局部阻力损失实验报告
流体力学实验报告
实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
局部阻力损失实验报告
局部阻力损失实验报告局部阻力损失实验报告局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中实测hje?[(Z1?p1hf1?2由hf2?3按流长比例换算得出。
p2)?)?12g2]?[(Z2?22g2hf12]ehje/12g2理论?e?(1A1A22)hjee,12g22.突然缩小采用四点法计算,下式中B点为突缩点,换算得出。
流体流动阻力的测定实验报告
银纳米粒子制备及光谱和电化学性能表征- 1 -流体流动阻力的测定王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。
2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。
3. 测定流体流经管件、阀门时的局部阻力系数ξ。
4. 学会流量计和压差计的使用方法。
5. 识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:h f =∆p f ρ=p 1−p 2ρ=λl d u 22即,λ=2d∆p fρlu 2式中:λ—直管阻力摩擦系数,无因次; d —直管内径,m ;∆p f —流体流经l 米直管的压力降,Pa ;h f —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。
层流流时,λ=64 Re湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
欲测定λ,需确定l、d,测定∆p f、u、ρ、μ等参数。
l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。
∆p f可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
求取Re和λ后,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法。
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
摩擦系数和局部阻力系数的测定详解
汕头大学实验报告学院:工学院系:机电系年级: 14机电姓名:莫智斌学号:2014124066 组:¥实验四、摩擦系数和局部阻力系数的测定实验小组成员:#####费玉洁,薛栋栋等五人计算:## 莫智斌校核:#实验时间2016 年5 月5 日晚上8 时一、实验目的和要求摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。
二、主要仪器设备伯努利实验仪设备流程图三、实验步骤1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打开总电源和仪表开关,启动水泵,待电机转动平稳后,注意观察水箱水位是否稳定。
2. 静水压强:在水箱水位稳定、管路出口阀关闭的情况下,记录零流速水位于表4。
3.流量调节:开启管路出口阀,调节流量,让流量从1 到3m3/h 范围内变化。
每次改变流量,待流动达到稳定后,在表4 记下对应测点的压差值。
4.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。
四、实验数据记录表4 阻力测定记录表格实验日期:实验者莫智斌等六人设备号:ZB-3 型第2 号1、2 号测头距离0.25 米;3、4号测头距离0.5米;规格:大管内径:21.2mm,水温:24.5 C ,零流速水位:582.1mm ,左小管内径12.9mm ,右小管内径:13.4mm序号各测头水位(mm)流量流量l/s1 2 3 4 5 6 体积/ml 时间/s零流速58582.5582.5582.5581.5 581.5# # #1 578.5 574.5575 574.5573 566 1640 70 0.2342 558 548.5551 550 544 516 1740 36.7 0.4733 539 523527.5526 513 469.51690 26.200.6434 517 494.5501 499.5478 415 1430 18.850.7595 523 505512.5510 492 436 1565 22.550.0696 482.5 450.5466.5456 425 328 1940 19.4550.997五、实验数据计算的结果分析a.摩擦系数的测定:图10 是摩擦系数λ的实验测定方法图。
局部水头损失实验流体力学实验报告
《流体静力学实验》实验报告学院年级、专业、班姓名成绩课程名称流体力学与水泵综合实验名称实验项目局部水头损失实验指导教师教师评语教师签名:年月日一、实验目的1. 掌握三点法,四点法测量局部水头损失与局部阻力系数的技能。
2. 验证圆管突然扩大局部阻力系数公式及突然缩小局部阻力系数经验公式。
3. 加深对局部水头损失机理的理解。
二、实验原理1. 突然扩大: 实测 hje= [(Z 1+γP 1)+g221υ]-[(Z 2+γP 2)+g222υ]-h2-1fh2-1f =21h3-2f g221jehυζ=实测理论 )(A A -1212e=ζ h je=ζeg221υ2. 突然缩小:实测h js= [(Z 4+γP 4)+g224υ]-[(Z 5+γP 5)+g 225υ]-(h h 5-fB B-4f +)h h 4-f3B -4f 21= h h 6-f55-fB = g225jshυζ=实测经验 )(A A -1.5045s=ζ h js =ζsg 225υ三、使用仪器、材料局部水头损失实验仪:循环水泵、实验台、无级调速器、水箱、溢流板、稳水孔板、突然扩大与突然缩小试验管道、测压管、流量调节阀、接水盒、回水管等。
四、实验步骤1. 记录参数测点管段直径:d1=0.92cm;d2=d3=d4=1.99cm;d5=d6=0.96cm。
测点间距:L2-1=12cm; L3-2=24cm; L4-3=12cm; L b-4=6cm; L5-b=6cm; L6-5=6cm。
2. 步骤(1)打开电源供水,带水箱溢流恒定后全开流量调节阀,排除试验管道内气体后,关闭流量调节阀,检查液面是否齐平。
(任意两管道不超过1mm)(2)全开流量调节阀,(第6管能读数)测Q和各液面高程h1-h6。
然后关小调节阀,是第6管液面上升1.5cm左右,再测Q和各液面高程h1-h6。
(共测5次)(3)关闭流量调节阀,再次检查液面是否齐平(4)记录参数等数据五、实验过程原始记录(数据、图表、计算等) 测试数据记录表:序号 体积V/cm 3 时间t/s 流量Q/(cm 3/s)测压管读数12345 6 1 1984 19.4〞 102.27 16.80 20.45 20.20 20.10 5.00 3.00 2 1974 20.3〞 97.24 18.10 21.50 21.10 20.90 6.80 4.70 3 1946 20.15 96.58 18.35 21.80 21.50 21.30 7.55 5.70 4 1810 19.5〞 93.82 19.40 22.50 22.30 22.209.307.505 1786 19.2〞93.0220.20 23.20 23.00 22.90 10.50 8.90实验数据计算表:局部阻力形式 序号 流量Q/(cm 3/s)前断面 后断面前后断面实测沿程水头损失实测局部水头损失实测局部阻力系数理论局部水头损失g 22υα 总水头H g22υα 总水头H 突然扩大 1 102.27 10.23 27.03 2.19 22.64 0.12 4.27 0.42 6.34 2 97.24 9.25 27.35 1.98 23.48 0.20 3.67 0.40 5.74 396.58 9.12 27.47 1.95 23.75 0.15 3.57 0.39 5.65 4 93.82 8.61 28.01 1.84 24.34 0.10 3.57 0.41 5.34 593.02 8.46 28.66 1.81 25.01 0.10 3.55 0.42 6.96 突然缩小 1 102.27 2.19 22.299.414.42.05 5.84 0.623.57 2 97.24 1.98 22.88 8.49 15.29 2.2 5.39 0.63 3.23 396.58 1.95 23.25 8.38 15.93 1.95 5.37 0.64 3.18 4 93.82 1.84 24.04 7.91 17.21 1.85 4.98 0.63 3.01 593.021.81 24.71 7.77 18.271.654.790.622.95理论62.0221])99.192.0(-1[A A -122e===)(ζ经验8.30-1.50459.916.90A A -1.502s===⎪⎭⎫ ⎝⎛)()(ζ六、实验结果及分析实验报告打印格式说明1.标题:三号加粗黑体2.开课实验室:5号加粗宋体3.表中内容:(1)标题:5号黑体(2)正文:5号宋体4.纸张:16开(20cm×26.5cm)5.版芯上距:2cm下距:2cm左距:2.8cm右距:2.8cm说明:1、“年级专业班”可填写为“00电子1班”,表示2000级电子工程专业第1班。
流体流动阻力的测定实验报告
4.00 3.71 3.45 3.13 2.90 2.57 2.33 2.09 1.84 1.62 1.30 0.98
Re
83472 77283 71930 65239 60555 53696 48678 43660 38474 33790 27099 20408
0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.026 0.027
因此 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管 段的压降,直管段的压降由直管阻力实验结果求取。) —流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度 (查流体物性、),及实 验时测定的流量、压差计读数,求取阀门的局部阻力系数。 三、实验内容 1. 根据粗糙管实验结果,在双对数坐标纸上标绘出曲线,对照化工原 理教材上有关曲线图,即可估算出该管的相对粗糙度和绝对粗糙度。 2. 根据光滑管实验结果,对照柏拉修斯方程,计算其误差。
2. 实验流程 实验对象部分是由贮水箱,离心泵,不同管径、材质的水管,各种阀
门、管件,涡轮流量计和倒 U 型压差计等所组成的。管路部分有三段并联 的长直管,分别为用于测定局部阻力系数,光滑管直管阻力系数和粗糙管 直管阻力系数。测定局部阻力部分使用不锈钢管,其上装有待测管件(闸阀);
-3-
化工原理实验
-9-
化工原理实验
对数据进行与粗糙管相同方法的计算,并根据 Blasius 方程计算在 Re 条件下的理论值,计算实验值与理论值的相对误差(相对误差公式为 )。计算结果如下表所示:
序号
1
2
3
4
5
化工原理流体流动阻力测定试验
流体流动阻力测定的实验一、实验目的及任务1 .学习直管摩擦阻力AP 八直管摩擦系数人的测定方法。
2 .掌握直管摩擦系数人与雷诺数Re 和相对粗糙度之间的关系及其变化规律。
3 .掌握局部摩擦阻力APr 局部阻力系数Z 的测定方法。
4 .学习压强差的几种测量方法和提高其测量精确度的一些技巧。
二、基本原理流体在管路中流动时,由于黏性剪应力和涡流的存在,不可避免地会引起流体压力损耗。
这种 损耗包括流体在流动时所产生的直管阻力损失和局部阻力损失。
1 .直管阻力损失流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示, l u 2h =九 x 一 x 一 f d 2式中 d 一管径,m ;1 一管长,m ; u —流速,m / s ; 九一摩擦系数。
在一定的流速下,测出阻力损失,按下式即可求出摩擦系数九7 d 2九=h x_x —f 1 u 2阻力损失h f 可通过对两截面间作机械能衡算求出(1-3)P -流体的密度,kg/m 3A f -两截面的压强差,Pa 。
由式(1-4)可知,对于水平等径直管只要测出两截面上静压强的差即可算出h f 。
两截面上静压 强的差可用压差计测出。
流速由流量计测得,在已知管径d 和平均流速u 的情况下,只需测出流体 的温度K 查出该流体的密度p 和黏度〃,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数人与雷诺数Re 的关系。
2.局部阻力损失阀门、突然扩大、突然缩小、弯头、三通等管件的局部阻力系数可用下式计算对于水平等径直管,z 1=z 2 u 1=u 2, 上式可简化为p 「P 2PA p―f P(1-4)式中p 1-p 2一两截面的压强差, Pa ;(1-1)(1-2)1 2)(1-5)三、实验装置流程和主要设备1.实验装置流程流体流动阻力实验流程如图1-1所示。
图1-1流动阻力实验流程示意图1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压回水阀;9、19-光滑管测压阀;10-局部阻力管阀;11-U型管进水阀;12- 压力传感器;14-流量调节阀;15、16-水转子流量计;17-光滑管阀;18-粗糙管阀;21-倒置U型管放空阀;22-倒置U型管;23-水箱放水阀;24-放水阀;2.被测光滑直管段:管径d—0.008m;管长L—1.69m;材料一不锈钢管被测粗糙直管段:管径d—0.010m;管长L—1.69m;材料一不锈钢管被测局部阻力直管段:管径d—0.015m;管长L—1.2m;材料一不锈钢管3.压力传感器:型号:LXWY 测量范围:200 KPa4.直流数字电压表:型号:PZ139 测量范围:0〜200 KPa5.离心泵:型号:WB70/055 流量:8(m3/h) 扬程:12(m) 电机功率:550(W)6.玻璃转子流量计:型号测量范围精度LZB—40 100〜1000(L / h) 1.5LZB—10 10〜100(L/h) 2.5四、实验方法及步骤1.向储水槽内注水,直到水满为止。
局部阻力损失实验分析报告
局部阻力损失实验报告————————————————————————————————作者:————————————————————————————————日期:局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中12f h -由23f h -按流长比例换算得出。
局部阻力损失实验报告
局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大采用三点法计算,下式中12f h -由23f h -按流长比例换算得出。
实测 2211221212[()][()]22je f p p h Z Z h ggαυαυγγ-=++-+++理论 212(1)e AA ζ'=-2.突然缩小采用四点法计算,下式中B 点为突缩点,4f Bh -由34f h -换算得出,5fB h -由56f h -换算得出。
局部阻力分析实验
管道内的局部阻力实验报告一、实验目的:1.了解各种局部阻力的形成原因及影响状况。
2.掌握能量损失以及损失计算方法二、实验设备:压力测量计,管道,阀门三、实验原理:在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。
此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。
这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。
因此一般的管路系统中,既有沿程损失,又有局部损失。
四、局部损失的产生的原因及计算:一、产生局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。
进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。
在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。
另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。
局部损失就发生在旋涡开始到消失的一段距离上。
图4.9()给出了弯曲管道的流动。
由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。
在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。
综上所述,碰撞和旋涡是产生局部损失的主要原因。
当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。
局部阻力实验报告
局部阻力实验报告1、实验设计该实验主要是通过对一个立式方管内部,设置一个梯形卡板来观察流体流动受到不同阻力时,压力分布的变化。
通过液面高度计、流量计可以得到进出口的压力差、流量数据以及所需的液体动力粘度等数据。
2、实验过程(1)实验前:a.清空实验设备、将设备内的残留液体全部排出。
b.检查流量计、液面高度计、和管路等是否完全密封,螺旋紧固。
c.根据实验设备的需要,调整相应的参数,这里可采用调整梯形卡板高度和梯形卡板上下方的壁径比。
(2)实验中:a.首先,打开实验设备流体进口阀门,从流量计里进入一定的流体,并调节流量阀,让流量测量仪表指针始终在正常指示范围之内,尽量保证流量是恒定的。
b.接着,打开液面高度计年和差压计,并记录相应的液面高度、相应的差压计数值。
c.更改相应的梯形卡板高度和梯形卡板上下方的壁径比。
d.选择不同的流体并记录其动力粘度值。
(3)实验结束:a.实验结束后,说明实验条件并将相关的数据进行整理打印。
b.对实验设备进行检查,清理设备内的残留液体,以便下次的使用。
3、实验结果分析根据实验数据的获取,可以通过计算得到进出口的压力差,以及实验所用液体的流量数据、动力粘度和密度等。
在进行实验时,可以通过更改梯形卡板高度和梯形卡板上下方的壁径比,来获得相应的流动状态和压力分布情况。
通过对实验数据的整理分析,可以发现,在进口和出口处,压力高度的变化不大。
随着梯形卡板高度的增加,进口与出口处的两侧压差逐渐降低,而在中间的部分,则出现一个峰值,这是由于卡板的存在,导致流体在中间部位流动困难,从而出现高压区域。
同时,实验还发现,在相同的流量条件下,黏度较大的流体经过卡板时,整个区域的压力分布都比黏度较小的流体更为复杂。
4、实验结论在经过实验数据的分析之后,我们可以得出如下的结论:a.在纯流动条件下,流体经过梯形卡板时,会出现中间高压区的现象。
b.当流量相等或卡板高度相等时,黏度较大的液体的压力分布会更为复杂。
局部阻力损失实验报告解析
局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中12f h -由23f h -按流长比例换算得出。
实测 2211221212[()][()]22je f p p h Z Z h ggαυαυγγ-=++-+++21/2e je h gαυζ=理论 212(1)e AA ζ'=-2,12je eh gαυζ'=2.突然缩小采用四点法计算,下式中B 点为突缩点,4f B h -由34f h -换算得出,5fB h -由56f h-换算得出。
阻力实验
4
实验报告格式
一、实验目的 二、实验原理 三、实验装置流程 四、实验过程及记录(实验步骤、原始数据记录表、数据计算过程<以一组数据为例>) 五、实验结果分析与总结(数据计算结果表、阻力系数与雷诺系数关系图、结果分析) 六、思考与讨论(任选讲义中 2-3 道思考题回答)
注意事项
1、因为泵是机械密封,必须在泵有水时使用,若泵内无水空转,易造成机械密封件升温
雷诺系数 Re d u
式中:d、ρ、μ— 管内径[m]、流体在测量温度下的密度和粘度 [Kg/m3]、[PaS]
2、直管摩擦阻力损失 Δpsf 及摩擦阻力系数 λ 的测定 流体在管路中流动,由于粘性剪应力的存在,不可避免的会产生机械能损耗。根据范宁
(Fanning)公式,流体在圆形直管内作定常稳定流动时的摩擦阻力损失为:
psf
l d
u2 2
[Pa]
式中: l ——沿直管两测压点间距离,m;
λ——直管摩擦系数,无因次;
由上可知,只要测得 Δpsf 即可求出直管摩擦系数 。根据柏努里方程和压差计对等径管
读数的特性可知:当两测压点处管径一样,且保证两测压点处速度分布正常时,压差计读数
Δp 即为流体流经两测压点处的直管阻力损失 Δpsf。
以上(1)和(2)式联立解得:
p
' f
2p23 p14
则局部阻力系数为:
2 (2p23 p14) u2
三、实验装置流程
实验装置示意图如下,离心泵、循环水池、管道及架子等均为不锈钢材质,工作流体 为水。其流程为:
循环水池离心泵涡轮流量计调节阀各测量管段循环水池。
φ 19×2
F1
相对细管
φ 25×2.5
局部水头损失实验报告
;Lb-5=
;L5-6=
测压管读数 5 6
1 2 3 4 5 实验数据计算表 局 部 阻 力 形 式 序 流量 号 3 Q/( cm /s) 断面前测 点
av
2
断面后测点 总水 头H
2g
总水 头H
av
2
2g
前 断 实 沿 水 损
hf
后 面 测 程 头 失
实 局 水 损
hj
测 部 头 失
实测局 部阻力 系数
11.突然收缩实验管段
四、实验步骤 1) 熟悉实验仪器,记录有关参数,并写入实验记录表格。 2) 打开电源供水, 待水箱溢流恒定后全开流量调节阀, 排除实验管道内气体管道内气体排净后 关闭流量调节阀,检查测压管液面是否齐平。 3) 全开流量调节阀,待流量稳定后,采用时间体积法测算流量,并计算通过各管段的流速,同 时读取测压管液面高度。 4) 调节流量调节阀开度,逐级放大流量,重复步骤 3,测试 5 组流量,记录数据到计算表中。 5) 关闭流量调节阀,再次检查测压管液面是否齐平。若未齐平,则需重新实验。齐平后关闭电 源,将仪器恢复到实验前状态。
流体力学与水泵实验
教师签名: 年 月 日
一、实验目的 1. 掌握三点法、四点法测量局部水头损失与局部阻力系数的技能。 2. 验证圆管突然扩大局部阻力系数公式及突然缩小局部阻力系数经验公式。 3. 加深对局部水头损失机理的理解。 二、实验原理 1.由于流动边界急剧变化所产生的阻力称局部阻力,克服局部阻力引起的水头损失称局部水 头损失。 2.从内部机理上,局部阻力或是由于边界面积大小变化引起的边界层分离现象产生 ,或是流 动方向改变时形成的螺旋流动造成,或者两者都存在造成的局部阻力因此,很难能用一个公式表 示。通常 ,局部水头损失用局部阻力系数ξ 和流速水头的乘积表示,即
局部阻力系数的实验报告
一、实验目的1. 理解局部阻力系数的概念及其在流体力学中的应用;2. 掌握局部阻力系数的测定方法;3. 通过实验,验证局部阻力系数与不同因素的关系。
二、实验原理局部阻力系数(ε)是流体在管路中通过局部收缩或扩张时,因流速变化而产生的能量损失与通过相同管径的均匀流动能量损失之比。
其计算公式为:ε = (hf_local / hf_uniform) (A_uniform / A_local)其中,hf_local为局部收缩或扩张时的能量损失,hf_uniform为均匀流动时的能量损失,A_uniform为均匀流动时的管道截面积,A_local为局部收缩或扩张时的管道截面积。
三、实验仪器与材料1. 实验台:包括直管段、局部收缩或扩张段、流量计、压力表等;2. 水源:提供实验用水;3. 计时器:用于记录实验时间;4. 计算器:用于计算实验数据;5. 实验记录表:用于记录实验数据。
四、实验步骤1. 准备实验台,连接好直管段、局部收缩或扩张段、流量计、压力表等设备;2. 打开水源,调节流量,使水在实验管路中稳定流动;3. 在直管段和局部收缩或扩张段两端安装压力表,记录压力值;4. 记录实验管路的尺寸、材料、温度等参数;5. 在流量计处测量流量,记录流量值;6. 计算直管段和局部收缩或扩张段的能量损失,即:hf_uniform = (4 f L ρ u^2) / (2 g d)hf_local = (4 f L ρ u^2) / (2 g d) (A_uniform / A_local)其中,f为摩擦系数,L为管路长度,ρ为流体密度,u为流速,g为重力加速度,d为管径;7. 计算局部阻力系数:ε = (hf_local / hf_uniform) (A_uniform / A_local)8. 改变实验管路参数(如流量、管径、材料等),重复实验步骤,记录数据;9. 分析实验数据,验证局部阻力系数与不同因素的关系。
水力学实验报告
河海大学水利水电学院水利水电工程专业局部阻力实验报告局部阻力实验实验报告一、 实验概述有压管道恒定流遇到管道边界的局部突变 → 流动分离形成剪切层 → 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡 → 平均流动能量转化成脉动能量,造成不可逆的能量耗散。
与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中损失在管道边界的突变处,每单位重量流体承担的这部分能量损失称为局部水头损失。
局部水头损失常用流速水头与一系数的乘积表示:22j v h gξ= 式中:ξ——局部水头损失系数,也叫做局部阻力系数。
系数ξ是流动形态与边界形状的函数,即ξ=f(Re ,边界形状)。
一般水流Re 数足够大时,可认为系数ξ不再随Re 数变化,而看作一常数。
管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。
其他情况则需要用实验方法确定ξ值。
二、 实验装置及实验方法(一)、实验设备及各部分名称如图所示:局部水头损失实验仪(二)、实验步骤1、对照实物了解仪器设备的使用方法和操作步骤,做好准备工作后,启动抽水机,打开进水开关,使水箱充水,并保持溢流状态,使水位恒定。
2、 检查下游阀门全关时,各个测压管水面是否处于同一水平面上。
如不平,则需排气调平。
3、 核对设备编号,确认数据记录表上列出的断面管径等数据。
4、 开启下游阀门,待水流恒定后,观察测管水头的变化,正确选择实验配件前后的量测断面,进行数据的量测,用体积法测量管道流量,并登录到数据记录表的相应位置。
5、 改变阀门开度,待水流恒定后,重复上述步骤,并按序登录数据。
本实验要求做三个流量。
三 、实验数据及分析实验数据见后面的列表excel 的计算实验分析:声明:由于在实验的过程中,我们小组的实验器材出现了问题,采取排气的措施后,部分测压管还存在问题。
由于本实验要求不画突然扩大的测压管水头线,所以,我们选取了测验管编号1、9、11、14、21、22、23、24、25、26的测压管作为计算标准。
流体力学综合实验装置——流体流动阻力测定实验---实验报告
流体流动阻力测定实验一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数ξ。
4.学会倒U形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:即,式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。
滞流(层流)时,式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。
l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量V(m3/h)。
可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
根据实验装置结构参数l、d,指示液密度,流体温度 (查流体物性ρ、μ),及实验时测定的流量V、压差,通过式(5)、(6)或(7)、(4) 和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告一、实验目的1、掌握测定流体流经直管和管件时阻力损失的实验方法。
2、测定直管摩擦系数λ与雷诺数 Re 的关系,验证在一般湍流区内λ与 Re 的关系曲线。
3、测定流体流经管件的局部阻力系数ζ。
4、学会压差计和流量计的使用方法。
二、实验原理1、直管阻力损失流体在水平等径直管中稳定流动时,阻力损失表现为压力降。
根据柏努利方程,直管阻力损失可以表示为:$\Delta P_f =\lambda \frac{l}{d} \frac{\rho u^2}{2}$其中,$\Delta P_f$ 为直管阻力损失,$\lambda$ 为直管摩擦系数,$l$ 为直管长度,$d$ 为直管内径,$\rho$ 为流体密度,$u$ 为流体流速。
雷诺数$Re =\frac{du\rho}{\mu}$,其中$\mu$ 为流体粘度。
对于湍流,摩擦系数$\lambda$ 与雷诺数$Re$ 及相对粗糙度$\frac{\varepsilon}{d}$有关。
2、局部阻力损失局部阻力损失通常用局部阻力系数$\zeta$ 来表示,其计算式为:$\Delta P_j =\zeta \frac{\rho u^2}{2}$其中,$\DeltaP_j$ 为局部阻力损失。
三、实验装置本实验装置主要由离心泵、水箱、直管、管件(弯管、阀门等)、压差计、流量计等组成。
1、离心泵:用于提供流体流动的动力。
2、水箱:储存实验所用的流体。
3、直管:有不同管径和长度的直管,用于测量直管阻力损失。
4、管件:包括各种类型的弯管、阀门等,用于测量局部阻力损失。
5、压差计:用于测量流体流经直管和管件前后的压力差。
6、流量计:用于测量流体的流量。
四、实验步骤1、实验前准备熟悉实验装置,了解各仪器仪表的使用方法。
检查水箱中水位是否足够,离心泵是否正常运转。
打开压差计上的平衡阀,排除其中的气泡。
2、直管阻力损失的测定关闭实验管线上的阀门,启动离心泵,调节流量至某一值。
流体流动阻力的测定(化工原理实验报告)
北 京 化 工 大 学实 验 报 告课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天流体流动阻力的测定摘要● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。
● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。
● 测定湍流状态下管道局部的阻力系数的局部阻力损失。
● 本次实验数据的处理与图形的拟合利用Matlab 完成。
关键词流体流动阻力 雷诺数 阻力系数 实验数据 Matlab一、实验目的1、掌握直管摩擦阻力系数的测量的一般方法;2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ;3、测定层流管的摩擦阻力4、验证湍流区内λ、Re 和相对粗糙度的函数关系5、将所得光滑管的Re -λ方程与Blasius 方程相比较。
二、实验原理不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。
影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群雷 诺 数:μρdu =Re相对粗糙度: d ε管路长径比: d l可导出:2)(Re,2u d d l p⋅⋅=∆εφρ这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系:22u d l pH f ⋅⋅=∆=λρ因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。
在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即:25.0Re 3163.0=λ对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得:Re 64=λ局部阻力:f H =22u ⋅ξ [J/kg]三、装置和流程四、操作步骤1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀;2、排尽体系空气,使流体在管中连续流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大采用三点法计算,下式中12f h -由23f h -按流长比例换算得出。
实测 2211221212[()][()]22je f p p h Z Z h ggαυαυγγ-=++-+++理论 212(1)e AA ζ'=-2.突然缩小采用四点法计算,下式中B 点为突缩点,4f B h -由34f h -换算得出,5fB h-由56f h -换算得出。
实测 2255444455[()][()]22js f B fB p p h Z h Z h ggαυαυγγ--=++--+++经验公式,计算中的速度应取小管径中的速度值。
当53/0.1A A <时,可简化为530.5(1)s A A ζ'=-实验装置本实验装置如图所示。
局部阻力系数实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4. 恒压水箱;5. 溢流板;6.稳水孔板;7.突然扩大实验管段;8.测压计;9. 滑动测量尺;10. 测压管;11.突然收缩实验管段;12.流量调节阀;实验管道由小→大→小三种已知管径的管道组成,共设有六个测压孔,测孔1—3和2—5分别测量突扩和突缩的局部阻力系数。
其中测孔1位于突扩界面处,用以测量小管出口端压强值。
实验方法与步骤1.测记实验有关常数。
2.打开电源开关,使恒压水箱充水,排除实验管道中的滞留气体。
3.打开出水阀至最大开度,待流量稳定后,测记测压管读数,同时用体积法测记流量。
4.改变出水阀开度3~4次,分别测记测压管读数及流量。
5.实验完成。
实验成果及要求1.记录、计算有关常数: 实验装置台号No 4 D1=D5=1.4cm D2=D3=D4=2.0cm L1-2=20.0cm L2-3=19.8cm L3-b=6.5cm Lb-4=3.5cm L4-5=20.0cm212(1)e A A ζ'=-= 0.2601, =0.2994注:由于A5/A4=0.49>0.1,故采用以上经验公式计算值 2.整理记录、计算表。
3.扩张段 ζe/ζe 理论=0.2216/0.2601=85.19% 收缩段 ζs/ζs 理论=0.2453/0.2994=83.27% 实验分析与讨论1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系。
实验结果如下图:由式 gv h j 22ζ=及 )(21d d f =ζ表明影响局部阻力损失的因素是v 和21d d ,由于有 突扩:221)1(A A e -=ζ 突缩:)1(5.021A A s -=ζ 则有 212212115.0)1()1(5.0A A A A A A K e s -=--==ζζ 当 5.021<A A 或 707.021<d d时,突然扩大的水头损失比相应突然收缩的要大。
在本实验中D1/D2=0.7,突扩损失与突缩损失应接近,即hjs/hje=1,说明实验结果与理论推到相一致。
从而我们也可得到,当21d d 接近于1时,突扩的水流形态接近于逐渐扩大管的流动,因而阻力损失显着减小。
2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?流动演示仪 I-VII 型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十余种内、外流的流动图谱。
据此对局部阻力损失的机理分析如下:从显示的图谱可见,凡流道边界突变处,形成大小不一的旋涡区。
旋涡是产生损失的主要根源。
由于水质点的无规则运动和激烈的紊动,相互摩擦,便消耗了部分水体的自储能量。
另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。
这样就造成了局部阻力损失。
从流动仪可见,突扩段的旋涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,旋涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。
而突缩段的旋涡在收缩断面前后均有。
突缩前仅在死角区有小旋涡,且强度较小,而突缩的后部产生了紊动度较大的旋涡环区。
可见产生突缩水头损失的主要部位是在突缩断面后。
从以上分析知。
为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或尽量接近流线型,以避免旋涡的形成,或使旋涡区尽可能小。
如欲减小本实验管道的局部阻力,就应减小管径比以降低突扩段的旋涡区域;或把突缩进口的直角改为园角,以消除突缩断面后的旋涡环带,可使突缩局部阻力系数减小到原来的1/2~1/10。
突然收缩实验管道,使用年份长后,实测阻力系数减小,主要原因也在这里。
3.现备有一段长度及联接方式与调节阀(图8.1)相同,内径与实验管道相同的直管段,如何用两点法测量阀门的局部阻力系数?两点法是测量局部阻力系数的简便有效办法。
它只需在被测流段(如阀门)前后的直管段长度大于(20~40)d 的断面处,各布置一个测压点便可。
先测出整个被测流段上的总水头损失21-w h ,有式中:ji h — 分别为两测点间互不干扰的各个局部阻力段的阻力损失;jn h — 被测段的局部阻力损失; 21-f h — 两测点间的沿程水头损失。
然后,把被测段(如阀门)换上一段长度及联接方法与被测段相同,内径与管道相同的直管段,再测出相同流量下的总水头损失'21-w h ,同样有所以 '2121---=w w jn h h h☆4.实验测得突缩管在不同管径比时的局部阻力系数(510e R >)如下:利用Excel 中最小二乘法线性拟合可以得到: ξ=-0.6(d2/d1)+0.64其中R2 = 0.9626,说明拟合效果很好。
若采用A2/A1为参数,则结果如下:ξ=0.5(1-(A2/A1))显然,采用A2/A1作为变量推导出的公式更符合实际情况。
理论推导过程如下:由实验数据求得等差)/(12d d x x =∆令相应的差分)(ζ=∆y y 令,其一、二级差分如下表二级差分y 2∆为常数,故此经验公式类型为:2210x b x b b y ++= (1)(2)用最小二乘法确定系数 令 ][22110i i x b x b b y ++-=δδ是实验值与经验公式计算值的偏差。
如用ε表示偏差的平方和,即()[]∑∑==++-==512221012i i i i ni ix b x b b y δε (2)为使ε为最小值,则必须满足于是式(2)分别对0b 、1b 、2b 求偏导可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=---=---=---∑∑∑∑∑∑∑∑∑∑∑===========515142513151202515132512151051515122100005i i i i i i i i i i i i i i i i i i i i i i i i x b x b x b x y x b x b x b x y x b x b b y (3)⎪⎩⎪⎨⎧=---=---=---0567.18.12.23164.008.12.236.002.2354.1210210210b b b b b b b b b (4)解得5.00=b ,01=b ,5.02-=b ,代入式(1) 有)1(5.02x y -=于是得到突然收缩局部阻力系数的经验公式为 或 )1(5.012A A -=ζ ☆5.试说明用理论分析法和经验法建立相关物理量间函数关系式的途径。
突扩局部阻力系数公式是由理论分析法得到的。
一般在具备理论分析条件时,函数式可直接由理论推演得,但有时条件不够,就要引入某些假定。
如在推导突扩局部阻力系数时,假定了“在突扩的环状面积上的动水压强按静水压强规律分布”。
引入这个假定的前提是有充分的实验依据,证明这个假定是合理的。
理论推导得出的公式,还需通过实验验证其正确性。
这是先理论分析后实验验证的一个过程。
经验公式有多种建立方法,突缩的局部阻力系数经验公式是在实验取得了大量数据的基础上,进一步作数学分析得出的。
这是先实验后分析归纳的一个过程。
但通常的过程应是先理论分析(包括量纲分析等)后实验研究,最后进行分析归纳。