超细粉末及其致密化是材料领域的研究热点之一,与常规材料相比, 具有一系列优异的物理、化学及表面与界面性质, 大大增强了材料的性能。
因此, 随着科学技术的发展, 超细粉体的应用日趋广泛。
但由于超细粉体颗粒的比表面积大,比表面能高, 在制备和加工处理过程中, 极易产生自发凝并、团聚现象, 导致制备、分级、混匀、输运等加工工程无法正常进行, 导致了超细粉体优越性不能充分发挥, 使新材料性能劣化〔1〕。
因此, 超细粉体的团聚问题, 严重困扰着粉体工程及其它相关领域的发展。
超细粉体的分散, 已成为纳米科技世界性难题。
为了解决这一难题, 许多学者对超细粉体团聚的原因、机理、分散方法以及分散途径,进行了研究和探索, 取得了一定进展, 但许多现象尚无完整成熟的理论解释, 许多技术问题仍有待进一步深入研究探索〔2〕。
1、团聚的种类团聚体的种类按作用力的性质分为两种形式:一是硬团聚,二是软团聚[3 ] 。
图1 为粉末软团聚体和硬团聚体的结构。
图1 软团聚体和硬团聚体的结构硬团聚一般是指颗粒之间通过化学键力或氢键作用力等强作用力连接形成的团聚体。
这种团聚体内部作用力大,颗粒间结合紧密,不易重新分散,粉体的活性差,烧结性能差,在纳米粉体材料制备过程中应该尽量避免产生这种硬团聚。
软团聚一般是指颗粒之间通过分子之间的作用力以及颗粒间的毛细管作用力等连接产生的团聚体。
超细氧化铝粉体制备方法概述
超细氧化铝粉体制备方法概述摘要:超细氧化铝粉体的制备方法制备通常使用无机盐、金属醇盐为原料,用气相法或液相法合成,现对相关合成方法、存在的优缺点进行介绍关键词:超细氧化铝;合成方法;α-Al2O3超细氧化铝,亦称纳米氧化铝,通常泛指粒径约在50-500纳米范围内的氧化铝粉体,其属于微观粒子与宏观物体的过渡区域,与一般氧化铝相比,显著特点是具有表面效应和体积效应。
超细氧化铝在催化材料、功能材料、复合材料、光学材料、精细陶瓷材料及冶金和医学生物方面有着广阔的应用前景。
目前超细氧化铝粉体的制备方法制备通常使用无机盐、金属醇盐为原料,用气相法或液相法合成,现对相关合成方法进行介绍。
1.气相反应法气相反应法是通过等离子体、激光、电子束或电弧等方式加热将物质变成气体,使之在气体状态下发生化学反应,最后在冷却过程中凝聚长大形成超细粉。
1.1 激光诱导气相沉积法(LICVD法)激光诱导气相沉积(Laser Induced Chemical Vapor Deposition)法是利用反应气体分子对特定波长激光束的吸收而产生热解或化学反应,经成核生长形成超细粉末。
整个过程实质上是一个热化学反应和晶粒成核与生长过程。
LICVD法通常采用二氧化碳激光器,加热速度快,高温驻留时间短,冷却迅速,因此可获得粒径小于10nm的均匀纳米粉体。
如G.P. Johnston等[1]利用LICVD法合成了粒度为5~10nm的球形氧化铝粉体;意大利的E. Borseua等[2]用二氧化碳激光加热反应气体得到了粒径为15~20nm 的球形α-Al2O3颗粒。
1.2 等离子体气相合成法(PCVD法)等离子体气相合成(Plasma Chemical Vapor Deposition)法是纳米陶瓷粉体制备的常用方法之一。
它具有反应温度高、升温和冷却速度快的特点,PCVD法又可分为直流电弧等离子法、高频等离子法和复合等离子法。
采用PCVD法可制得粒径为50nm的γ-Al2O3[3];粒径为20 -40nm的δ-Al2O3[4];粒径为5~150nm 的无定形γ-Al2O3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超细粉体加工中的几个技术问题
摘要:介绍了超细粉体的应用、制备设备、发展趋势,以及超细粉体在加工发面的几个技术问题。
关键词:超细粉体;制备; 应用;分散
1.超细粉体概述
1.1定义
对于超细粉体的粒度界限,目前尚无完全一致的说法。
各国、各行业由于超细粉体的用途、制备方法和技术水平的差别,对超细粉体的粒度有不同的划分,例如日本将超细粉体的粒度定为0.1μm以下。
最近国外有些学者将100μm~1μm的粒级划分为超细粉体,并根据所用设备不同,分为一级至三级超细粉体。
对于矿物加工来说,我国学者通常将粒径小于10μm的粉体物料称为“超细粉体”。
1.2超细粉体的特性
目前,对超细粉体的特性还没有完全了解,已经比较清楚的特性可归纳为以下几点:(1)比表面积大。
由于超细粉体的粒度较小,所以其比表面积相应增大,表面能也增加。
比表
面积大,使其具有较好的分散性和吸附性能。
(2)活性好。
随着粒度的变小,粒子的表面原子数成倍增加,使其具有较强的表面活性和催化
性,可起补强作用,具有良好的化学反应性。
(3)熔点低。
许多研究表明,物质的粒径越小,其熔点就越低。
(4)磁性强。
超细粉体的体积比强磁性物质的磁畴还小,这种粒子即使不磁化也是一个永久磁
体,具有较大的矫顽力,是制造高密度记录磁带的优良原料。
(5) 光吸收性和热导性好。
超细粉体特别是超细金属粉体,当粒度小于100nm以后,大部分
呈黑色,且粒度越细色越黑,这是光完全被金属粉体吸收的缘故。
1.3超细粉体的制备方法
超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。
化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。
物理粉碎法是通过机械力的作用,使物料粉碎。
物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。
因此,目前制备超细粉体材料的主要方法为物理粉碎法。
常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。
2超细粉体的应用
超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开发展现了广阔的应用前景。
超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多技术领域。
2.1化工、轻工行业
超细粉体可用作填料填充PP和PVC等塑料,降低原料成本,改善制品性能。
将石墨加工成GRT节能减磨添加剂,可改善机械润滑性,节约汽车燃油,减少大修次数;超细高岭土作纸张填料,能提高纸的白度,提高产品档次;另外还可将许多超细粉体制成高效催化剂,应用于石油工业的催化裂化。
目前还结合低温、冷冻及脆化技术,将橡胶、塑料和合成树脂等有机高分子材料加工成有机物超细粉体。
2.1微电子工业
超细粉体在微电子行业中应用的典型代表有电子浆料(TiO2、BaTiO3、Cu)、磁记录材料(γ--Fe2O3)及电子陶瓷粉料(BaTiO3)。
另外还有传感器(SnO2)和光、电波吸收材料及
红外辐射材料。
2.3医药、农药行业
将农药加工成超细粉体后,用量可降低20%以上,而农作物却增产20%左右,有的产品可取代进口;由于血液中的血球大于0.01μm,可制备<0.01μm的超微粒子,注入血管中进行有效的治疗或健康检查;将药物制成超细粉体(或微胶囊),不仅服用方便,而且可提高有效成分的利用率,降低药物消耗。
2.4材料工业
超细粉体在现代材料工业中的应用亦受到高度重视。
为了加工需要和满足应用要求,现代工业材料对所用原料都有非常明确的要求。
目前国外精细化工和新材料中以超细粉体作为基本原料的已占80%以上,瑞士达95%,粉末原料成本占产品成本的30%~60%。
在某种程度上,超细粉体为这些国家在相关领域的研究处于世界领先水平奠定了良好的基础。
3.2超细粉体的团聚和分散问题
在超细粉体技术中超细粉体的分散无疑是最关键的技术。
分级、粒度测量、混匀及储运等作业的进行,都在很大程度上取决于颗粒的分散程度。
3.2.1团聚产生的的原因
1.分子间作用力引起颗粒聚团
众所周知,分子之间总是存在着范德华氏引力,是短程力。
但是,对于由极大量分子集合体构成的体系,多个分子间存在着相互作用,颗粒间分子作用力的有效间距可达50nm以上,属于长程力。
超细粉体颗粒间的分子作用力是颗粒聚团的根本原因。
2.颗粒间静电作用力引起聚团
在干空气中大多数颗粒是自然荷电的。
颗粒获得的最大电荷量受限于其周围介质的击穿强度,在干空气中约为1.7×10坩电子/crn2。
荷电颗粒与其它物体接触时,颗粒表面电荷等量吸引对方的异号电荷,使物体表面出现剩余电荷,从而产生接触电位差。
3.颗粒在湿空气中的粘结
当空气相对湿度超过65%时,水蒸气开始在颗粒表面及颗粒间凝聚,颗粒间因形成液桥而大大增强了粘结力。
液桥粘结力主要由因液桥曲面而产生的毛细压力及表面张力引起的附着力构成。
3.2颗粒分散途径
3.2.1 表面改性法
近年来,国内外不少研究者采用表面改性法进行超细粉体颗粒的分散研究,表面该性虽然可以改善超细粉体颗粒的抗团聚性能,但由于改性颗粒表面推动了本来性质,给它的应用带来很大影响,有时甚至会产生极大的负面作用。
已经研究出了用有机溶剂收集保存纳米粒子的方法,这种方法能使纳米粒子在溶剂中的团聚大幅度降低,但不能解决在空气中的团聚问题。
3.2.2机械分散法
机械分散是指用机械力把颗粒聚团打碎,这是目前应用最广泛的分散方法。
机械分散的必要条件是机械力(指流体的剪切力及压应力)应大于颗粒间的粘着力。
通常机械力是由高速旋转的叶轮或高速气流的喷嘴及冲击作用引起的气流强湍流运动而形成的。
这一方法主要是通过改进分散设备来提高分散效率。
机械分散较易实现,但由于它是一种强制性分散方法,相互粘结的颗粒尽管可以在分散中被打散,可是颗粒间的作用力没有改变,排出分散器后会迅速重新聚团。
机械分散的另一个问题是脆性物料有可能被粉碎,机械设备磨损后分散效果下降等。
3.2.3干燥分散法
在潮湿的空气中,颗粒间形成的液桥作用是颗粒聚团的主要原因,因此杜绝液桥产生或消除已形成的液桥作用是保证颗粒分散的主要手段。
在几乎所有的有关生产过程都采用加温干燥
预处理,以去除物料的水分,保证颗粒的松散。
干燥处理是一种简单易行的方法。
目前,国内矿产品的干燥设备主要用回转窑、干燥坑、圆筒干燥机、电干燥箱、远红外干燥机等。
这些设备都能干燥物料,但设备占地面积大、基建投资大、自动化程度低;操作环境恶劣;设备运转能耗大,热利用率低;产品损失较大。
3.2.4静电分散法
静电分散是指根据生产技术的需要给粉体颗粒同极性的电荷,利用荷电粒子间的库仑斥力,实现颗粒间完全、均匀的分散。
静电分散的关键是如何使颗粒充分荷电。
目前使颗粒荷电的方法主要有接触带电、感应带电、电晕荷电等方法,利用电子束辐照也可使颗粒带电。
4.超细粉体的发展趋势
现代高技术和新材料产业的迅速发展,要求超细粉体加工技术也要与时俱进,不断发展。
目前,超细粉体分级技术面临的挑战是:
1.、超细粉体在能源、环境、医疗、卫生及人民生活的各个方面的应用将越来越广泛。
因此今后应当着重发展具有高活性、高选择性、表面性能不同的超细粉体新材料。
2、目前我国超细粉体材料制造业发展较快,但设备品种不多,而且,许多品种都是仿造派生的,自主研发不够,所以要加大新理论的研究、新工艺的开发和新设备的研制工作。
3、开发多功能超细粉碎和表面改性设备,在进行超细粉碎的同时进行表面改性。
4、注重研究超细粉体在各种介质中的分散技术及相应设备,研究超微细粉体的团聚机理、探索消除团聚的有效途径。
5、改进现有设备、研制新设备;加强专用设备的研究,发展高效低耗、高精细和大处理量的分级技术和设备。
6、提高产品的稳定性和可靠性,注重粉碎与分级的有机结合。
5.总结
超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域,是21 世纪重要的基础材料。